chemical engineering food industry: Chemical Engineering for the Food Industry D. Leo Pyle, Peter J. Fryer, Chris D. Reilly, 2012-12-06 Industrial food processing involves the production of added value foods on a large scale; these foods are made by mixing and processing different ingredients in a prescribed way. The food industry, historically, has not designed its processes in an engineering sense, i.e. by understanding the physical and chemical principles which govern the operation of the plant and then using those principles to develop a process. Rather, processes have been 'designed' by purchasing equipment from a range of suppliers and then connecting that equipment together to form a complete process. When the process being run has essentially been scaled up from the kitchen then this may not matter. However, there are limits to the approach. • As the industry becomes more sophisticated, and economies of scale are exploited, then the size of plant reaches a scale where systematic design techniques are needed. • The range of processes and products made by the food industry has increased to include foods which have no kitchen counterpart, such as low-fat spreads. • It is vital to ensure the quality and safety of the product. • Plant must be flexible and able to cope with the need to make a variety of products from a range of ingredients. This is especially important as markets evolve with time. • The traditional design process cannot readily handle multi-product and multi-stream operations. • Processes must be energetically efficient and meet modern environmen tal standards. |
chemical engineering food industry: Regenerative Engineering Yusuf Khan, Cato T. Laurencin, 2018-04-19 This book focuses on advances made in both materials science and scaffold development techniques, paying close attention to the latest and state-of-the-art research. Chapters delve into a sweeping variety of specific materials categories, from composite materials to bioactive ceramics, exploring how these materials are specifically designed for regenerative engineering applications. Also included are unique chapters on biologically-derived scaffolding, along with 3D printing technology for regenerative engineering. Features: Covers the latest developments in advanced materials for regenerative engineering and medicine. Each chapter is written by world class researchers in various aspects of this medical technology. Provides unique coverage of biologically derived scaffolding. Includes separate chapter on how 3D printing technology is related to regenerative engineering. Includes extensive references at the end of each chapter to enhance further study. |
chemical engineering food industry: Chemical Engineering for the Food Industry D Leo Pyle, Peter J Fryer, Chris D Reilly, 1991-07-31 |
chemical engineering food industry: Introduction to Advanced Food Process Engineering Jatindra Kumar Sahu, 2014-03-24 Food materials are processed prior to their consumption using different processing technologies that improve their shelf life and maintain their physicochemical, biological, and sensory qualities. Introduction to Advanced Food Process Engineering provides a general reference on various aspects of processing, packaging, storage, and quality control and assessment systems, describing the basic principles and major applications of emerging food processing technologies. The book is divided into three sections, systematically examining processes from different areas of food process engineering. Section I covers a wide range of advanced food processing technologies including osmo-concentration of fruits and vegetables, membrane technology, nonthermal processing, emerging drying technologies, CA and MA storage of fruits and vegetables, nanotechnology in food processing, and computational fluid dynamics modeling in food processing. Section II describes food safety and various non-destructive quality assessment systems using machine vision systems, vibrational spectroscopy, biosensors, and chemosensors. Section III explores waste management, by-product utilization, and energy conservation in food processing industry. With an emphasis on novel food processes, each chapter contains case studies and examples to illustrate state-of-the-art applications of the technologies discussed. |
chemical engineering food industry: Introduction to Food Process Engineering Albert Ibarz, Gustavo V. Barbosa-Canovas, 2014-04-10 Consumer expectations are systematically growing, with demands for foods with a number of attributes, which are sometimes difficult for manufacturers to meet. The engineering processes that are needed to obtain top-quality foods are a major challenge due to the diversity of raw materials, intermediates, and final products. As in any other enterprise, the food industry must optimize each of the steps in the production chain to attain the best possible results. There is no question that a very important aspect to take into consideration when developing a process, designing a food factory, or modifying existing facilities is the in-depth knowledge of the basic engineering aspects involved in a given project. Introduction to Food Process Engineering covers the fundamental principles necessary to study, understand, and analyze most unit operations in the food engineering domain. It was conceived with two clear objectives in mind: 1) to present all of the subjects in a systematic, coherent, and sequential fashion in order to provide an excellent knowledge base for a number of conventional and unconventional processes encountered in food industry processing lines, as well as novel processes at the research and development stages; 2) to be the best grounding possible for another CRC Press publication, Unit Operations in Food Engineering, Second Edition, by the same authors. These two books can be consulted independently, but at the same time, there is a significant and welcomed match between the two in terms of terminology, definitions, units, symbols, and nomenclature. Highlights of the book include: Dimensional analysis and similarities Physicochemistry of food systems Heat and mass transfer in food Food rheology Physical properties Water activity Thermal processing Chilling and freezing Evaporation Dehydration Extensive examples, problems, and solutions |
chemical engineering food industry: Chemical Engineering: Visions of the World R. C. Darton, D. G. Wood, R. G. H. Prince, 2003-05-21 This book presents six visionary essays on the past, present and future of the chemical and process industries, together with a critical commentary. Our world is changing fast and the visions explore the implications for business and academic institutions, and for the professionals working in them. The visions were written and brought together for the 6th World Congress of Chemical Engineering in Melbourne, Australia in September 2001. · Identifies trends in the chemicals business environment and their consequences · Discusses a wide variety of views about business and technology · Describes the impact of newly developing technologies |
chemical engineering food industry: Chemical Engineering for the Food Industry P. Fryer, 1993 |
chemical engineering food industry: Fundamentals and Operations in Food Process Engineering Susanta Kumar Das, Madhusweta Das, 2019-03-08 Fundamentals and Operations in Food Process Engineering deals with the basic engineering principles and transport processes applied to food processing, followed by specific unit operations with a large number of worked-out examples and problems for practice in each chapter. The book is divided into four sections: fundamentals in food process engineering, mechanical operations in food processing, thermal operations in food processing and mass transfer operations in food processing. The book is designed for students pursuing courses on food science and food technology, including a broader section of scientific personnel in the food processing and related industries. |
chemical engineering food industry: Food Processing Operations and Scale-up Kenneth J. Valentas, J. Peter Clark, Leon Levin, 1990-11-19 Intended for students and practitioners who have a basic education in chemical engineering or food science. Contains basic information in each area and describes some of the fundamental ideas of processing development and design. Examines the food industry structure, how it works, consumer products, |
chemical engineering food industry: A Chemical Engineer in the Palm Oil Milling Industry Wai Onn Hong, 2020 |
chemical engineering food industry: Innovative Food Processing Technologies , 2020-08-18 Food process engineering, a branch of both food science and chemical engineering, has evolved over the years since its inception and still is a rapidly changing discipline. While traditionally the main objective of food process engineering was preservation and stabilization, the focus today has shifted to enhance health aspects, flavour and taste, nutrition, sustainable production, food security and also to ensure more diversity for the increasing demand of consumers. The food industry is becoming increasingly competitive and dynamic, and strives to develop high quality, freshly prepared food products. To achieve this objective, food manufacturers are today presented with a growing array of new technologies that have the potential to improve, or replace, conventional processing technologies, to deliver higher quality and better consumer targeted food products, which meet many, if not all, of the demands of the modern consumer. These new, or innovative, technologies are in various stages of development, including some still at the R&D stage, and others that have been commercialised as alternatives to conventional processing technologies. Food process engineering comprises a series of unit operations traditionally applied in the food industry. One major component of these operations relates to the application of heat, directly or indirectly, to provide foods free from pathogenic microorganisms, but also to enhance or intensify other processes, such as extraction, separation or modification of components. The last three decades have also witnessed the advent and adaptation of several operations, processes, and techniques aimed at producing high quality foods, with minimum alteration of sensory and nutritive properties. Some of these innovative technologies have significantly reduced the thermal component in food processing, offering alternative nonthermal methods. Food Processing Technologies: A Comprehensive Review, Three Volume Set covers the latest advances in innovative and nonthermal processing, such as high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation and new hurdle technology. Each section will have an introductory article covering the basic principles and applications of each technology, and in-depth articles covering the currently available equipment (and/or the current state of development), food quality and safety, application to various sectors, food laws and regulations, consumer acceptance, advancements and future scope. It will also contain case studies and examples to illustrate state-of-the-art applications. Each section will serve as an excellent reference to food industry professionals involved in the processing of a wide range of food categories, e.g., meat, seafood, beverage, dairy, eggs, fruits and vegetable products, spices, herbs among others. |
chemical engineering food industry: Food Process Engineering and Technology Zeki Berk, 2013-06-08 The past 30 years have seen the establishment of food engineering both as an academic discipline and as a profession. Combining scientific depth with practical usefulness, this book serves as a tool for graduate students as well as practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes as well as process control and plant hygiene topics. - Strong emphasis on the relationship between engineering and product quality/safety - Links theory and practice - Considers topics in light of factors such as cost and environmental issues |
chemical engineering food industry: Fermentation Processes Engineering in the Food Industry Carlos Ricardo Soccol, Ashok Pandey, Christian Larroche, 2013-03-27 With the advent of modern tools of molecular biology and genetic engineering and new skills in metabolic engineering and synthetic biology, fermentation technology for industrial applications has developed enormously in recent years. Reflecting these advances, Fermentation Processes Engineering in the Food Industry explores the state of the art of |
chemical engineering food industry: Engineering Principles of Unit Operations in Food Processing Seid Mahdi Jafari, 2021-06-22 Engineering Principles of Unit Operations in Food Processing, volume 1 in the Woodhead Publishing Series, In Unit Operations and Processing Equipment in the Food Industry series, presents basic principles of food engineering with an emphasis on unit operations, such as heat transfer, mass transfer and fluid mechanics. - Brings new opportunities in the optimization of food processing operations - Thoroughly explores applications of food engineering to food processes - Focuses on unit operations from an engineering viewpoint |
chemical engineering food industry: Chemical Engineering in the Pharmaceutical Industry David J. am Ende, 2011-03-10 This book deals with various unique elements in the drug development process within chemical engineering science and pharmaceutical R&D. The book is intended to be used as a professional reference and potentially as a text book reference in pharmaceutical engineering and pharmaceutical sciences. Many of the experimental methods related to pharmaceutical process development are learned on the job. This book is intended to provide many of those important concepts that R&D Engineers and manufacturing Engineers should know and be familiar if they are going to be successful in the Pharmaceutical Industry. These include basic analytics for quantitation of reaction components– often skipped in ChE Reaction Engineering and kinetics books. In addition Chemical Engineering in the Pharmaceutical Industry introduces contemporary methods of data analysis for kinetic modeling and extends these concepts into Quality by Design strategies for regulatory filings. For the current professionals, in-silico process modeling tools that streamline experimental screening approaches is also new and presented here. Continuous flow processing, although mainstream for ChE, is unique in this context given the range of scales and the complex economics associated with transforming existing batch-plant capacity. The book will be split into four distinct yet related parts. These parts will address the fundamentals of analytical techniques for engineers, thermodynamic modeling, and finally provides an appendix with common engineering tools and examples of their applications. |
chemical engineering food industry: Unit Operations in Food Processing R. L. Earle, 2013-10-22 This long awaited second edition of a popular textbook has a simple and direct approach to the diversity and complexity of food processing. It explains the principles of operations and illustrates them by individual processes. The new edition has been enlarged to include sections on freezing, drying, psychrometry, and a completely new section on mechanical refrigeration. All the units have been converted to SI measure. Each chapter contains unworked examples to help the student gain a grasp of the subject, and although primarily intended for the student food technologist or process engineer, this book will also be useful to technical workers in the food industry |
chemical engineering food industry: Food Process Engineering H.A. Leniger, W.A. Beverloo, 2012-12-06 This book resulted from many years of teaching engineering aspects of food tech nology at the Agricultural University ofWageningen, The Netherlands. In the course of those years the subject matter of teaching has been written down and placed at the student's disposal. The Dutch text has been reconsidered and revised several times. Eventually the question arose whether it would be advisable to transform and translate the text in order to transfer available knowledge and experience to others interested in the relatively new branch of food science that food process engineering is. This question has been answered in the affirmative. Up to now only a few books deal with food process engineering; some are rather superficial and evidently meant as introductory, other ones have in our opinion too much emphasis on chemical engineering and too little on food process engineering. We believe - and this will be elucidated at some length in the Introduction - that food process engineering is in many respects a very specific branch of engineering, allied to but certainly different from chemical engineering. We have always endeav oured to show similarities between various branches, stressing at the same time how ever the differences and explaining the why and wherefore of them. The present book illustrates this approach. It considers engineering, process en gineering and food process engineering as ranking in this order of rising importance. |
chemical engineering food industry: Physicochemical Aspects of Food Engineering and Processing Sakamon Devahastin, 2010-08-03 Physical and chemical interactions between various constituents resulting from processing operations often lead to physical, sensory, and nutritional changes in foods. Combining important information on processing and food quality, Physicochemical Aspects of Food Engineering and Processing describes the effects of various processing technologies on |
chemical engineering food industry: Chemical Engineering Design Gavin Towler, Ray Sinnott, 2012-01-25 Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors |
chemical engineering food industry: Handbook of Farm, Dairy and Food Machinery Engineering Myer Kutz, 2019-06-15 Handbook of Agricultural and Farm Machinery, Third Edition, is the essential reference for understanding the food industry, from farm machinery, to dairy processing, food storage facilities and the machinery that processes and packages foods. Effective and efficient food delivery systems are built around processes that maximize efforts while minimizing cost and time. This comprehensive reference is for engineers who design and build machinery and processing equipment, shipping containers, and packaging and storage equipment. It includes coverage of microwave vacuum applications in grain processing, cacao processing, fruit and vegetable processing, ohmic heating of meat, facility design, closures for glass containers, double seaming, and more. The book's chapters include an excellent overview of food engineering, but also regulation and safety information, machinery design for the various stages of food production, from tillage, to processing and packaging. Each chapter includes the state-of-the art in technology for each subject and numerous illustrations, tables and references to guide the reader through key concepts. - Describes the latest breakthroughs in food production machinery - Features new chapters on engineering properties of food materials, UAS applications, and microwave processing of foods - Provides efficient access to fundamental information and presents real-world applications - Includes design of machinery and facilities as well as theoretical bases for determining and predicting behavior of foods as they are handled and processed |
chemical engineering food industry: Food Industry Wastes Maria R. Kosseva, Colin Webb, 2013-01-31 Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book provides a guide for implementing bioprocessing techniques. It also helps researchers develop new options for the recuperation of these wastes for community benefit. More than 34 million tons of food waste was generated in the United States in 2009, at a cost of approximately $43 billion. And while less than three percent of that waste was recovered and recycled, there is growing interest and development in recovering and recycling food waste. These processes have the potential not only to reduce greenhouse gases, but to provide energy and resources for other purposes. This book examines these topics in detail, starting with sources, characterization and composition of food wastes, and development of green production strategies. The book then turns to treatment techniques such as solid-state fermentation and anaerobic digestion of solid food waste for biogas and fertilizer. A deep section on innovative biocatalysts and bioreactors follows, encompassing hydrogen generation and thermophilic aerobic bioprocessing technologies. Rounding out the volume are extensive sections on water footprints, including electricity generation from microbial fuel cells (MFCs), and life cycle assessments. - Food waste is an area of focus for a wide range of related industries from food science to energy and engineering - Outlines the development of green product strategies - International authoring team represents the leading edge in research and development - Highlights leading trends of current research as well as future opportunities for reusing food waste |
chemical engineering food industry: Fundamentals of Food Process Engineering Romeo T. Toledo, 2012-12-06 Ten years after the publication of the first edition of Fundamentals of Food Process Engineering, there have been significant changes in both food science education and the food industry itself. Students now in the food science curric ulum are generally better prepared mathematically than their counterparts two decades ago. The food science curriculum in most schools in the United States has split into science and business options, with students in the science option following the Institute of Food Technologists' minimum requirements. The minimum requirements include the food engineering course, thus students en rolled in food engineering are generally better than average, and can be chal lenged with more rigor in the course material. The food industry itself has changed. Traditionally, the food industry has been primarily involved in the canning and freezing of agricultural commodi ties, and a company's operations generally remain within a single commodity. Now, the industry is becoming more diversified, with many companies involved in operations involving more than one type of commodity. A number of for mulated food products are now made where the commodity connection becomes obscure. The ability to solve problems is a valued asset in a technologist, and often, solving problems involves nothing more than applying principles learned in other areas to the problem at hand. A principle that may have been commonly used with one commodity may also be applied to another commodity to produce unique products. |
chemical engineering food industry: Introduction to Chemical Engineering Uche P. Nnaji, 2019-10-10 The field of chemical engineering is undergoing a global “renaissance,” with new processes, equipment, and sources changing literally every day. It is a dynamic, important area of study and the basis for some of the most lucrative and integral fields of science. Introduction to Chemical Engineering offers a comprehensive overview of the concept, principles and applications of chemical engineering. It explains the distinct chemical engineering knowledge which gave rise to a general-purpose technology and broadest engineering field. The book serves as a conduit between college education and the real-world chemical engineering practice. It answers many questions students and young engineers often ask which include: How is what I studied in the classroom being applied in the industrial setting? What steps do I need to take to become a professional chemical engineer? What are the career diversities in chemical engineering and the engineering knowledge required? How is chemical engineering design done in real-world? What are the chemical engineering computer tools and their applications? What are the prospects, present and future challenges of chemical engineering? And so on. It also provides the information new chemical engineering hires would need to excel and cross the critical novice engineer stage of their career. It is expected that this book will enhance students understanding and performance in the field and the development of the profession worldwide. Whether a new-hire engineer or a veteran in the field, this is a must—have volume for any chemical engineer’s library. |
chemical engineering food industry: Re-Engineering the Chemical Processing Plant Andrzej Stankiewicz, Jacob A. Moulijn, 2018-12-14 The first guide to compile current research and frontline developments in the science of process intensification (PI), Re-Engineering the Chemical Processing Plant illustrates the design, integration, and application of PI principles and structures for the development and optimization of chemical and industrial plants. This volume updates professionals on emerging PI equipment and methodologies to promote technological advances and operational efficacy in chemical, biochemical, and engineering environments and presents clear examples illustrating the implementation and application of specific process-intensifying equipment and methods in various commercial arenas. |
chemical engineering food industry: Chemical Changes During Processing and Storage of Foods Delia B. Rodriguez-Amaya, Jaime Amaya-Farfan, 2020-11-25 Chemical Changes During Processing and Storage of Foods: Implications for Food Quality and Human Health presents a comprehensive and updated discussion of the major chemical changes occurring in foods during processing and storage, the mechanisms and influencing factors involved, and their effects on food quality, shelf-life, food safety, and health. Food components undergo chemical reactions and interactions that produce both positive and negative consequences. This book brings together classical and recent knowledge to deliver a deeper understanding of this topic so that desirable alterations can be enhanced and undesirable changes avoided or reduced. Chemical Changes During Processing and Storage of Foods provides researchers in the fields of food science, nutrition, public health, medical sciences, food security, biochemistry, pharmacy, chemistry, chemical engineering, and agronomy with a strong knowledge to support their endeavors to improve the food we consume. It will also benefit undergraduate and graduate students working on a variety of disciplines in food chemistry - Offers a comprehensive overview of the major chemical changes that occur in foods at the molecular level and discusses the positive and negative effects on food quality and human health - Describes the mechanisms of these chemical changes and the factors that impede or accelerate their occurrence - Helps to solve daily industry problems such as loss of color and nutritional quality, alteration of texture, flavor deterioration or development of off-flavor, loss of nutrients and bioactive compounds or lowering of their bioefficacy, and possible formation of toxic compounds |
chemical engineering food industry: Food Properties and Computer-Aided Engineering of Food Processing Systems R.P. Singh, Augusto G. Medina, 2012-12-06 Food properties, whether they concern the physical, thermodynamic, chemical, nutritional or sensory characteristics of foods, play an important role in food processing. In our quest to gain a mechanistic understanding of changes occurring during food processing, the knowledge of food properties is essential. Quantitative information on the food properties is necessary in the design and operation of food processing equipment. Foods, because of their biological nature and variability, vary in the magnitude of their properties. The variation in properties offer a challenge both in their measurement and use in the food processing applications. Often a high level of precision in measurement of properties is not possible as the measurement method may itself cause changes to the product, resulting in a variation in the obtained values. Recognizing the difficulties in measurement of food properties, and the lack of completeness of such information, several research programs have been in existence during the last two decades. In Europe, a multinational effort has been underway since 1978. The first project supported by COST (European Cooperation in the Field of Scientific and Technical Research), was titled COST 90 The Effect of Processing on the Physical Properties of Foodstuffs. This and another project COST 90bis have considerably added to our knowledge of measurement methods and data on a number of physical properties. Two publications that summarize the work conducted under 1 2 these projects are Physical Properties of Foods and Physical Properties of Foods . |
chemical engineering food industry: Chemical Engineering and Chemical Process Technology - Volume V Ryzhard Pohorecki, John Bridgwater, M. Molzahn. Rafiqul Gani and Crispulo Gallegos, 2010-11-30 Chemical Engineering and Chemical Process Technology is a theme component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Chemical engineering is a branch of engineering, dealing with processes in which materials undergo changes in their physical or chemical state. These changes may concern size, energy content, composition and/or other application properties. Chemical engineering deals with many processes belonging to chemical industry or related industries (petrochemical, metallurgical, food, pharmaceutical, fine chemicals, coatings and colors, renewable raw materials, biotechnological, etc.), and finds application in manufacturing of such products as acids, alkalis, salts, fuels, fertilizers, crop protection agents, ceramics, glass, paper, colors, dyestuffs, plastics, cosmetics, vitamins and many others. It also plays significant role in environmental protection, biotechnology, nanotechnology, energy production and sustainable economical development. The Theme on Chemical Engineering and Chemical Process Technology deals, in five volumes and covers several topics such as: Fundamentals of Chemical Engineering; Unit Operations – Fluids; Unit Operations – Solids; Chemical Reaction Engineering; Process Development, Modeling, Optimization and Control; Process Management; The Future of Chemical Engineering; Chemical Engineering Education; Main Products, which are then expanded into multiple subtopics, each as a chapter. These five volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs. |
chemical engineering food industry: Chemical Engineering in the Pharmaceutical Industry Mary T. am Ende, David J. am Ende, 2019-04-08 A guide to the important chemical engineering concepts for the development of new drugs, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry offers a guide to the experimental and computational methods related to drug product design and development. The second edition has been greatly expanded and covers a range of topics related to formulation design and process development of drug products. The authors review basic analytics for quantitation of drug product quality attributes, such as potency, purity, content uniformity, and dissolution, that are addressed with consideration of the applied statistics, process analytical technology, and process control. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The contributors explore technology transfer and scale-up of batch processes that are exemplified experimentally and computationally. Written for engineers working in the field, the book examines in-silico process modeling tools that streamline experimental screening approaches. In addition, the authors discuss the emerging field of continuous drug product manufacturing. This revised second edition: Contains 21 new or revised chapters, including chapters on quality by design, computational approaches for drug product modeling, process design with PAT and process control, engineering challenges and solutions Covers chemistry and engineering activities related to dosage form design, and process development, and scale-up Offers analytical methods and applied statistics that highlight drug product quality attributes as design features Presents updated and new example calculations and associated solutions Includes contributions from leading experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduation students, and professionals in the field of pharmaceutical sciences and manufacturing, Chemical Engineering in the Pharmaceutical Industry, Second Edition contains information designed to be of use from the engineer's perspective and spans information from solid to semi-solid to lyophilized drug products. |
chemical engineering food industry: Mixing in the Process Industries A W NIENOW, M F EDWARDS, N. Harnby, 1997-09-11 This volume is a valuable reference work for the student and the practising engineer in the chemical, pharmaceutical, minerals, food, plastics, paper and metallurgical industries. The second edition of this successful text has been thoroughly rewritten and updated. Based on the long running post-experience course produced by the University of Bradford, in association with the Institution of Chemical Engineers, it covers all aspects of mixing, from fundamentals through to design procedures in single and multi-phase systems. Experts from both industry and academia have contributed to this work giving both a theoretical practical approach. It covers dry and wet powders, single and two-phase liquids, solid/liquid and gas/liquid systems. The range of mixers available for such diverse duties is dealt with, including tumbler mixers for powders, mechanically agitated vessels, in-line continuous mixers and jet mixers. Coverage is given of the range of mixing objectives, varying from achieving product uniformity to obtaining optimum conditions for mass transfer and chemical reactions. This volume is a valuable reference work for the student and the practising engineer in the chemical, pharmaceutical, minerals, food, plastics, paper and metallurgical industries. The second edition of this successful text has been thoroughly rewritten and updated. Based on the long running post-experience course produced by the University of Bradford, in association with the Institution of Chemical Engineers, it covers all aspects of mixing, from fundamentals through to design procedures in single and multi-phase systems. Experts from both industry and academia have contributed to this work giving both a theoretical practical approach. It covers dry and wet powders, single and two-phase liquids, solid/liquid and gas/liquid systems. The range of mixers available for such diverse duties is dealt with, including tumbler mixers for powders, mechanically agitated vessels, in-line continuous mixers and jet mixers. Coverage is given of the range of mixing objectives, varying from achieving product uniformity to obtaining optimum conditions for mass transfer and chemical reactions. |
chemical engineering food industry: Applications of Ion Exchange Materials in Chemical and Food Industries Inamuddin, Tauseef Ahmad Rangreez, Abdullah M. Asiri, 2019-02-04 This book presents the applications of ion-exchange materials in the chemical and food industries. It includes topics related to the application of ion exchange chromatography in water softening, purification and separation of chemicals, separation and purification of food products and catalysis. This title is a highly valuable source of knowledge on ion-exchange materials and their applications suitable for postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology. Additionally, this book will provide an in-depth knowledge of ion-exchange column and operations suitable for engineers and industrialists. |
chemical engineering food industry: Chemical Engineering in the Pharmaceutical Industry David J. am Ende, Mary T. am Ende, 2019-04-23 A guide to the development and manufacturing of pharmaceutical products written for professionals in the industry, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry is a practical book that highlights chemistry and chemical engineering. The book’s regulatory quality strategies target the development and manufacturing of pharmaceutically active ingredients of pharmaceutical products. The expanded second edition contains revised content with many new case studies and additional example calculations that are of interest to chemical engineers. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The active pharmaceutical ingredients book puts the focus on the chemistry, chemical engineering, and unit operations specific to development and manufacturing of the active ingredients of the pharmaceutical product. The drug substance operations section includes information on chemical reactions, mixing, distillations, extractions, crystallizations, filtration, drying, and wet and dry milling. In addition, the book includes many applications of process modeling and modern software tools that are geared toward batch-scale and continuous drug substance pharmaceutical operations. This updated second edition: Contains 30new chapters or revised chapters specific to API, covering topics including: manufacturing quality by design, computational approaches, continuous manufacturing, crystallization and final form, process safety Expanded topics of scale-up, continuous processing, applications of thermodynamics and thermodynamic modeling, filtration and drying Presents updated and expanded example calculations Includes contributions from noted experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduate students, and professionals in the field of pharmaceutical sciences and manufacturing, the second edition of Chemical Engineering in the Pharmaceutical Industryf ocuses on the development and chemical engineering as well as operations specific to the design, formulation, and manufacture of drug substance and products. |
chemical engineering food industry: Food Process Engineering Operations George D. Saravacos, Zacharias B. Maroulis, 2011-02-22 A unique and interdisciplinary field, food processing must meet basic process engineering considerations such as material and energy balances, as well as the more specialized requirements of food acceptance, human nutrition, and food safety. Food engineering, therefore, is a field of major concern to university departments of food science, and chemical and biological engineering as well as engineers and scientists working in various food processing industries. Part of the notable CRC Press Contemporary Food Engineering series, Food Process Engineering Operations focuses on the application of chemical engineering unit operations to the handling, processing, packaging, and distribution of food products. Chapters 1 through 5 open the text with a review of the fundamentals of process engineering and food processing technology, with typical examples of food process applications. The body of the book then covers food process engineering operations in detail, including theory, process equipment, engineering operations, and application examples and problems. Based on the authors’ long teaching and research experience both in the US and Greece, this highly accessible textbook employs simple diagrams to illustrate the mechanism of each operation and the main components of the process equipment. It uses simplified calculations requiring only elementary calculus and offers realistic values of food engineering properties taken from the published literature and the authors’ experience. The appendix contains useful engineering data for process calculations, such as steam tables, engineering properties, engineering diagrams, and suppliers of process equipment. Designed as a one or two semester textbook for food science students, Food Process Engineering Operations examines the applications of process engineering fundamentals to food processing technology making it an important reference for students of chemical and biological engineering interested in food engineering, and for scientists, engineers, and technologists working in food processing industries. |
chemical engineering food industry: Formulation Engineering of Foods Jennifer E. Norton, Peter Fryer, Ian T. Norton, 2013-06-10 Formulation Engineering of Foods provides an in-depth look at formulation engineering approaches to food processing and product development of healthier, higher-performance foods. Through the use of eye-catching examples, such as low fat and low calorie chocolate, and salt reduction strategies in products like cheese and sauces, the book is at once easy to relate to and innovative. Presenting new methods and techniques for engineering food products, this book is cutting edge and as food formulation is a new method of food science, this is a timely publication in the field. All three editors are based in the University of Birmingham, base of the largest Chemical Engineering-based food research group in the UK, incorporating research into structured foods, flavour delivery and food hygiene. Research in food processing is carried out in partnership with key companies such as Nestlé, Unilever and Cadbury, as well as through funding from research councils and DEFRA. Joint research and collaboration has been carried out with Food Science departments at Nottingham, Leeds and Reading. |
chemical engineering food industry: Trends in Food Engineering Jorge E. Lozano, Cristina Anon, Gustavo V. Barbosa-Canovas, Efren Parada-Arias, 2000-06-07 Trends in Food Engineering presents a wide vision of food engineering, with an emphasis on topics vital to the food industry today. The first section deals with physical and sensory properties of food. The emphasis in these chapters is on structure-function relationships, food rheology, and the correlations between physicochemical and sensory data. The second section, on advances in food processing, includes recent developments in minimal preservation and thermal and nonthermal processing of foods. The book concludes with current topics in food engineering, including applied biotechnology, food additives, and functional properties of proteins. |
chemical engineering food industry: International Benchmarking of U.S. Chemical Engineering Research Competitiveness National Research Council, Division on Earth and Life Studies, Board on Chemical Sciences and Technology, Panel on Benchmarking the Research Competitiveness of the U.S. in Chemical Engineering, 2007-07-12 More than $400 billion worth of products rely on innovations in chemistry. Chemical engineering, as an academic discipline and profession, has enabled this achievement. In response to growing concerns about the future of the discipline, International Benchmarking of U.S. Chemical Engineering Research Competitiveness gauges the standing of the U.S. chemical engineering enterprise in the world. This in-depth benchmarking analysis is based on measures including numbers of published papers, citations, trends in degrees conferred, patent productivity, and awards. The book concludes that the United States is presently, and is expected to remain, among the world's leaders in all subareas of chemical engineering research. However, U.S. leadership in some classical and emerging subareas will be strongly challenged. This critical analysis will be of interest to practicing chemical engineers, professors and students in the discipline, economists, policy makers, major research university administrators, and executives in industries dependent upon innovations in chemistry. |
chemical engineering food industry: Principles of Food Chemistry John M. DeMan, 1980 |
chemical engineering food industry: Enhancing Extraction Processes in the Food Industry Nikolai Lebovka, Eugene Vorobiev, Farid Chemat, 2016-04-19 Extraction is an important operation in food engineering, enabling the recovery of valuable soluble components from raw materials. With increasing energy costs and environmental concerns, industry specialists are looking for improved techniques requiring less solvents and energy consumption. Enhancing Extraction Processes in the Food Industry is a |
chemical engineering food industry: Design of Experiments for Chemical, Pharmaceutical, Food, and Industrial Applications Carrillo-Cedillo, Eugenia Gabriela, Rodríguez-Avila, José Antonio, Arredondo-Soto, Karina Cecilia, Cornejo-Bravo, José Manuel, 2019-12-13 Statistics is a key characteristic that assists a wide variety of professions including business, government, and factual sciences. Companies need data calculation to make informed decisions that help maintain their relevance. Design of experiments (DOE) is a set of active techniques that provides a more efficient approach for industries to test their processes and form effective conclusions. Experimental design can be implemented into multiple professions, and it is a necessity to promote applicable research on this up-and-coming method. Design of Experiments for Chemical, Pharmaceutical, Food, and Industrial Applications is a pivotal reference source that seeks to increase the use of design of experiments to optimize and improve analytical methods and productive processes in order to use less resources and time. While highlighting topics such as multivariate methods, factorial experiments, and pharmaceutical research, this publication is ideally designed for industrial designers, research scientists, chemical engineers, managers, academicians, and students seeking current research on advanced and multivariate statistics. |
chemical engineering food industry: Food Engineering Matcel Loncin, Richard Larry Merson, 1979-05-28 Operations in the food industry, measurements, dimensions, units. Equations related to the transfer of mass, heat and momentum. Solution of the transfer equations. Determination of transfer coeficients. Equilibrium between phases. Evolution of driving forces. Mechanical operations. Applied biochemical kinetics. Cleaning, disinfection an rinsing. Optimization. |
chemical engineering food industry: Advanced Micro-Level Experimental Techniques for Food Drying and Processing Applications Azharul Karim, Sabrina Fawzia, Mohammad Mahbubur Rahman, 2021-12-30 Although strides have been made to quantitatively explore micro-level structural changes during food processing using advanced technologies, there is currently no comprehensive book that details these developments. Therefore, the research community and related industries are not fully aware of the available techniques. Advanced Micro-Level Experimental Techniques for Food Drying and Processing Applications fills this gap. The book has been written based on the authors’ comprehensive knowledge and application of microimaging methods in the thermal processing of food. Features Describes the latest micro-level experimental methods primarily using microimaging techniques Presents detailed procedures of applying these techniques in food processing Highlights the current challenges of developing efficient and novel food processing systems Describes the fundamentals of water transport processes and associated morphological changes during thermal processing of food materials This book is written for researchers, chemical, food, and industrial engineers and advanced students seeking to solve problems of industrial food processing. |
Chemical compound | Definition, Examples, & Types | Britannica
Chemical compound, any substance composed of identical molecules consisting of atoms of two or more chemical elements. All the matter in the universe is composed of the atoms of more …
Chemical reaction | Definition, Equations, Examples, & Types
May 12, 2025 · A chemical reaction is a process in which one or more substances, the reactants, are converted to one or more different substances, the products. Substances are either …
Chemistry | Definition, Topics, Types, History, & Facts | Britannica
Apr 24, 2025 · Most of the materials that occur on Earth, such as wood, coal, minerals, or air, are mixtures of many different and distinct chemical substances. Each pure chemical substance …
Periodic table | Definition, Elements, Groups, Charges, Trends,
May 10, 2025 · The periodic table is a tabular array of the chemical elements organized by atomic number, from the element with the lowest atomic number, hydrogen, to the element with the …
Chemical element | Definition, Origins, Distribution, & Facts
Apr 29, 2025 · A chemical element is any substance that cannot be decomposed into simpler substances by ordinary chemical processes. Elements are the fundamental materials of which …
Benzene | Definition, Discovery, Structure, Properties, & Uses
May 9, 2025 · chemical bonding in benzene Benzene is the smallest of the organic aromatic hydrocarbons. It contains sigma bonds (represented by lines) and regions of high-pi electron …
Sodium hydroxide | Definition, Common Name, & Uses | Britannica
Chemical Safety Facts - Sodium Hydroxide; The Essential Chemical Industry - online - Sodium hydroxide
Reaction rate | Facts & Formula | Britannica
reaction rate, in chemistry, the speed at which a chemical reaction proceeds. It is often expressed in terms of either the concentration (amount per unit volume) of a product that is formed in a …
Nitrous oxide | Definition, Formula, Uses, Effects, & Facts - Britannica
May 15, 2025 · Nitrous oxide, also called laughing gas, one of several oxides of nitrogen, a colorless gas with pleasant, sweetish odor and taste, which when inhaled produces …
Alcohol Metabolism, Carcinogen, Toxicity - Britannica
Acetaldehyde (CH3CHO), an aldehyde used as a starting material in the synthesis of 1-butanol (n-butyl alcohol), ethyl acetate, perfumes, flavourings, aniline dyes, plastics, synthetic rubber, and …
Chemical compound | Definition, Examples, & Types …
Chemical compound, any substance composed of identical molecules consisting of atoms of two or more chemical elements. All the matter in …
Chemical reaction | Definition, Equations, Examples, & Type…
May 12, 2025 · A chemical reaction is a process in which one or more substances, the reactants, are converted to one or more different …
Chemistry | Definition, Topics, Types, History, & Facts | Brita…
Apr 24, 2025 · Most of the materials that occur on Earth, such as wood, coal, minerals, or air, are mixtures of many different and distinct chemical …
Periodic table | Definition, Elements, Groups, Charges, T…
May 10, 2025 · The periodic table is a tabular array of the chemical elements organized by atomic number, from the element with the lowest atomic …
Chemical element | Definition, Origins, Distribution, & Facts …
Apr 29, 2025 · A chemical element is any substance that cannot be decomposed into simpler substances by ordinary chemical processes. Elements are …