Advertisement
bioinformatics and data analysis: Data Analytics in Bioinformatics Rabinarayan Satpathy, Tanupriya Choudhury, Suneeta Satpathy, Sachi Nandan Mohanty, Xiaobo Zhang, 2021-01-20 Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more. |
bioinformatics and data analysis: Bioinformatics Data Skills Vince Buffalo, 2015-07 Learn the data skills necessary for turning large sequencing datasets into reproducible and robust biological findings. With this practical guide, youâ??ll learn how to use freely available open source tools to extract meaning from large complex biological data sets. At no other point in human history has our ability to understand lifeâ??s complexities been so dependent on our skills to work with and analyze data. This intermediate-level book teaches the general computational and data skills you need to analyze biological data. If you have experience with a scripting language like Python, youâ??re ready to get started. Go from handling small problems with messy scripts to tackling large problems with clever methods and tools Process bioinformatics data with powerful Unix pipelines and data tools Learn how to use exploratory data analysis techniques in the R language Use efficient methods to work with genomic range data and range operations Work with common genomics data file formats like FASTA, FASTQ, SAM, and BAM Manage your bioinformatics project with the Git version control system Tackle tedious data processing tasks with with Bash scripts and Makefiles |
bioinformatics and data analysis: Big Data Analysis for Bioinformatics and Biomedical Discoveries Shui Qing Ye, 2016-01-13 Demystifies Biomedical and Biological Big Data AnalysesBig Data Analysis for Bioinformatics and Biomedical Discoveries provides a practical guide to the nuts and bolts of Big Data, enabling you to quickly and effectively harness the power of Big Data to make groundbreaking biological discoveries, carry out translational medical research, and implem |
bioinformatics and data analysis: Big Data Analytics in Bioinformatics and Healthcare Wang, Baoying, 2014-10-31 As technology evolves and electronic data becomes more complex, digital medical record management and analysis becomes a challenge. In order to discover patterns and make relevant predictions based on large data sets, researchers and medical professionals must find new methods to analyze and extract relevant health information. Big Data Analytics in Bioinformatics and Healthcare merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management. Complete with interdisciplinary research resources, this publication is an essential reference source for researchers, practitioners, and students interested in the fields of biological computation, database management, and health information technology, with a special focus on the methodologies and tools to manage massive and complex electronic information. |
bioinformatics and data analysis: Analysis of Biological Data Sanghamitra Bandyopadhyay, 2007 Bioinformatics, a field devoted to the interpretation and analysis of biological data using computational techniques, has evolved tremendously in recent years due to the explosive growth of biological information generated by the scientific community. Soft computing is a consortium of methodologies that work synergistically and provides, in one form or another, flexible information processing capabilities for handling real-life ambiguous situations. Several research articles dealing with the application of soft computing tools to bioinformatics have been published in the recent past; however, they are scattered in different journals, conference proceedings and technical reports, thus causing inconvenience to readers, students and researchers. This book, unique in its nature, is aimed at providing a treatise in a unified framework, with both theoretical and experimental results, describing the basic principles of soft computing and demonstrating the various ways in which they can be used for analyzing biological data in an efficient manner. Interesting research articles from eminent scientists around the world are brought together in a systematic way such that the reader will be able to understand the issues and challenges in this domain, the existing ways of tackling them, recent trends, and future directions. This book is the first of its kind to bring together two important research areas, soft computing and bioinformatics, in order to demonstrate how the tools and techniques in the former can be used for efficiently solving several problems in the latter. Sample Chapter(s). Chapter 1: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (160 KB). Contents: Overview: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (H Tang & S Kim); An Introduction to Soft Computing (A Konar & S Das); Biological Sequence and Structure Analysis: Reconstructing Phylogenies with Memetic Algorithms and Branch-and-Bound (J E Gallardo et al.); Classification of RNA Sequences with Support Vector Machines (J T L Wang & X Wu); Beyond String Algorithms: Protein Sequence Analysis Using Wavelet Transforms (A Krishnan & K-B Li); Filtering Protein Surface Motifs Using Negative Instances of Active Sites Candidates (N L Shrestha & T Ohkawa); Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction (G Pollastri et al.); In Silico Design of Ligands Using Properties of Target Active Sites (S Bandyopadhyay et al.); Gene Expression and Microarray Data Analysis: Inferring Regulations in a Genomic Network from Gene Expression Profiles (N Noman & H Iba); A Reliable Classification of Gene Clusters for Cancer Samples Using a Hybrid Multi-Objective Evolutionary Procedure (K Deb et al.); Feature Selection for Cancer Classification Using Ant Colony Optimization and Support Vector Machines (A Gupta et al.); Sophisticated Methods for Cancer Classification Using Microarray Data (S-B Cho & H-S Park); Multiobjective Evolutionary Approach to Fuzzy Clustering of Microarray Data (A Mukhopadhyay et al.). Readership: Graduate students and researchers in computer science, bioinformatics, computational and molecular biology, artificial intelligence, data mining, machine learning, electrical engineering, system science; researchers in pharmaceutical industries. |
bioinformatics and data analysis: Genome Data Analysis Ju Han Kim, 2019-04-30 This textbook describes recent advances in genomics and bioinformatics and provides numerous examples of genome data analysis that illustrate its relevance to real world problems and will improve the reader’s bioinformatics skills. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine learning algorithms using R and Python are demonstrated for gene-expression microarrays, genotyping microarrays, next-generation sequencing data, epigenomic data, and biological network and semantic analyses. In addition, detailed attention is devoted to integrative genomic data analysis, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and integrated management of biomolecular databases. The textbook is primarily intended for life scientists, medical scientists, statisticians, data processing researchers, engineers, and other beginners in bioinformatics who are experiencing difficulty in approaching the field. However, it will also serve as a simple guideline for experts unfamiliar with the new, developing subfield of genomic analysis within bioinformatics. |
bioinformatics and data analysis: Big Data Analytics in Chemoinformatics and Bioinformatics Subhash C. Basak, Marjan Vračko, 2022-12-06 Big Data Analytics in Chemoinformatics and Bioinformatics: With Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology provides an up-to-date presentation of big data analytics methods and their applications in diverse fields. The proper management of big data for decision-making in scientific and social issues is of paramount importance. This book gives researchers the tools they need to solve big data problems in these fields. It begins with a section on general topics that all readers will find useful and continues with specific sections covering a range of interdisciplinary applications. Here, an international team of leading experts review their respective fields and present their latest research findings, with case studies used throughout to analyze and present key information. - Brings together the current knowledge on the most important aspects of big data, including analysis using deep learning and fuzzy logic, transparency and data protection, disparate data analytics, and scalability of the big data domain - Covers many applications of big data analysis in diverse fields such as chemistry, chemoinformatics, bioinformatics, computer-assisted drug/vaccine design, characterization of emerging pathogens, and environmental protection - Highlights the considerable benefits offered by big data analytics to science, in biomedical fields and in industry |
bioinformatics and data analysis: Data Analysis and Classification for Bioinformatics Arun Jagota, 2000 Probability theory. Probability distributions. Tests of statistical significance. Information theory. Clustering methods. Probability models. The supervised classification problem. Probabilistic classifers. Neural networks. Decision trees. Nearest neighbor classifers. |
bioinformatics and data analysis: Bioinformatics for Omics Data Bernd Mayer, 2011-01-01 Presenting an area of research that intersects with and integrates diverse disciplines, Bioinformatics for Omics Data: Methods and Protocols collects contributions from expert researchers in order to provide practical guidelines to this complex study. |
bioinformatics and data analysis: Next-Generation Sequencing Data Analysis Xinkun Wang, 2016-04-06 A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi |
bioinformatics and data analysis: Introduction to Bioinformatics with R Edward Curry, 2020-11-02 In biological research, the amount of data available to researchers has increased so much over recent years, it is becoming increasingly difficult to understand the current state of the art without some experience and understanding of data analytics and bioinformatics. An Introduction to Bioinformatics with R: A Practical Guide for Biologists leads the reader through the basics of computational analysis of data encountered in modern biological research. With no previous experience with statistics or programming required, readers will develop the ability to plan suitable analyses of biological datasets, and to use the R programming environment to perform these analyses. This is achieved through a series of case studies using R to answer research questions using molecular biology datasets. Broadly applicable statistical methods are explained, including linear and rank-based correlation, distance metrics and hierarchical clustering, hypothesis testing using linear regression, proportional hazards regression for survival data, and principal component analysis. These methods are then applied as appropriate throughout the case studies, illustrating how they can be used to answer research questions. Key Features: · Provides a practical course in computational data analysis suitable for students or researchers with no previous exposure to computer programming. · Describes in detail the theoretical basis for statistical analysis techniques used throughout the textbook, from basic principles · Presents walk-throughs of data analysis tasks using R and example datasets. All R commands are presented and explained in order to enable the reader to carry out these tasks themselves. · Uses outputs from a large range of molecular biology platforms including DNA methylation and genotyping microarrays; RNA-seq, genome sequencing, ChIP-seq and bisulphite sequencing; and high-throughput phenotypic screens. · Gives worked-out examples geared towards problems encountered in cancer research, which can also be applied across many areas of molecular biology and medical research. This book has been developed over years of training biological scientists and clinicians to analyse the large datasets available in their cancer research projects. It is appropriate for use as a textbook or as a practical book for biological scientists looking to gain bioinformatics skills. |
bioinformatics and data analysis: Handbook of Statistical Bioinformatics Henry Horng-Shing Lu, Bernhard Schölkopf, Martin T. Wells, Hongyu Zhao, 2022-12-08 Now in its second edition, this handbook collects authoritative contributions on modern methods and tools in statistical bioinformatics with a focus on the interface between computational statistics and cutting-edge developments in computational biology. The three parts of the book cover statistical methods for single-cell analysis, network analysis, and systems biology, with contributions by leading experts addressing key topics in probabilistic and statistical modeling and the analysis of massive data sets generated by modern biotechnology. This handbook will serve as a useful reference source for students, researchers and practitioners in statistics, computer science and biological and biomedical research, who are interested in the latest developments in computational statistics as applied to computational biology. |
bioinformatics and data analysis: Computational Genomics with R Altuna Akalin, 2020-12-16 Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015. |
bioinformatics and data analysis: New Frontiers of Biostatistics and Bioinformatics Yichuan Zhao, Ding-Geng Chen, 2018-12-05 This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners. |
bioinformatics and data analysis: Molecular Data Analysis Using R Csaba Ortutay, Zsuzsanna Ortutay, 2017-02-06 This book addresses the difficulties experienced by wet lab researchers with the statistical analysis of molecular biology related data. The authors explain how to use R and Bioconductor for the analysis of experimental data in the field of molecular biology. The content is based upon two university courses for bioinformatics and experimental biology students (Biological Data Analysis with R and High-throughput Data Analysis with R). The material is divided into chapters based upon the experimental methods used in the laboratories. Key features include: • Broad appeal--the authors target their material to researchers in several levels, ensuring that the basics are always covered. • First book to explain how to use R and Bioconductor for the analysis of several types of experimental data in the field of molecular biology. • Focuses on R and Bioconductor, which are widely used for data analysis. One great benefit of R and Bioconductor is that there is a vast user community and very active discussion in place, in addition to the practice of sharing codes. Further, R is the platform for implementing new analysis approaches, therefore novel methods are available early for R users. |
bioinformatics and data analysis: Statistics and Data Analysis for Microarrays Using R and Bioconductor Sorin Draghici, 2016-04-19 Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms, and cryptic notations, the text takes a hands-on, example-based approach that teaches students the basics of R and microarray technology as well as how to choose and apply the proper data analysis tool to specific problems. New to the Second EditionCompletely updated and double the size of its predecessor, this timely second edition replaces the commercial software with the open source R and Bioconductor environments. Fourteen new chapters cover such topics as the basic mechanisms of the cell, reliability and reproducibility issues in DNA microarrays, basic statistics and linear models in R, experiment design, multiple comparisons, quality control, data pre-processing and normalization, Gene Ontology analysis, pathway analysis, and machine learning techniques. Methods are illustrated with toy examples and real data and the R code for all routines is available on an accompanying downloadable resource. With all the necessary prerequisites included, this best-selling book guides students from very basic notions to advanced analysis techniques in R and Bioconductor. The first half of the text presents an overview of microarrays and the statistical elements that form the building blocks of any data analysis. The second half introduces the techniques most commonly used in the analysis of microarray data. |
bioinformatics and data analysis: Introduction to Bioinformatics Arthur M. Lesk, 2019 Lesk provides an accessible and thorough introduction to a subject which is becoming a fundamental part of biological science today. The text generates an understanding of the biological background of bioinformatics. |
bioinformatics and data analysis: Introduction to Machine Learning and Bioinformatics Sushmita Mitra, Sujay Datta, Theodore Perkins, George Michailidis, 2019-08-30 Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other. Examines Connections between Machine Learning & Bioinformatics The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website. Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today's biological experiments. |
bioinformatics and data analysis: Data Mining in Bioinformatics Jason T. L. Wang, 2005 Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery. |
bioinformatics and data analysis: Statistical Methods in Bioinformatics Warren J. Ewens, Gregory R. Grant, 2005-09-30 Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly. (Biometrics) Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces. (Naturwissenschaften) The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details. (Journal American Statistical Association) The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book. (Metrika) |
bioinformatics and data analysis: Bioinformatics in Aquaculture Zhanjiang (John) Liu, 2017-04-17 Bioinformatics derives knowledge from computer analysis of biological data. In particular, genomic and transcriptomic datasets are processed, analysed and, whenever possible, associated with experimental results from various sources, to draw structural, organizational, and functional information relevant to biology. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics in Aquaculture provides the most up to date reviews of next generation sequencing technologies, their applications in aquaculture, and principles and methodologies for the analysis of genomic and transcriptomic large datasets using bioinformatic methods, algorithm, and databases. The book is unique in providing guidance for the best software packages suitable for various analysis, providing detailed examples of using bioinformatic software and command lines in the context of real world experiments. This book is a vital tool for all those working in genomics, molecular biology, biochemistry and genetics related to aquaculture, and computational and biological sciences. |
bioinformatics and data analysis: Advanced Data Mining Technologies in Bioinformatics Hui-Huang Hsu, 2006-01-01 This book covers research topics of data mining on bioinformatics presenting the basics and problems of bioinformatics and applications of data mining technologies pertaining to the field--Provided by publisher. |
bioinformatics and data analysis: Bioinformatics for High Throughput Sequencing Naiara Rodríguez-Ezpeleta, Michael Hackenberg, Ana M. Aransay, 2011-10-26 Next generation sequencing is revolutionizing molecular biology. Owing to this new technology it is now possible to carry out a panoply of experiments at an unprecedented low cost and high speed. These go from sequencing whole genomes, transcriptomes and small non-coding RNAs to description of methylated regions, identification protein – DNA interaction sites and detection of structural variation. The generation of gigabases of sequence information for each of this huge bandwidth of applications in just a few days makes the development of bioinformatics applications for next generation sequencing data analysis as urgent as challenging. |
bioinformatics and data analysis: Modern Statistics for Modern Biology SUSAN. HUBER HOLMES (WOLFGANG.), Wolfgang Huber, 2018 |
bioinformatics and data analysis: Bioinformatics Shui Qing Ye, 2007-08-20 An emerging, ever-evolving branch of science, bioinformatics has paved the way for the explosive growth in the distribution of biological information to a variety of biological databases, including the National Center for Biotechnology Information. For growth to continue in this field, biologists must obtain basic computer skills while computer spe |
bioinformatics and data analysis: Data Analysis for the Life Sciences with R Rafael A. Irizarry, Michael I. Love, 2016-10-04 This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained. |
bioinformatics and data analysis: Structural Bioinformatics Jenny Gu, Philip E. Bourne, 2011-09-20 Structural Bioinformatics was the first major effort to show the application of the principles and basic knowledge of the larger field of bioinformatics to questions focusing on macromolecular structure, such as the prediction of protein structure and how proteins carry out cellular functions, and how the application of bioinformatics to these life science issues can improve healthcare by accelerating drug discovery and development. Designed primarily as a reference, the first edition nevertheless saw widespread use as a textbook in graduate and undergraduate university courses dealing with the theories and associated algorithms, resources, and tools used in the analysis, prediction, and theoretical underpinnings of DNA, RNA, and proteins. This new edition contains not only thorough updates of the advances in structural bioinformatics since publication of the first edition, but also features eleven new chapters dealing with frontier areas of high scientific impact, including: sampling and search techniques; use of mass spectrometry; genome functional annotation; and much more. Offering detailed coverage for practitioners while remaining accessible to the novice, Structural Bioinformatics, Second Edition is a valuable resource and an excellent textbook for a range of readers in the bioinformatics and advanced biology fields. Praise for the previous edition: This book is a gold mine of fundamental and practical information in an area not previously well represented in book form. —Biochemistry and Molecular Education ... destined to become a classic reference work for workers at all levels in structural bioinformatics...recommended with great enthusiasm for educators, researchers, and graduate students. —BAMBED ...a useful and timely summary of a rapidly expanding field. —Nature Structural Biology ...a terrific job in this timely creation of a compilation of articles that appropriately addresses this issue. —Briefings in Bioinformatics |
bioinformatics and data analysis: R Programming for Bioinformatics Robert Gentleman, 2008-07-14 Due to its data handling and modeling capabilities as well as its flexibility, R is becoming the most widely used software in bioinformatics. R Programming for Bioinformatics explores the programming skills needed to use this software tool for the solution of bioinformatics and computational biology problems.Drawing on the author's first-hand exper |
bioinformatics and data analysis: Statistical Bioinformatics Jae K. Lee, 2011-09-20 This book provides an essential understanding of statistical concepts necessary for the analysis of genomic and proteomic data using computational techniques. The author presents both basic and advanced topics, focusing on those that are relevant to the computational analysis of large data sets in biology. Chapters begin with a description of a statistical concept and a current example from biomedical research, followed by more detailed presentation, discussion of limitations, and problems. The book starts with an introduction to probability and statistics for genome-wide data, and moves into topics such as clustering, classification, multi-dimensional visualization, experimental design, statistical resampling, and statistical network analysis. Clearly explains the use of bioinformatics tools in life sciences research without requiring an advanced background in math/statistics Enables biomedical and life sciences researchers to successfully evaluate the validity of their results and make inferences Enables statistical and quantitative researchers to rapidly learn novel statistical concepts and techniques appropriate for large biological data analysis Carefully revisits frequently used statistical approaches and highlights their limitations in large biological data analysis Offers programming examples and datasets Includes chapter problem sets, a glossary, a list of statistical notations, and appendices with references to background mathematical and technical material Features supplementary materials, including datasets, links, and a statistical package available online Statistical Bioinformatics is an ideal textbook for students in medicine, life sciences, and bioengineering, aimed at researchers who utilize computational tools for the analysis of genomic, proteomic, and many other emerging high-throughput molecular data. It may also serve as a rapid introduction to the bioinformatics science for statistical and computational students and audiences who have not experienced such analysis tasks before. |
bioinformatics and data analysis: Proteomics Data Analysis Daniela Cecconi, 2021 This thorough book collects methods and strategies to analyze proteomics data. It is intended to describe how data obtained by gel-based or gel-free proteomics approaches can be inspected, organized, and interpreted to extrapolate biological information. Organized into four sections, the volume explores strategies to analyze proteomics data obtained by gel-based approaches, different data analysis approaches for gel-free proteomics experiments, bioinformatic tools for the interpretation of proteomics data to obtain biological significant information, as well as methods to integrate proteomics data with other omics datasets including genomics, transcriptomics, metabolomics, and other types of data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that will ensure high quality results in the lab. Authoritative and practical, Proteomics Data Analysis serves as an ideal guide to introduce researchers, both experienced and novice, to new tools and approaches for data analysis to encourage the further study of proteomics. |
bioinformatics and data analysis: Bioinformatics and Computational Biology Solutions Using R and Bioconductor Robert Gentleman, Vincent Carey, Wolfgang Huber, Rafael Irizarry, Sandrine Dudoit, 2005-12-29 Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers. |
bioinformatics and data analysis: R Bioinformatics Cookbook Dan MacLean, 2019-10-11 Over 60 recipes to model and handle real-life biological data using modern libraries from the R ecosystem Key FeaturesApply modern R packages to handle biological data using real-world examplesRepresent biological data with advanced visualizations suitable for research and publicationsHandle real-world problems in bioinformatics such as next-generation sequencing, metagenomics, and automating analysesBook Description Handling biological data effectively requires an in-depth knowledge of machine learning techniques and computational skills, along with an understanding of how to use tools such as edgeR and DESeq. With the R Bioinformatics Cookbook, you’ll explore all this and more, tackling common and not-so-common challenges in the bioinformatics domain using real-world examples. This book will use a recipe-based approach to show you how to perform practical research and analysis in computational biology with R. You will learn how to effectively analyze your data with the latest tools in Bioconductor, ggplot, and tidyverse. The book will guide you through the essential tools in Bioconductor to help you understand and carry out protocols in RNAseq, phylogenetics, genomics, and sequence analysis. As you progress, you will get up to speed with how machine learning techniques can be used in the bioinformatics domain. You will gradually develop key computational skills such as creating reusable workflows in R Markdown and packages for code reuse. By the end of this book, you’ll have gained a solid understanding of the most important and widely used techniques in bioinformatic analysis and the tools you need to work with real biological data. What you will learnEmploy Bioconductor to determine differential expressions in RNAseq dataRun SAMtools and develop pipelines to find single nucleotide polymorphisms (SNPs) and IndelsUse ggplot to create and annotate a range of visualizationsQuery external databases with Ensembl to find functional genomics informationExecute large-scale multiple sequence alignment with DECIPHER to perform comparative genomicsUse d3.js and Plotly to create dynamic and interactive web graphicsUse k-nearest neighbors, support vector machines and random forests to find groups and classify dataWho this book is for This book is for bioinformaticians, data analysts, researchers, and R developers who want to address intermediate-to-advanced biological and bioinformatics problems by learning through a recipe-based approach. Working knowledge of R programming language and basic knowledge of bioinformatics are prerequisites. |
bioinformatics and data analysis: Machine Learning in Bioinformatics Yanqing Zhang, Jagath C. Rajapakse, 2009-02-23 An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels. |
bioinformatics and data analysis: LC-MS/MS in Proteomics Pedro R. Cutillas, John F. Timms, 2011-04-06 With the development of new quantitative strategies and powerful bioinformatics tools to cope with the analysis of the large amounts of data generated in proteomics experiments, liquid chromatography with tandem mass spectrometry (LC-MS/MS) is making possible the analysis of proteins on a global scale, meaning that proteomics can now start competing with cDNA microarrays for the analysis of whole genomes. In LC-MS/MS in Proteomics: Methods and Applications, experts in the field provide protocols and up-to-date reviews of the applications of LC-MS/MS, with a particular focus on MS-based methods of protein and peptide quantification and the analysis of post-translational modifications. Beginning with overviews of the use of LC-M/MS in protein analysis, the book continues with topics such as protocols for the analysis of post-translational modifications, with particular focus on phosphorylation and glycosylation, popular techniques for quantitative proteomics, such as multiple reaction monitoring, metabolic labelling, and chemical tagging, biomarker discovery in biological fluids, as well as novel applications of LC-MS/MS. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective subjects, lists of necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, LC-MS/MS in Proteomics: Methods and Applications presents the techniques and concepts necessary in order to aid proteomic practitioners in the application of LC-MS/MS to essentially any biological problem. |
bioinformatics and data analysis: Analyzing Network Data in Biology and Medicine Nataša Pržulj, 2019-03-28 Introduces biological concepts and biotechnologies producing the data, graph and network theory, cluster analysis and machine learning, using real-world biological and medical examples. |
bioinformatics and data analysis: Python Programming for Biology Tim J. Stevens, Wayne Boucher, 2015-02-12 This book introduces Python as a powerful tool for the investigation of problems in computational biology, for novices and experienced programmers alike. |
bioinformatics and data analysis: Knowledge-Based Bioinformatics Gil Alterovitz, Marco Ramoni, 2011-04-20 There is an increasing need throughout the biomedical sciences for a greater understanding of knowledge-based systems and their application to genomic and proteomic research. This book discusses knowledge-based and statistical approaches, along with applications in bioinformatics and systems biology. The text emphasizes the integration of different methods for analysing and interpreting biomedical data. This, in turn, can lead to breakthrough biomolecular discoveries, with applications in personalized medicine. Key Features: Explores the fundamentals and applications of knowledge-based and statistical approaches in bioinformatics and systems biology. Helps readers to interpret genomic, proteomic, and metabolomic data in understanding complex biological molecules and their interactions. Provides useful guidance on dealing with large datasets in knowledge bases, a common issue in bioinformatics. Written by leading international experts in this field. Students, researchers, and industry professionals with a background in biomedical sciences, mathematics, statistics, or computer science will benefit from this book. It will also be useful for readers worldwide who want to master the application of bioinformatics to real-world situations and understand biological problems that motivate algorithms. |
bioinformatics and data analysis: Data Analysis and Graphics Using R John Maindonald, John Braun, 2006-12-26 Join the revolution ignited by the ground-breaking R system! Starting with an introduction to R, covering standard regression methods, then presenting more advanced topics, this book guides users through the practical and powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display and interpretation of data. The many worked examples, taken from real-world research, are accompanied by commentary on what is done and why. A website provides computer code and data sets, allowing readers to reproduce all analyses. Updates and solutions to selected exercises are also available. Assuming only basic statistical knowledge, the book is ideal for research scientists, final-year undergraduate or graduate level students of applied statistics, and practising statisticians. It is both for learning and for reference. This revised edition reflects changes in R since 2003 and has new material on survival analysis, random coefficient models, and the handling of high-dimensional data. |
bioinformatics and data analysis: Unsupervised Feature Extraction Applied to Bioinformatics Y-h. Taguchi, 2019-08-23 This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. Allows readers to analyze data sets with small samples and many features; Provides a fast algorithm, based upon linear algebra, to analyze big data; Includes several applications to multi-view data analyses, with a focus on bioinformatics. |
bioinformatics and data analysis: RNA-seq Data Analysis Eija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong, 2014-09-19 The State of the Art in Transcriptome AnalysisRNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript le |
生物信息学领域有哪些牛刊? - 知乎
7 Bioinformatics / PLoS computational biology / GigaScience / AJHG / Briefings in bioinformatics 8 BMC 系列 genomics / bioinformatics / biology 9 投不动了,放bioRxiv 如果项目做了2-3年,肯 …
生物信息学 - 知乎
Apr 24, 2020 · 生物信息学 (Bioinformatics)利用应用数学、信息学、统计学和计算机科学的方法研究生物学的问题。生物信息学基本上只是分子生物学与信息技术(尤其是互联网技术)的结合 …
什么是生物信息学?生物信息学中计算机和大数据各扮演什么样的 …
此题专业对口,来手机答一题吧。 生物信息学 (Bioinformatics),实际上就是使用计算机来帮助解决生物学中遇到的各种问题。和许多学科类似,生物学的大多数领域最初是非常不定量的,除 …
Biostatistics(生物统计学)和 bioinformatics (生物信息学)有什 …
而Bioinformatics领域,统计学家的成果还是发表在很多顶尖杂志。 Nature Genetics高达38分,Nature Method高达28分,往下还有很多十几分的杂志,大量统计学家的team在这些杂志上 …
Briefings in Bioinformatics期刊23年影响因子会再次降低嘛?有必要 …
Briefings in Bioinformatics期刊23年影响因子会再次降低嘛?有必要投嘛? 科睿唯安预计六月底公布23年最新影响因子,目前某某平台对该期刊实时影响因子预测在6.5-7分以内。
帝国理工、UCL、爱丁堡生物信息学硕士如何选择? - 知乎
爱大的生物信息学好不好不了解,但帝国的生物信息学是真的王牌专业。去帝国读个MSc Bioinformatics and Theoretical Systems Biology,当Prof Michael Sternberg(剑桥物理+帝国 …
投稿了Bioinformatics,请问下一般多久会有状态变化? - 知乎
投稿了Bioinformatics,请问下一般多久会有状态变化? 投稿后一周了,状态还是With editorial office。 显示全部 关注者 2
bioinformatics期刊查重率? - 知乎
bioinformatics期刊查重率? Bio的查重率需要低于多少呢? 显示全部 关注者 2
如何评价2021中科院分区将Bioinformatic分为三区,BiB为二区综 …
Dec 21, 2021 · Bioinformatics PHD Candidate 看中科院分区就是图一乐 bioinformatics 三区,审稿周期3-4个月 pgb 一区,审稿周期一年 按照三篇三区等于一篇一区,那发三篇bioinformatics的 …
大家知道《生物信息学》期刊怎么样吗? - 知乎
Jun 20, 2022 · 《生物信息学》 (Bioinformatics) 期刊旨在为生物信息学和相关领域的研究人员提供一个发表和交流研究成果的平台。 该期刊创刊于1995年,目前已经成为生物信息学领域的领 …
生物信息学领域有哪些牛刊? - 知乎
7 Bioinformatics / PLoS computational biology / GigaScience / AJHG / Briefings in bioinformatics 8 BMC 系列 genomics / bioinformatics / biology 9 投不动了,放bioRxiv 如果项目做了2-3年,肯 …
生物信息学 - 知乎
Apr 24, 2020 · 生物信息学 (Bioinformatics)利用应用数学、信息学、统计学和计算机科学的方法研究生物学的问题。生物信息学基本上只是分子生物学与信息技术(尤其是互联网技术)的结合 …
什么是生物信息学?生物信息学中计算机和大数据各扮演什么样的 …
此题专业对口,来手机答一题吧。 生物信息学 (Bioinformatics),实际上就是使用计算机来帮助解决生物学中遇到的各种问题。和许多学科类似,生物学的大多数领域最初是非常不定量的,除 …
Biostatistics(生物统计学)和 bioinformatics (生物信息学)有什 …
而Bioinformatics领域,统计学家的成果还是发表在很多顶尖杂志。 Nature Genetics高达38分,Nature Method高达28分,往下还有很多十几分的杂志,大量统计学家的team在这些杂志上 …
Briefings in Bioinformatics期刊23年影响因子会再次降低嘛?有必要 …
Briefings in Bioinformatics期刊23年影响因子会再次降低嘛?有必要投嘛? 科睿唯安预计六月底公布23年最新影响因子,目前某某平台对该期刊实时影响因子预测在6.5-7分以内。
帝国理工、UCL、爱丁堡生物信息学硕士如何选择? - 知乎
爱大的生物信息学好不好不了解,但帝国的生物信息学是真的王牌专业。去帝国读个MSc Bioinformatics and Theoretical Systems Biology,当Prof Michael Sternberg(剑桥物理+帝国 …
投稿了Bioinformatics,请问下一般多久会有状态变化? - 知乎
投稿了Bioinformatics,请问下一般多久会有状态变化? 投稿后一周了,状态还是With editorial office。 显示全部 关注者 2
bioinformatics期刊查重率? - 知乎
bioinformatics期刊查重率? Bio的查重率需要低于多少呢? 显示全部 关注者 2
如何评价2021中科院分区将Bioinformatic分为三区,BiB为二区综 …
Dec 21, 2021 · Bioinformatics PHD Candidate 看中科院分区就是图一乐 bioinformatics 三区,审稿周期3-4个月 pgb 一区,审稿周期一年 按照三篇三区等于一篇一区,那发三篇bioinformatics的 …
大家知道《生物信息学》期刊怎么样吗? - 知乎
Jun 20, 2022 · 《生物信息学》 (Bioinformatics) 期刊旨在为生物信息学和相关领域的研究人员提供一个发表和交流研究成果的平台。 该期刊创刊于1995年,目前已经成为生物信息学领域的领 …