biology and data science: Hands on Data Science for Biologists Using Python Yasha Hasija, Rajkumar Chakraborty, 2021-04-08 Hands-on Data Science for Biologists using Python has been conceptualized to address the massive data handling needs of modern-day biologists. With the advent of high throughput technologies and consequent availability of omics data, biological science has become a data-intensive field. This hands-on textbook has been written with the inception of easing data analysis by providing an interactive, problem-based instructional approach in Python programming language. The book starts with an introduction to Python and steadily delves into scrupulous techniques of data handling, preprocessing, and visualization. The book concludes with machine learning algorithms and their applications in biological data science. Each topic has an intuitive explanation of concepts and is accompanied with biological examples. Features of this book: The book contains standard templates for data analysis using Python, suitable for beginners as well as advanced learners. This book shows working implementations of data handling and machine learning algorithms using real-life biological datasets and problems, such as gene expression analysis; disease prediction; image recognition; SNP association with phenotypes and diseases. Considering the importance of visualization for data interpretation, especially in biological systems, there is a dedicated chapter for the ease of data visualization and plotting. Every chapter is designed to be interactive and is accompanied with Jupyter notebook to prompt readers to practice in their local systems. Other avant-garde component of the book is the inclusion of a machine learning project, wherein various machine learning algorithms are applied for the identification of genes associated with age-related disorders. A systematic understanding of data analysis steps has always been an important element for biological research. This book is a readily accessible resource that can be used as a handbook for data analysis, as well as a platter of standard code templates for building models. |
biology and data science: The Digital Cell Stephen J. Royle, 2019 Cell biology is becoming an increasingly quantitative field, as technical advances mean researchers now routinely capture vast amounts of data. This handbook is an essential guide to the computational approaches, image processing and analysis techniques, and basic programming skills that are now part of the skill set of anyone working in the field-- |
biology and data science: Analyzing Network Data in Biology and Medicine Nataša Pržulj, 2019-03-28 Introduces biological concepts and biotechnologies producing the data, graph and network theory, cluster analysis and machine learning, using real-world biological and medical examples. |
biology and data science: Analysis of Biological Data Sanghamitra Bandyopadhyay, 2007 Bioinformatics, a field devoted to the interpretation and analysis of biological data using computational techniques, has evolved tremendously in recent years due to the explosive growth of biological information generated by the scientific community. Soft computing is a consortium of methodologies that work synergistically and provides, in one form or another, flexible information processing capabilities for handling real-life ambiguous situations. Several research articles dealing with the application of soft computing tools to bioinformatics have been published in the recent past; however, they are scattered in different journals, conference proceedings and technical reports, thus causing inconvenience to readers, students and researchers. This book, unique in its nature, is aimed at providing a treatise in a unified framework, with both theoretical and experimental results, describing the basic principles of soft computing and demonstrating the various ways in which they can be used for analyzing biological data in an efficient manner. Interesting research articles from eminent scientists around the world are brought together in a systematic way such that the reader will be able to understand the issues and challenges in this domain, the existing ways of tackling them, recent trends, and future directions. This book is the first of its kind to bring together two important research areas, soft computing and bioinformatics, in order to demonstrate how the tools and techniques in the former can be used for efficiently solving several problems in the latter. Sample Chapter(s). Chapter 1: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (160 KB). Contents: Overview: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (H Tang & S Kim); An Introduction to Soft Computing (A Konar & S Das); Biological Sequence and Structure Analysis: Reconstructing Phylogenies with Memetic Algorithms and Branch-and-Bound (J E Gallardo et al.); Classification of RNA Sequences with Support Vector Machines (J T L Wang & X Wu); Beyond String Algorithms: Protein Sequence Analysis Using Wavelet Transforms (A Krishnan & K-B Li); Filtering Protein Surface Motifs Using Negative Instances of Active Sites Candidates (N L Shrestha & T Ohkawa); Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction (G Pollastri et al.); In Silico Design of Ligands Using Properties of Target Active Sites (S Bandyopadhyay et al.); Gene Expression and Microarray Data Analysis: Inferring Regulations in a Genomic Network from Gene Expression Profiles (N Noman & H Iba); A Reliable Classification of Gene Clusters for Cancer Samples Using a Hybrid Multi-Objective Evolutionary Procedure (K Deb et al.); Feature Selection for Cancer Classification Using Ant Colony Optimization and Support Vector Machines (A Gupta et al.); Sophisticated Methods for Cancer Classification Using Microarray Data (S-B Cho & H-S Park); Multiobjective Evolutionary Approach to Fuzzy Clustering of Microarray Data (A Mukhopadhyay et al.). Readership: Graduate students and researchers in computer science, bioinformatics, computational and molecular biology, artificial intelligence, data mining, machine learning, electrical engineering, system science; researchers in pharmaceutical industries. |
biology and data science: Data Analytics in Bioinformatics Rabinarayan Satpathy, Tanupriya Choudhury, Suneeta Satpathy, Sachi Nandan Mohanty, Xiaobo Zhang, 2021-01-20 Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more. |
biology and data science: Data-Centric Biology Sabina Leonelli, 2016-11-18 In recent decades, there has been a major shift in the way researchers process and understand scientific data. Digital access to data has revolutionized ways of doing science in the biological and biomedical fields, leading to a data-intensive approach to research that uses innovative methods to produce, store, distribute, and interpret huge amounts of data. In Data-Centric Biology, Sabina Leonelli probes the implications of these advancements and confronts the questions they pose. Are we witnessing the rise of an entirely new scientific epistemology? If so, how does that alter the way we study and understand life—including ourselves? Leonelli is the first scholar to use a study of contemporary data-intensive science to provide a philosophical analysis of the epistemology of data. In analyzing the rise, internal dynamics, and potential impact of data-centric biology, she draws on scholarship across diverse fields of science and the humanities—as well as her own original empirical material—to pinpoint the conditions under which digitally available data can further our understanding of life. Bridging the divide between historians, sociologists, and philosophers of science, Data-Centric Biology offers a nuanced account of an issue that is of fundamental importance to our understanding of contemporary scientific practices. |
biology and data science: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
biology and data science: Bioinformatics Data Skills Vince Buffalo, 2015-07 Learn the data skills necessary for turning large sequencing datasets into reproducible and robust biological findings. With this practical guide, youâ??ll learn how to use freely available open source tools to extract meaning from large complex biological data sets. At no other point in human history has our ability to understand lifeâ??s complexities been so dependent on our skills to work with and analyze data. This intermediate-level book teaches the general computational and data skills you need to analyze biological data. If you have experience with a scripting language like Python, youâ??re ready to get started. Go from handling small problems with messy scripts to tackling large problems with clever methods and tools Process bioinformatics data with powerful Unix pipelines and data tools Learn how to use exploratory data analysis techniques in the R language Use efficient methods to work with genomic range data and range operations Work with common genomics data file formats like FASTA, FASTQ, SAM, and BAM Manage your bioinformatics project with the Git version control system Tackle tedious data processing tasks with with Bash scripts and Makefiles |
biology and data science: Data Analysis for the Life Sciences with R Rafael A. Irizarry, Michael I. Love, 2016-10-04 This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained. |
biology and data science: Data Analysis in Molecular Biology and Evolution Xuhua Xia, 2007-05-08 Data Analysis in Molecular Biology and Evolution introduces biologists to DAMBE, a proprietary, user-friendly computer program for molecular data analysis. The unique combination of this book and software will allow biologists not only to understand the rationale behind a variety of computational tools in molecular biology and evolution, but also to gain instant access to these tools for use in their laboratories. Data Analysis in Molecular Biology and Evolution serves as an excellent resource for advanced level undergraduates or graduates as well as for professionals working in the field. |
biology and data science: Modern Statistics for Modern Biology SUSAN. HUBER HOLMES (WOLFGANG.), Wolfgang Huber, 2018 |
biology and data science: Data Journeys in the Sciences Sabina Leonelli, Niccolò Tempini, 2020-06-29 This groundbreaking, open access volume analyses and compares data practices across several fields through the analysis of specific cases of data journeys. It brings together leading scholars in the philosophy, history and social studies of science to achieve two goals: tracking the travel of data across different spaces, times and domains of research practice; and documenting how such journeys affect the use of data as evidence and the knowledge being produced. The volume captures the opportunities, challenges and concerns involved in making data move from the sites in which they are originally produced to sites where they can be integrated with other data, analysed and re-used for a variety of purposes. The in-depth study of data journeys provides the necessary ground to examine disciplinary, geographical and historical differences and similarities in data management, processing and interpretation, thus identifying the key conditions of possibility for the widespread data sharing associated with Big and Open Data. The chapters are ordered in sections that broadly correspond to different stages of the journeys of data, from their generation to the legitimisation of their use for specific purposes. Additionally, the preface to the volume provides a variety of alternative “roadmaps” aimed to serve the different interests and entry points of readers; and the introduction provides a substantive overview of what data journeys can teach about the methods and epistemology of research. |
biology and data science: Collecting Experiments Bruno J. Strasser, 2019-06-07 Databases have revolutionized nearly every aspect of our lives. Information of all sorts is being collected on a massive scale, from Google to Facebook and well beyond. But as the amount of information in databases explodes, we are forced to reassess our ideas about what knowledge is, how it is produced, to whom it belongs, and who can be credited for producing it. Every scientist working today draws on databases to produce scientific knowledge. Databases have become more common than microscopes, voltmeters, and test tubes, and the increasing amount of data has led to major changes in research practices and profound reflections on the proper professional roles of data producers, collectors, curators, and analysts. Collecting Experiments traces the development and use of data collections, especially in the experimental life sciences, from the early twentieth century to the present. It shows that the current revolution is best understood as the coming together of two older ways of knowing—collecting and experimenting, the museum and the laboratory. Ultimately, Bruno J. Strasser argues that by serving as knowledge repositories, as well as indispensable tools for producing new knowledge, these databases function as digital museums for the twenty-first century. |
biology and data science: Data Science, Classification, and Related Methods Chikio Hayashi, Keiji Yajima, Hans H. Bock, 2014-01-15 |
biology and data science: Bioinformatics For Dummies Jean-Michel Claverie, Cedric Notredame, 2011-02-10 Were you always curious about biology but were afraid to sit through long hours of dense reading? Did you like the subject when you were in high school but had other plans after you graduated? Now you can explore the human genome and analyze DNA without ever leaving your desktop! Bioinformatics For Dummies is packed with valuable information that introduces you to this exciting new discipline. This easy-to-follow guide leads you step by step through every bioinformatics task that can be done over the Internet. Forget long equations, computer-geek gibberish, and installing bulky programs that slow down your computer. You’ll be amazed at all the things you can accomplish just by logging on and following these trusty directions. You get the tools you need to: Analyze all types of sequences Use all types of databases Work with DNA and protein sequences Conduct similarity searches Build a multiple sequence alignment Edit and publish alignments Visualize protein 3-D structures Construct phylogenetic trees This up-to-date second edition includes newly created and popular databases and Internet programs as well as multiple new genomes. It provides tips for using servers and places to seek resources to find out about what’s going on in the bioinformatics world. Bioinformatics For Dummies will show you how to get the most out of your PC and the right Web tools so you'll be searching databases and analyzing sequences like a pro! |
biology and data science: Introduction to Bioinformatics Arthur M. Lesk, 2019 Lesk provides an accessible and thorough introduction to a subject which is becoming a fundamental part of biological science today. The text generates an understanding of the biological background of bioinformatics. |
biology and data science: Topological Data Analysis for Genomics and Evolution Raul Rabadan, Andrew J. Blumberg, 2019-12-19 An introduction to geometric and topological methods to analyze large scale biological data; includes statistics and genomic applications. |
biology and data science: Computer Simulation and Data Analysis in Molecular Biology and Biophysics Victor Bloomfield, 2009-06-05 This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive. |
biology and data science: Python Programming for Biology Tim J. Stevens, Wayne Boucher, 2015-02-12 This book introduces Python as a powerful tool for the investigation of problems in computational biology, for novices and experienced programmers alike. |
biology and data science: New Frontiers for Metrology: From Biology and Chemistry to Quantum and Data Science M.J.T. Milton, 2021-12-22 The use of standard and reliable measurements is essential in many areas of life, but nowhere is it of more crucial importance than in the world of science, and physics in particular. This book contains 20 contributions presented as part of Course 206 of the International School of Physics Enrico Fermi on New Frontiers for Metrology: From Biology and Chemistry to Quantum and Data Science, held in Varenna, Italy, from 4 -13 July 2019. The Course was the 7th in the Enrico Fermi series devoted to metrology, and followed a milestone in the history of measurement: the adoption of new definitions for the base units of the SI. During the Course, participants reviewed the decision and discussed how the new foundation for metrology is opening new possibilities for physics, with several of the lecturers reflecting on the implications for an easier exploration of the unification of quantum mechanics and gravity. A wide range of other topics were covered, from measuring color and appearance to atomic weights and radiation, and including the application of metrological principles to the management and interpretation of very large sets of scientific data and the application of metrology to biology. The book also contains a selection of posters from the best of those presented by students at the Course. Offering a fascinating exploration of the latest thinking on the subject of metrology, this book will be of interest to researchers and practitioners from many fields. |
biology and data science: Introduction to Computer-Intensive Methods of Data Analysis in Biology Derek A. Roff, 2006-05-25 Publisher Description |
biology and data science: Bioinformatics Algorithms Phillip Compeau, Pavel Pevzner, 1986-06 Bioinformatics Algorithms: an Active Learning Approach is one of the first textbooks to emerge from the recent Massive Online Open Course (MOOC) revolution. A light-hearted and analogy-filled companion to the authors' acclaimed online course (http://coursera.org/course/bioinformatics), this book presents students with a dynamic approach to learning bioinformatics. It strikes a unique balance between practical challenges in modern biology and fundamental algorithmic ideas, thus capturing the interest of students of biology and computer science students alike.Each chapter begins with a central biological question, such as Are There Fragile Regions in the Human Genome? or Which DNA Patterns Play the Role of Molecular Clocks? and then steadily develops the algorithmic sophistication required to answer this question. Hundreds of exercises are incorporated directly into the text as soon as they are needed; readers can test their knowledge through automated coding challenges on Rosalind (http://rosalind.info), an online platform for learning bioinformatics.The textbook website (http://bioinformaticsalgorithms.org) directs readers toward additional educational materials, including video lectures and PowerPoint slides. |
biology and data science: Advances in Artificial Intelligence, Computation, and Data Science Tuan D. Pham, Hong Yan, Muhammad W. Ashraf, Folke Sjöberg, 2021-07-12 Artificial intelligence (AI) has become pervasive in most areas of research and applications. While computation can significantly reduce mental efforts for complex problem solving, effective computer algorithms allow continuous improvement of AI tools to handle complexity—in both time and memory requirements—for machine learning in large datasets. Meanwhile, data science is an evolving scientific discipline that strives to overcome the hindrance of traditional skills that are too limited to enable scientific discovery when leveraging research outcomes. Solutions to many problems in medicine and life science, which cannot be answered by these conventional approaches, are urgently needed for society. This edited book attempts to report recent advances in the complementary domains of AI, computation, and data science with applications in medicine and life science. The benefits to the reader are manifold as researchers from similar or different fields can be aware of advanced developments and novel applications that can be useful for either immediate implementations or future scientific pursuit. Features: Considers recent advances in AI, computation, and data science for solving complex problems in medicine, physiology, biology, chemistry, and biochemistry Provides recent developments in three evolving key areas and their complementary combinations: AI, computation, and data science Reports on applications in medicine and physiology, including cancer, neuroscience, and digital pathology Examines applications in life science, including systems biology, biochemistry, and even food technology This unique book, representing research from a team of international contributors, has not only real utility in academia for those in the medical and life sciences communities, but also a much wider readership from industry, science, and other areas of technology and education. |
biology and data science: Data Science, Learning by Latent Structures, and Knowledge Discovery Berthold Lausen, Sabine Krolak-Schwerdt, Matthias Böhmer, 2015-05-06 This volume comprises papers dedicated to data science and the extraction of knowledge from many types of data: structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering and pattern recognition methods; strategies for modeling complex data and mining large data sets; applications of advanced methods in specific domains of practice. The contributions offer interesting applications to various disciplines such as psychology, biology, medical and health sciences; economics, marketing, banking and finance; engineering; geography and geology; archeology, sociology, educational sciences, linguistics and musicology; library science. The book contains the selected and peer-reviewed papers presented during the European Conference on Data Analysis (ECDA 2013) which was jointly held by the German Classification Society (GfKl) and the French-speaking Classification Society (SFC) in July 2013 at the University of Luxembourg. |
biology and data science: Experimental Design and Data Analysis for Biologists Gerald Peter Quinn, Michael J. Keough, 2002-03-21 Regression, analysis of variance, correlation, graphical. |
biology and data science: Applied Data Science Martin Braschler, Thilo Stadelmann, Kurt Stockinger, 2019-06-13 This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry. |
biology and data science: The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry Stephanie K. Ashenden, 2021-04-23 The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide |
biology and data science: Deep Learning for the Life Sciences Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, 2019-04-10 Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working |
biology and data science: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
biology and data science: Data Science Concepts and Techniques with Applications Usman Qamar, Muhammad Summair Raza, 2023-04-02 This textbook comprehensively covers both fundamental and advanced topics related to data science. Data science is an umbrella term that encompasses data analytics, data mining, machine learning, and several other related disciplines. The chapters of this book are organized into three parts: The first part (chapters 1 to 3) is a general introduction to data science. Starting from the basic concepts, the book will highlight the types of data, its use, its importance and issues that are normally faced in data analytics, followed by presentation of a wide range of applications and widely used techniques in data science. The second part, which has been updated and considerably extended compared to the first edition, is devoted to various techniques and tools applied in data science. Its chapters 4 to 10 detail data pre-processing, classification, clustering, text mining, deep learning, frequent pattern mining, and regression analysis. Eventually, the third part (chapters 11 and 12) present a brief introduction to Python and R, the two main data science programming languages, and shows in a completely new chapter practical data science in the WEKA (Waikato Environment for Knowledge Analysis), an open-source tool for performing different machine learning and data mining tasks. An appendix explaining the basic mathematical concepts of data science completes the book. This textbook is suitable for advanced undergraduate and graduate students as well as for industrial practitioners who carry out research in data science. They both will not only benefit from the comprehensive presentation of important topics, but also from the many application examples and the comprehensive list of further readings, which point to additional publications providing more in-depth research results or provide sources for a more detailed description of related topics. This book delivers a systematic, carefully thoughtful material on Data Science. from the Foreword by Witold Pedrycz, U Alberta, Canada. |
biology and data science: Encyclopedia of Bioinformatics and Computational Biology , 2018-08-21 Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases |
biology and data science: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com) |
biology and data science: Biological Data Mining And Its Applications In Healthcare Xiaoli Li, See-kiong Ng, Jason T L Wang, 2013-11-28 Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains. |
biology and data science: Computational Genomics with R Altuna Akalin, 2020-12-16 Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015. |
biology and data science: Computational Biology and Bioinformatics Ka-Chun Wong, 2016-04-27 The advances in biotechnology such as the next generation sequencing technologies are occurring at breathtaking speed. Advances and breakthroughs give competitive advantages to those who are prepared. However, the driving force behind the positive competition is not only limited to the technological advancement, but also to the companion data analy |
biology and data science: Computational Biology Röbbe Wünschiers, 2013-01-30 This greatly expanded 2nd edition provides a practical introduction to - data processing with Linux tools and the programming languages AWK and Perl - data management with the relational database system MySQL, and - data analysis and visualization with the statistical computing environment R for students and practitioners in the life sciences. Although written for beginners, experienced researchers in areas involving bioinformatics and computational biology may benefit from numerous tips and tricks that help to process, filter and format large datasets. Learning by doing is the basic concept of this book. Worked examples illustrate how to employ data processing and analysis techniques, e.g. for - finding proteins potentially causing pathogenicity in bacteria, - supporting the significance of BLAST with homology modeling, or - detecting candidate proteins that may be redox-regulated, on the basis of their structure. All the software tools and datasets used are freely available. One section is devoted to explaining setup and maintenance of Linux as an operating system independent virtual machine. The author's experiences and knowledge gained from working and teaching in both academia and industry constitute the foundation for this practical approach. |
biology and data science: Frontiers in Data Science Matthias Dehmer, Frank Emmert-Streib, 2017-10-16 Frontiers in Data Science deals with philosophical and practical results in Data Science. A broad definition of Data Science describes the process of analyzing data to transform data into insights. This also involves asking philosophical, legal and social questions in the context of data generation and analysis. In fact, Big Data also belongs to this universe as it comprises data gathering, data fusion and analysis when it comes to manage big data sets. A major goal of this book is to understand data science as a new scientific discipline rather than the practical aspects of data analysis alone. |
biology and data science: Big Data Analytics in Bioinformatics and Healthcare Wang, Baoying, 2014-10-31 As technology evolves and electronic data becomes more complex, digital medical record management and analysis becomes a challenge. In order to discover patterns and make relevant predictions based on large data sets, researchers and medical professionals must find new methods to analyze and extract relevant health information. Big Data Analytics in Bioinformatics and Healthcare merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management. Complete with interdisciplinary research resources, this publication is an essential reference source for researchers, practitioners, and students interested in the fields of biological computation, database management, and health information technology, with a special focus on the methodologies and tools to manage massive and complex electronic information. |
biology and data science: Introduction to Nonparametric Statistics for the Biological Sciences Using R Thomas W. MacFarland, Jan M. Yates, 2016-07-06 This book contains a rich set of tools for nonparametric analyses, and the purpose of this text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach. |
biology and data science: Genomics in the Cloud Geraldine A. Van der Auwera, Brian D. O'Connor, 2020-04-02 Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytesâ??or over 50 million gigabytesâ??of genomic data, and theyâ??re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian Oâ??Connor of the UC Santa Cruz Genomics Institute, guide you through the process. Youâ??ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra |
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…