Advertisement
biology chemistry of life: What is Life? Addy Pross, 2012-09-27 Seventy years ago, Erwin Schrödinger posed a profound question: 'What is life, and how did it emerge from non-life?' This problem has puzzled biologists and physical scientists ever since. Living things are hugely complex and have unique properties, such as self-maintenance and apparently purposeful behaviour which we do not see in inert matter. So how does chemistry give rise to biology? What could have led the first replicating molecules up such a path? Now, developments in the emerging field of 'systems chemistry' are unlocking the problem. Addy Pross shows how the different kind of stability that operates among replicating molecules results in a tendency for chemical systems to become more complex and acquire the properties of life. Strikingly, he demonstrates that Darwinian evolution is the biological expression of a deeper, well-defined chemical concept: the whole story from replicating molecules to complex life is one continuous process governed by an underlying physical principle. The gulf between biology and the physical sciences is finally becoming bridged. This new edition includes an Epilogue describing developments in the concepts of fundamental forms of stability discussed in the book, and their profound implications. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think. |
biology chemistry of life: The Chemistry of Life Steven Rose, 1999-10-07 First published in 1966, THE CHEMISTRY OF LIFE has held its own as a clear and authoritative introduction to the world of biochemistry. This fourth edition has been fully updated and revised to include the latest developments in DNA and protein synthesis, cell regulation, and their social and medical implications. |
biology chemistry of life: The Chemistry of Life’s Origins J. Mayo Greenberg, C.X. Mendoza-Gómez, Valerio Pirronello, 2012-12-06 This volume contains the lectures presented at the second course of the International School of Space Chemistry held in Erice (Sicily) from October 20 - 30 1991 at the E. Majorana Centre for Scientific Culture. The course was attended by 58 participants from 13 countries. The Chemistry of Life's Origins is well recognized as one of the most critical subjects of modem chemistry. Much progress has been made since the amazingly perceptive contributions by Oparin some 70 years ago when he first outlined a possible series of steps starting from simple molecules to basic building blocks and ultimate assembly into simple organisms capable of replicating, catalysis and evolution to higher organisms. The pioneering experiments of Stanley Miller demonstrated already forty years ago how easy it could have been to form the amino acids which are critical to living organisms. However we have since learned and are still learning a great deal more about the primitive conditions on earth which has led us to a rethinking of where and how the condition for prebiotic chemical processes occurred. We have also learned a great deal more about the molecular basis for life. For instance, the existence of DNA was just discovered forty years ago. |
biology chemistry of life: The Chemistry of Life Joseph Needham, 1970-04 This assembly of lectures should appeal to anyone with an interest in the history of science and the nature of living things. Seven of the eight lectures are by eminent biochemists and describe the development of their own subject 'from the inside; the eighth is a more general one. |
biology chemistry of life: The Biological Chemistry of the Elements J. J. R. Frausto da Silva, Robert Joseph Paton Williams, 2001-08-16 This text describes the functional role of the twenty inorganic elements essential to life in living organisms. |
biology chemistry of life: The Emergence of Life Pier Luigi Luisi, 2006-07-13 The origin of life from inanimate matter has been the focus of much research for decades, both experimentally and philosophically. Luisi takes the reader through the consecutive stages from prebiotic chemistry to synthetic biology, uniquely combining both approaches. This book presents a systematic course discussing the successive stages of self-organisation, emergence, self-replication, autopoiesis, synthetic compartments and construction of cellular models, in order to demonstrate the spontaneous increase in complexity from inanimate matter to the first cellular life forms. A chapter is dedicated to each of these steps, using a number of synthetic and biological examples. With end-of-chapter review questions to aid reader comprehension, this book will appeal to graduate students and academics researching the origin of life and related areas such as evolutionary biology, biochemistry, molecular biology, biophysics and natural sciences. |
biology chemistry of life: The Chemistry of Evolution R.J.P Williams, J.J.R Fraústo da Silva, 2005-11-29 Conventionally, evolution has always been described in terms of species. The Chemistry of Evolution takes a novel, not to say revolutionary, approach and examines the evolution of chemicals and the use and degradation of energy, coupled to the environment, as the drive behind it. The authors address the major changes of life from bacteria to man in a systematic and unavoidable sequence, reclassifying organisms as chemotypes. Written by the authors of the bestseller The Biological Chemistry of the Elements - The Inorganic Chemistry of Life (Oxford University Press, 1991), the clarity and precision of The Chemistry of Evolution plainly demonstrate that life is totally interactive with the environment. This exciting theory makes this work an essential addition to the academic and public library.* Provides a novel analysis of evolution in chemical terms* Stresses Systems Biology * Examines the connection between life and the environment, starting with the 'big bang' theory* Reorientates the chemistry of life by emphasising the need to analyse the functions of 20 chemical elements in all organisms |
biology chemistry of life: Transformer Nick Lane, 2022-05-19 'One of my favourite science writers' Bill Gates 'Hugely important' Jim Al-Khalili For decades, biology has been dominated by information - the power of genes. Yet there is no difference in information content between a living cell and one that died a moment ago. A better question goes back to the formative years of biology: what processes animate cells and set them apart from lifeless matter? In Transformer, Nick Lane turns the standard view upside down, capturing an extraordinary scientific renaissance that is hiding in plain sight. At its core is an amazing cycle of reactions that uses energy to transform inorganic molecules into the building blocks of life - and the reverse. To understand this cycle is to fathom the deep coherence of the living world. It connects the origin of life with the devastation of cancer, the first photosynthetic bacteria with our own mitochondria, sulphurous sludges with the emergence of consciousness, and the trivial differences between ourselves with the large-scale history of our planet. |
biology chemistry of life: Basic Organic Chemistry for the Life Sciences Hrvoj Vančik, 2022-01-18 This textbook is designed for students of biology, molecular biology, ecology,medicine, agriculture, forestry and other professions where the knowledge of organic chemistry plays an important role. The work may also be of interest to non-professionals, as well as to teachers in high schools. The book consists of 13 chapters that cover the essentials of organic chemistry, including - basic principles of structure and constitution of organic compounds, - the elements of the nomenclature, - the concepts of the nature of chemical bond, - introductions in NMR and IR spectroscopy, - the concepts and main classes of the organic reaction mechanisms, - reactions and properties of common classes or organic compounds, - and the introduction to the chemistry of the natural organic products followed by basic principles of the reactions in living cells. This second edition includes revisions and suggestions made by the readers of the first edition and the author's colleagues. In addition, it includes substantial changes compared to the first edition. The chapter on Cycloaddition has been completed by including the other pericyclic reactions (sigmatropic rearrangements, electrocyclic reactions). The chapter on Organic Natural Products has been extended to include new section covering the principles of organic synthesis. New chapter Organic Supramolecular and Supermolecular Structures is added. This chapter covers the basic knowledge about the molecular recognition, supramolecular structures, and the mechanisms of the enzyme catalyzed reactions. |
biology chemistry of life: Introducing Biological Energetics Norman W. H. Cheetham, 2010-10-07 This novel, interdisciplinary text presents biological understanding in terms of general underlying principles, treating energy as the overarching theme and emphasizing the all-pervading influence of energy transformation in every process, both living and non-living. Key processes and concepts are explained in turn, culminating in a description of the overall functioning and regulation of a living cell. The book rounds off the story of life with a brief account of the endosymbiotic origins of eukaryotic cells, the development of multicellularity, and the emergence of modern plants and animals. Multidisciplinary research in science is becoming commonplace. However, as traditional boundaries start to break down, researchers are increasingly aware of the deficiencies in their knowledge of related disciplines. Introducing Biological Energetics redresses the reciprocal imbalance in the knowledge levels of physical and biological scientists in particular. Its style of presentation and depth of treatment has been carefully designed to unite these two readerships. |
biology chemistry of life: Concepts of Biology Samantha Fowler, Rebecca Roush, James Wise, 2023-05-12 Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy. |
biology chemistry of life: Molecular Biology of the Cell , 2002 |
biology chemistry of life: The Origin and Early Evolution of Life: Prebiotic Chemistry of Biomolecules Michele Fiore, 2019-10-29 Studying the origin of life is one of man’s greatest achievements over the last sixty years. The fields of interest encompassed by this quest are multiple and interdisciplinary: chemistry, physics, biology, biochemistry, mathematics, geology but also statistics, atmospheric science, meteorology, oceanography, and astrophysics. Recent scientific discoveries, such as water on Mars and the existence of super-Earths with atmospheres similar to primordial Earth, have pushed researchers to simulate prebiotic conditions in explaining the abiotic formation of molecules essential to life. This collection of articles offers an overview of recent discoveries in the field of prebiotic chemistry of biomolecules, their formation and selection, and the evolution of complex chemical systems. |
biology chemistry of life: Physical Chemistry for the Life Sciences Peter Atkins, Julio de Paula, 2011 Peter Atkins and Julio de Paula offer a fully integrated approach to the study of physical chemistry and biology. |
biology chemistry of life: The Biological Chemistry of the Elements J. R. R. Fraústo da Silva, J. J. R. Fraústo da Silva, Robert Joseph Paton Williams, 1991 The authors of this study on bio-inorganic chemistry seek to examine the importance of inorganic elements. They survey chemical and physical factors controlling the elements of life, discuss the functions of inorganic elements and examine the co-operative interaction in living systems. |
biology chemistry of life: Ross & Wilson Anatomy and Physiology in Health and Illness Anne Waugh, Allison Grant, 2018-07-12 The new edition of the hugely successful Ross and Wilson Anatomy & Physiology in Health and Illness continues to bring its readers the core essentials of human biology presented in a clear and straightforward manner. Fully updated throughout, the book now comes with enhanced learning features including helpful revision questions and an all new art programme to help make learning even easier. The 13th edition retains its popular website, which contains a wide range of 'critical thinking' exercises as well as new animations, an audio-glossary, the unique Body Spectrum© online colouring and self-test program, and helpful weblinks. Ross and Wilson Anatomy & Physiology in Health and Illness will be of particular help to readers new to the subject area, those returning to study after a period of absence, and for anyone whose first language isn't English. - Latest edition of the world's most popular textbook on basic human anatomy and physiology with over 1.5 million copies sold worldwide - Clear, no nonsense writing style helps make learning easy - Accompanying website contains animations, audio-glossary, case studies and other self-assessment material, the unique Body Spectrum© online colouring and self-test software, and helpful weblinks - Includes basic pathology and pathophysiology of important diseases and disorders - Contains helpful learning features such as Learning Outcomes boxes, colour coding and design icons together with a stunning illustration and photography collection - Contains clear explanations of common prefixes, suffixes and roots, with helpful examples from the text, plus a glossary and an appendix of normal biological values. - Particularly valuable for students who are completely new to the subject, or returning to study after a period of absence, and for anyone whose first language is not English - All new illustration programme brings the book right up-to-date for today's student - Helpful 'Spot Check' questions at the end of each topic to monitor progress - Fully updated throughout with the latest information on common and/or life threatening diseases and disorders - Review and Revise end-of-chapter exercises assist with reader understanding and recall - Over 120 animations – many of them newly created – help clarify underlying scientific and physiological principles and make learning fun |
biology chemistry of life: Biology for AP ® Courses Julianne Zedalis, John Eggebrecht, 2017-10-16 Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences. |
biology chemistry of life: Chemical Elements In Life Wansen Zhu, 2020-03-17 How did life begin? Starting with the Big Bang Theory, this book systematically discusses scientific findings and hypotheses on topics such as the origin of chemical elements, formation of life on Earth, evolution of life elements, their subtle chemical reactions and miraculous physiological functions. The content in this book is carefully arranged to focus on major scientific discoveries in various disciplines related to life science, with particular emphasis on the vital relationship between chemical reactions in the human body and health, shedding light on hot issues of public concern such as nutrition and human longevity. Important concepts covered include chemical circulation and the dynamic balance of elements both within ourselves, and with the environment. Ultimately, the takeaway message is that the success of keeping the tree of life evergreen depends not only on the advancement of life science research, but also on whether human beings can follow the laws of nature and maintain a harmonious relationship with the earth. |
biology chemistry of life: Chemical Biology of Phosphorus Christopher T Walsh, 2020-10-29 Alexander Todd, the 1957 Nobel laureate in chemistry is credited with the statement: “where there is life, there is phosphorus”. Phosphorus chemical biology underlies most of life’s reactions and processes, from the covalent bonds that hold RNA and DNA together, to the making and spending 75 kg of ATP every day, required to run almost all metabolic and mechanical events in cells. Authored by a renowned biochemist, The Chemical Biology of Phosphorus provides an in-depth, unifying chemical approach to the logic and reactivity of inorganic phosphate and its three major derivatives (anhydrides, mono- and diesters) throughout biology to examine why life depends on phosphorus. Covering the breadth of phosphorus chemistry in biology, this book is ideal for biochemistry students, postgraduates and researchers interested in the chemical logic of phosphate metabolites, energy generation, biopolymer accumulation and phosphoproteomics. |
biology chemistry of life: Water in Biology, Chemistry, and Physics G. Wilse Robinson, 1996 The central theme, which threads through the entire book, concerns computational modeling methods for water. Modeling results for pure liquid water, water near ions, water at interfaces, water in biological microsystems, and water under other types of perturbations such as laser fields are described. Connections are made throughout the book with statistical mechanical theoretical methods on the one hand and with experimental data on the other. The book is expected to be useful not only for theorists and computer analysts interested in the physical, chemical, biological and geophysical aspects of water, but also for experimentalists in these fields. |
biology chemistry of life: Chemicals for Life and Living Eiichiro Ochiai, 2011-06-17 Chemicals often have a negative Image among the general public. But there is no material world or indeed human beings without chemicals. The material world is operated by chemicals. The title ‘Chemicals for Life and Living’ implies that the material world is staged and played by chemicals. The book consists of five parts and an appendix. Part 1 – Essentials for life; Part 2 – Enhancing health; Part 3 – For the fun of life; Part 4 – Chemistry of the universe and earth, and Part 5 - Some negative effects of chemicals. The appendix gives a brief summary of what chemistry is all about, including a short chapter of chemical principles. No quantitative calculations are included in this book so that it is appealing for everyone – not just chemists. |
biology chemistry of life: Encyclopedia of Biological Chemistry , 2021-07-29 Encyclopedia of Biological Chemistry, Six Volume Set has always been characterized by its unique and comprehensive content. Since publication of the 2nd edition, many important discoveries have been made leading to novel concepts in several areas of biochemistry, and new technologies have advanced our understanding of key processes of life. All of these advances are included in the new and expanded third edition. With its 6 volumes, this is the most up-to-date and complete resource on biochemistry and molecular biology, provided through contributions by leading experts in the field. A ‘one-stop’, comprehensive resource on the chemistry of life, including a wealth of information and critical summaries to support research and teaching activities Each chapter is written concisely to guide the reader though the topic, using a consistent and unified terminology Clearly organized into seven logical sections, each curated by a world-leader in the field and the Editor in Chief |
biology chemistry of life: What Is Life? Sir Paul Nurse, 2020-11 Life is all around us, abundant and diverse. It is truly a marvel. But what does it actually mean to be alive, and how do we decide what is living and what is not? After a lifetime of studying life, Nobel Prize-winner Sir Paul Nurse, one of the world's leading scientists, has taken on the challenge of defining it. Written with great personality and charm, his accessible guide takes readers on a journey to discover biology's five great building blocks, demonstrates how biology has changed and is changing the world, and reveals where research is headed next. To survive all the challenges that face the human race today - population growth, pandemics, food shortages, climate change - it is vital that we first understand what life is. Never before has the question 'What is life?' been answered with such insight, clarity, and humanity, and never at a time more urgent than now. 'Paul Nurse is about as distinguished a scientist as there could be. He is also a great communicator. This book explains, in a way that is both clear and elegant, how the processes of life unfold, and does as much as science can to answer the question posed by the title. It's also profoundly important, at a time when the world is connected so closely that any new illness can sweep from nation to nation with immense speed, that all of us - including politicians - should be as well-informed as possible. This book provides the sort of clarity and understanding that could save many thousands of lives. I learned a great deal, and I enjoyed the process enormously.' -Sir Philip Pullman 'A nearly perfect guide to the wonder and complexity of existence.' -Bill Bryson 'Nurse provides a concise, lucid response to an age-old question. His writing is not just informed by long experience, but also wise, visionary, and personal. I read the book in one sitting, and felt exhilarated by the end, as though I'd run for miles - from the author's own garden into the interior of the cell, back in time to humankind's most distant ancestors, and through the laboratory of a dedicated scientist at work on what he most loves to do.' -Dava Sobel |
biology chemistry of life: Life Chemistry & Molecular Biology Edward J. Wood, Christopher Smith, W. Roy Pickering, 1997 This is an A level biology book, suitable also for first-year undergraduates. It sets out to explain biological principles and their applications in commercial, medical, ecological and physiological contexts. A series of annotated diagrams are linked to te |
biology chemistry of life: Molecules and Life Joseph Stewart Fruton, 1972 |
biology chemistry of life: The Molecules of Life Kuriyan, John, Konforti, Boyana, Wemmer, David, 2012-07-25 This textbook provides an integrated physical and biochemical foundation for undergraduate students majoring in biology or health sciences. It is particularly suitable for students planning to enter the pharmaceutical industry. This new generation of molecular biologists and biochemists will harness the tools and insights of physics and chemistry to exploit the emergence of genomics and systems-level information in biology, and will shape the future of medicine. |
biology chemistry of life: Stochastic Chemical Reaction Systems in Biology Hong Qian, Hao Ge, 2021-10-18 This book provides an introduction to the analysis of stochastic dynamic models in biology and medicine. The main aim is to offer a coherent set of probabilistic techniques and mathematical tools which can be used for the simulation and analysis of various biological phenomena. These tools are illustrated on a number of examples. For each example, the biological background is described, and mathematical models are developed following a unified set of principles. These models are then analyzed and, finally, the biological implications of the mathematical results are interpreted. The biological topics covered include gene expression, biochemistry, cellular regulation, and cancer biology. The book will be accessible to graduate students who have a strong background in differential equations, the theory of nonlinear dynamical systems, Markovian stochastic processes, and both discrete and continuous state spaces, and who are familiar with the basic concepts of probability theory. |
biology chemistry of life: Chemistry Bruce Averill, Patricia Eldredge, 2007 Emphasises on contemporary applications and an intuitive problem-solving approach that helps students discover the exciting potential of chemical science. This book incorporates fresh applications from the three major areas of modern research: materials, environmental chemistry, and biological science. |
biology chemistry of life: Lavoisier and the Chemistry of Life Frederic Lawrence Holmes, 1985 Drawing on Lavoisier's daily laboratory records, unpublished notes, and successive drafts of articles, Holmes explores the interaction between this creative scientist's theories and practice, the experimental problems he encountered and his response to them, the apparently intuitive understanding that guided his choice of experiments, and the gradual refinement of his hypotheses. This thorough and comprehensive exposition of Lavoisier's scientific style forms the basis for general reflections on the nature of creative scientific imagination that will interest historians of science and biology, philosophers of science, cognitive psychologists, and all who are intrigued by the drama of pioneering scientific discovery. |
biology chemistry of life: Complexity in Chemistry, Biology, and Ecology Danail D. Bonchev, Dennis Rouvray, 2007-05-03 The book offers new concepts and ideas that broaden reader’s perception of modern science. Internationally established experts present the inspiring new science of complexity, which discovers new general laws covering wide range of science areas. The book offers a broader view on complexity based on the expertise of the related areas of chemistry, biochemistry, biology, ecology, and physics. Contains methodologies for assessing the complexity of systems that can be directly applied to proteomics and genomics, and network analysis in biology, medicine, and ecology. |
biology chemistry of life: The Limits of Organic Life in Planetary Systems National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Division on Engineering and Physical Sciences, Space Studies Board, Committee on the Origins and Evolution of Life, Committee on the Limits of Organic Life in Planetary Systems, 2007-06-26 The search for life in the solar system and beyond has to date been governed by a model based on what we know about life on Earth (terran life). Most of NASA's mission planning is focused on locations where liquid water is possible and emphasizes searches for structures that resemble cells in terran organisms. It is possible, however, that life exists that is based on chemical reactions that do not involve carbon compounds, that occurs in solvents other than water, or that involves oxidation-reduction reactions without oxygen gas. To assist NASA incorporate this possibility in its efforts to search for life, the NRC was asked to carry out a study to evaluate whether nonstandard biochemistry might support life in solar system and conceivable extrasolar environments, and to define areas to guide research in this area. This book presents an exploration of a limited set of hypothetical chemistries of life, a review of current knowledge concerning key questions or hypotheses about nonterran life, and suggestions for future research. |
biology chemistry of life: A Crack in Creation Jennifer Doudna, Samuel Sternberg, 2018-06-14 A handful of discoveries have changed the course of human history. This book is about the most recent and potentially the most powerful and dangerous of them all. It is an invention that allows us to rewrite the genetic code that shapes and controls all living beings with astonishing accuracy and ease. Thanks to it, the dreams of genetic manipulation have become a stark reality: the power to cure disease and alleviate suffering, to create new sources of food and energy, as well as to re-design any species, including humans, for our own ends. Jennifer Doudna is the co-inventor of this technology - known as CRISPR - and a scientist of worldwide renown. Writing with fellow researcher Samuel Sternberg, here she provides the definitive account of her discovery, explaining how this wondrous invention works and what it is capable of. She also asks us to consider what our new-found power means: how do we enjoy its unprecedented benefits while avoiding its equally unprecedented dangers? The future of humankind - and of all life on Earth - is at stake. This book is an essential guide to the path that now lies ahead. |
biology chemistry of life: The Tao of Chemistry and Life Eugene H. Cordes, 2009-06-04 Chemistry underlies life. This book establishes the relationship between the focal point of chemistry - the molecule - and the key characteristics of living organisms. The key is the interactions between small molecules and macromolecules leading to metabolic control, memory and learning, the senses, and drug action. |
biology chemistry of life: The Chemistry and Biology of Volatiles Andreas Herrmann, 2011-06-15 Coming to a conclusion, this wonderful, informative and very interesting book presents an excellent overview of small volatile organic compounds and their role in our life and environment. Really fascinating is the entirety of scientific disciplines which were addressed by this book. –Flavour and Fragrance Journal, 2011 ... this book deserves to be a well-used reference in the library of any laboratory specialising in VOC. –Chemistry World, 2011 Volatile compounds are molecules with a relatively low molecular weight allowing for an efficient evaporation into the air. They are found in many areas of our everyday-life: they are responsible for the communication between species such as plants, insects or mammals; they serve as flavours or fragrances in many food products or perfumed consumer articles; and they play an important role in atmospheric chemistry. This book takes an interdisciplinary approach to volatile molecules. Review-style introductions to the main topics in volatile chemistry and biology are provided by international experts, building into a broad overview of this fascinating field. Topics covered include: The structural variety of volatile compounds Biogeneration of volatiles Synthesis of natural and non-natural volatiles Analysis of volatiles Volatile compounds as semiochemicals in plant-plant or plant-insect interactions Volatiles in pest control Pheromones and the influence of volatiles on mammals Olfaction and human perception Volatiles as fragrances The generation of flavours and food aroma compounds Stabilisation and controlled release of volatiles The impact of volatiles on the environment and the atmosphere |
biology chemistry of life: Chembiomolecular Science Masakatsu Shibasaki, Masamitsu Iino, Hiroyuki Osada, 2012-10-02 At the forefront of life sciences today is the emerging discipline of chembiomolecular science. This new term describes the integration of the frontier fields of chemical biology, chemistry, and pharmacology. Chembiomolecular science aims to elucidate new biological mechanisms as potential drug targets and enhance the creation of new drug therapies. This book comprises the proceedings of the Uehara Memorial Foundation Symposium 2011, which focused on the most recent advances in chembiomolecular science made by leading experts in the field. The book is divided into three main topics. The first is the chemical approach to understanding complex biological systems on a molecular level using chemical compounds as a probe. The second describes the biological approach used to develop new lead drug compounds. The third focuses on the biological system that serves as the potential drug target, the beginning step in the process of developing new drugs. Replete with the latest research, the book will draw the attention of all scientists interested in the synergies between chemistry and biology to elucidate life on a molecular level and to promote drug discovery. Ultimately, the book helps promote the understanding of biological functions at the molecular level and create new pharmaceuticals that can contribute to improving human health. |
biology chemistry of life: Nucleic Acids in Chemistry and Biology G. Michael Blackburn, Michael J. Gait, 1996 Since the discovery of the DNA double helix in 1953, nucleic acids have formed the central theme of much of contemporary molecular science. Recent mastery of nucleic acids synthesis has been the key to the establishment of the biotechnology industry, and our improving knowledge of nucleic acid structures and interactions is considerably influencing the design of novel drugs. The first edition of this book responded to the pressing need for a single volume that integrated the chemistry and biology of the nucleic acids in an introductory yet authoritative text. This second and completely updated edition, which includes a new chapter on techniques applied to nucleic acids, sets the basics of the nucleic acids in the context of the expanding horizons set by modern structural biology, RNA enzymology, drug discovery and biotechnology. |
biology chemistry of life: Proteins, Enzymes, Genes , In this book a distinguished scientist-historian offers a critical account of how biochemistry and molecular biology emerged as major scientific disciplines from the interplay of chemical and biological ideas and practice. Joseph S. Fruton traces the historical development of these disciplines from antiquity to the present time, examines their institutional settings, and discusses their impact on medical, pharmaceutical, and agricultural practice. |
biology chemistry of life: The Vital Question Nick Lane, 2015-04-23 Why is life the way it is? Bacteria evolved into complex life just once in four billion years of life on earth-and all complex life shares many strange properties, from sex to ageing and death. If life evolved on other planets, would it be the same or completely different? In The Vital Question, Nick Lane radically reframes evolutionary history, putting forward a cogent solution to conundrums that have troubled scientists for decades. The answer, he argues, lies in energy: how all life on Earth lives off a voltage with the strength of a bolt of lightning. In unravelling these scientific enigmas, making sense of life's quirks, Lane's explanation provides a solution to life's vital questions: why are we as we are, and why are we here at all? This is ground-breaking science in an accessible form, in the tradition of Charles Darwin's The Origin of Species, Richard Dawkins' The Selfish Gene, and Jared Diamond's Guns, Germs and Steel. |
biology chemistry of life: The Search for Life's Origins National Research Council, Division on Engineering and Physical Sciences, Space Studies Board, Committee on Planetary Biology and Chemical Evolution, 1990-02-01 The field of planetary biology and chemical evolution draws together experts in astronomy, paleobiology, biochemistry, and space science who work together to understand the evolution of living systems. This field has made exciting discoveries that shed light on how organic compounds came together to form self-replicating molecules-the origin of life. This volume updates that progress and offers recommendations on research programs-including an ambitious effort centered on Mars-to advance the field over the next 10 to 15 years. The book presents a wide range of data and research results on these and other issues: The biogenic elements and their interaction in the interstellar clouds and in solar nebulae. Early planetary environments and the conditions that lead to the origin of life. The evolution of cellular and multicellular life. The search for life outside the solar system. This volume will become required reading for anyone involved in the search for life's beginnings-including exobiologists, geoscientists, planetary scientists, and U.S. space and science policymakers. |
biology chemistry of life: Biology Sandra Alters, 1996 Designed for a one or two semester non-majors course in introductory biology taught at most two and four-year colleges. This course typically fulfills a general education requirement, and rather than emphasizing mastery of technical topics, it focuses on the understanding of biological ideas and concepts, how they relate to real life, and appreciating the scientific methods and thought processes. Given the authors' work in and dedication to science education, this text's writing style, pedagogy, and integrated support package are all based on classroom-tested teaching strategies and learning theory. The result is a learning program that enhances the effectiveness & efficiency of the teaching and learning experience in the introductory biology course like no other before it. |
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. How do I …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, 2006 …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…