biology by the numbers: Cell Biology by the Numbers Ron Milo, Rob Phillips, 2015-12-07 A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid |
biology by the numbers: Biology by Numbers Richard F. Burton, 1998-02-26 A practical undergraduate textbook for maths-shy biology students showing how basic maths reveals important insights. |
biology by the numbers: Physical Biology of the Cell Rob Phillips, Jane Kondev, Julie Theriot, Hernan Garcia, 2012-10-29 Physical Biology of the Cell is a textbook for a first course in physical biology or biophysics for undergraduate or graduate students. It maps the huge and complex landscape of cell and molecular biology from the distinct perspective of physical biology. As a key organizing principle, the proximity of topics is based on the physical concepts that |
biology by the numbers: Amazing Numbers in Biology Rainer Flindt, 2006-12-21 This book of tables provides comparative data from the fields of zoology, botany, microbiology, and human biology. It is a must for everyone interested in biology but also of help for all parents to address questions such as Mama/Papa, how old can a ... be? The plain facts of life from all areas of biology, including such topics as growth rates of hair and nails, and ages and weights of seeds are simply fascinating. Biology comes alive in this comprehensive and entertaining reference work. Warning: Anybody who begins browsing through this book will not easily stop reading! |
biology by the numbers: Molecular Biology of the Cell 6E - The Problems Book John Wilson, Tim Hunt, 2014-11-21 The Problems Book helps students appreciate the ways in which experiments and simple calculations can lead to an understanding of how cells work by introducing the experimental foundation of cell and molecular biology. Each chapter reviews key terms, tests for understanding basic concepts, and poses research-based problems. The Problems Book has be |
biology by the numbers: Molecular Biology of the Cell , 2002 |
biology by the numbers: Calculations for Molecular Biology and Biotechnology Frank H. Stephenson, 2010-07-30 Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory, Second Edition, provides an introduction to the myriad of laboratory calculations used in molecular biology and biotechnology. The book begins by discussing the use of scientific notation and metric prefixes, which require the use of exponents and an understanding of significant digits. It explains the mathematics involved in making solutions; the characteristics of cell growth; the multiplicity of infection; and the quantification of nucleic acids. It includes chapters that deal with the mathematics involved in the use of radioisotopes in nucleic acid research; the synthesis of oligonucleotides; the polymerase chain reaction (PCR) method; and the development of recombinant DNA technology. Protein quantification and the assessment of protein activity are also discussed, along with the centrifugation method and applications of PCR in forensics and paternity testing. - Topics range from basic scientific notations to complex subjects like nucleic acid chemistry and recombinant DNA technology - Each chapter includes a brief explanation of the concept and covers necessary definitions, theory and rationale for each type of calculation - Recent applications of the procedures and computations in clinical, academic, industrial and basic research laboratories are cited throughout the text New to this Edition: - Updated and increased coverage of real time PCR and the mathematics used to measure gene expression - More sample problems in every chapter for readers to practice concepts |
biology by the numbers: Computational Systems Biology of Cancer Emmanuel Barillot, Laurence Calzone, Philippe Hupe, Jean-Philippe Vert, Andrei Zinovyev, 2012-08-25 The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net. |
biology by the numbers: Networks in Cell Biology Mark Buchanan, Guido Caldarelli, Paolo De Los Rios, Francesco Rao, Michele Vendruscolo, 2010-05-13 Key introductory text for graduate students and researchers in physics, biology and biochemistry. |
biology by the numbers: Principles of Cell Biology George Plopper, Diana Bebek Ivankovic, 2020-02-03 Principles of Cell Biology, Third Edition is an educational, eye-opening text with an emphasis on how evolution shapes organisms on the cellular level. Students will learn the material through 14 comprehensible principles, which give context to the underlying theme that make the details fit together. |
biology by the numbers: Physical Biology of the Cell Rob Phillips, Jane Kondev, Julie Theriot, Hernan Garcia, 2012-10-29 Physical Biology of the Cell is a textbook for a first course in physical biology or biophysics for undergraduate or graduate students. It maps the huge and complex landscape of cell and molecular biology from the distinct perspective of physical biology. As a key organizing principle, the proximity of topics is based on the physical concepts that |
biology by the numbers: Quantitative Biology Michael E. Wall, 2012-08-25 Quantitative methods are revolutionizing modern molecular and cellular biology. Groundbreaking technical advances are fueling the rapid expansion in our ability to observe, as seen in multidisciplinary studies that integrate theory, computation, experimental assays, and the control of microenvironments. Integrating new experimental and theoretical methods, Quantitative Biology: From Molecular to Cellular Systems gives both new and established researchers a solid foundation for starting work in this field. The book is organized into three sections: Fundamental Concepts covers bold ideas that inspire novel approaches in modern quantitative biology. It offers perspectives on evolutionary dynamics, system design principles, chance and memory, and information processing in biology. Methods describes recently developed or improved techniques that are transforming biological research. It covers experimental methods for studying single-molecule biochemistry, small-angle scattering from biomolecules, subcellular localization of proteins, and single-cell behavior. It also describes theoretical methods for synthetic biology and modeling random variations among cells. Molecular and Cellular Systems focuses on specific biological systems where modern quantitative biology methods are making an impact. It incorporates case studies of biological systems for which new concepts or methods are increasing our understanding. Examples include protein kinase at the molecular level, the genetic switch of phage lambda at the regulatory system level, and Escherichia coli chemotaxis at the cellular level. In short, Quantitative Biology presents practical tools for the observation, modeling, design, and manipulation of biological systems from the molecular to the cellular levels. |
biology by the numbers: Physical Biology Ahmed H. Zewail, 2008 Addresses significant problems in physical biology and adjacent disciplines. This volume provides a perspective on the methods and concepts at the heart of chemical and biological behavior, covering the topics of visualization; theory and computation for complexity; and macromolecular function, protein folding, and protein misfolding |
biology by the numbers: Quantitative Imaging in Cell Biology , 2014-06-25 This new volume, number 123, of Methods in Cell Biology looks at methods for quantitative imaging in cell biology. It covers both theoretical and practical aspects of using optical fluorescence microscopy and image analysis techniques for quantitative applications. The introductory chapters cover fundamental concepts and techniques important for obtaining accurate and precise quantitative data from imaging systems. These chapters address how choice of microscope, fluorophores, and digital detector impact the quality of quantitative data, and include step-by-step protocols for capturing and analyzing quantitative images. Common quantitative applications, including co-localization, ratiometric imaging, and counting molecules, are covered in detail. Practical chapters cover topics critical to getting the most out of your imaging system, from microscope maintenance to creating standardized samples for measuring resolution. Later chapters cover recent advances in quantitative imaging techniques, including super-resolution and light sheet microscopy. With cutting-edge material, this comprehensive collection is intended to guide researchers for years to come. Covers sections on model systems and functional studies, imaging-based approaches and emerging studies Chapters are written by experts in the field Cutting-edge material |
biology by the numbers: Biology and Ideology from Descartes to Dawkins Denis R. Alexander, Ronald L. Numbers, 2010-05-15 Over the course of human history, the sciences, and biology in particular, have often been manipulated to cause immense human suffering. For example, biology has been used to justify eugenic programs, forced sterilization, human experimentation, and death camps—all in an attempt to support notions of racial superiority. By investigating the past, the contributors to Biology and Ideology from Descartes to Dawkins hope to better prepare us to discern ideological abuse of science when it occurs in the future. Denis R. Alexander and Ronald L. Numbers bring together fourteen experts to examine the varied ways science has been used and abused for nonscientific purposes from the fifteenth century to the present day. Featuring an essay on eugenics from Edward J. Larson and an examination of the progress of evolution by Michael J. Ruse, Biology and Ideology examines uses both benign and sinister, ultimately reminding us that ideological extrapolation continues today. An accessible survey, this collection will enlighten historians of science, their students, practicing scientists, and anyone interested in the relationship between science and culture. |
biology by the numbers: Molecular Biology of the Fission Yeast , 2012-12-02 This highly researched yeast, which represents a system used by cell biologists, geneticists and molecular biologists, has been given only minimal coverage in the literature. Its properties make it an excellent organism for DNA and related biotechnology reseach. This book, which is the first attempt to collate existing information in one source, will be an invaluable aid to those initiating projects with this organism. |
biology by the numbers: Random Walks in Biology Howard C. Berg, 2018-11-20 This book is a lucid, straightforward introduction to the concepts and techniques of statistical physics that students of biology, biochemistry, and biophysics must know. It provides a sound basis for understanding random motions of molecules, subcellular particles, or cells, or of processes that depend on such motion or are markedly affected by it. Readers do not need to understand thermodynamics in order to acquire a knowledge of the physics involved in diffusion, sedimentation, electrophoresis, chromatography, and cell motility--subjects that become lively and immediate when the author discusses them in terms of random walks of individual particles. |
biology by the numbers: A Computer Scientist's Guide to Cell Biology William W. Cohen, 2007-07-23 This book is designed specifically as a guide for Computer Scientists needing an introduction to Cell Biology. The text explores three different facets of biology: biological systems, experimental methods, and language and nomenclature. The author discusses what biologists are trying to determine from their experiments, how various experimental procedures are used and how they relate to accepted concepts in computer science, and the vocabulary necessary to read and understand current literature in biology. The book is an invaluable reference tool and an excellent starting point for a more comprehensive examination of cell biology. |
biology by the numbers: Concepts of Biology Samantha Fowler, Rebecca Roush, James Wise, 2023-05-12 Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy. |
biology by the numbers: The Vital Question Nick Lane, 2015-04-23 Why is life the way it is? Bacteria evolved into complex life just once in four billion years of life on earth-and all complex life shares many strange properties, from sex to ageing and death. If life evolved on other planets, would it be the same or completely different? In The Vital Question, Nick Lane radically reframes evolutionary history, putting forward a cogent solution to conundrums that have troubled scientists for decades. The answer, he argues, lies in energy: how all life on Earth lives off a voltage with the strength of a bolt of lightning. In unravelling these scientific enigmas, making sense of life's quirks, Lane's explanation provides a solution to life's vital questions: why are we as we are, and why are we here at all? This is ground-breaking science in an accessible form, in the tradition of Charles Darwin's The Origin of Species, Richard Dawkins' The Selfish Gene, and Jared Diamond's Guns, Germs and Steel. |
biology by the numbers: Biology at a Glance Judy Dodds, 2006-09-22 This book presents in a clear visual way the biology material needed for the Science and Additional Science GCSE, and for the separate Biology GCSE. It also serves as an introductory guide for AS Biology. It is illustrated throughout with photos and flow charts, with questions on every topic, Internet research activities and a glossary of words to |
biology by the numbers: Physical Biology: From Atoms To Medicine Ahmed H Zewail, 2008-05-06 This is an avant-garde book edited by Nobel Laureate Ahmed Zewail with contributions from eminent scientists including four Nobel prize winners. The perspectives of these world leaders in physics, chemistry, and biology define potential new frontiers at the interface of disciplines and including physical, systems, and synthetic biology.This book brings about the confluence of concepts and tools, and that of different disciplines, to address significant problems of our time: visualization; theory and computation for complexity; macromolecular function, protein folding and misfolding; and systems integration from cells to consciousness. The scope of tools is wide-ranging, spanning imaging, crystallography, microfluidics, single-molecule spectroscopy, and synthetic probe targeting. Concepts such as dynamic self-assembly, molecular recognition, non-canonical amino acids, and others are covered in various chapters as they are cornerstones in building the trilogy description of behavior-structure, dynamics, and function.The volume is uniquely structured to provide overviews with historical perspectives on the evolution of ideas and on the future of physical biology and biological complexity, from atoms to medicine./a |
biology by the numbers: Cells: Molecules and Mechanisms Eric Wong, 2009 Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology.--Open Textbook Library. |
biology by the numbers: The Molecular Switch Rob Phillips, 2020-09 A signature feature of living organisms is their ability to carry out purposeful actions by taking stock of the world around them. To that end, cells have an arsenal of signaling molecules linked together in signaling pathways, which switch between inactive and active conformations. The Molecular Switch articulates a biophysical perspective on signaling, showing how allostery—a powerful explanation of how molecules function across all biological domains—can be reformulated using equilibrium statistical mechanics, applied to diverse biological systems exhibiting switching behaviors, and successfully unify seemingly unrelated phenomena. Rob Phillips weaves together allostery and statistical mechanics via a series of biological vignettes, each of which showcases an important biological question and accompanying physical analysis. Beginning with the study of ligand-gated ion channels and their role in problems ranging from muscle action to vision, Phillips then undertakes increasingly sophisticated case studies, from bacterial chemotaxis and quorum sensing to hemoglobin and its role in mammalian physiology. He looks at G-protein coupled receptors as well as the role of allosteric molecules in gene regulation. Phillips concludes by surveying problems in biological fidelity and offering a speculative chapter on the relationship between allostery and biological Maxwell demons. Appropriate for graduate students and researchers in biophysics, physics, engineering, biology, and neuroscience, The Molecular Switch presents a unified, quantitative model for describing biological signaling phenomena. |
biology by the numbers: Fundamentals of Systems Biology Markus W. Covert, 2017-10-19 For decades biology has focused on decoding cellular processes one gene at a time, but many of the most pressing biological questions, as well as diseases such as cancer and heart disease, are related to complex systems involving the interaction of hundreds, or even thousands, of gene products and other factors. How do we begin to understand this complexity? Fundamentals of Systems Biology: From Synthetic Circuits to Whole-cell Models introduces students to methods they can use to tackle complex systems head-on, carefully walking them through studies that comprise the foundation and frontier of systems biology. The first section of the book focuses on bringing students quickly up to speed with a variety of modeling methods in the context of a synthetic biological circuit. This innovative approach builds intuition about the strengths and weaknesses of each method and becomes critical in the book’s second half, where much more complicated network models are addressed—including transcriptional, signaling, metabolic, and even integrated multi-network models. The approach makes the work much more accessible to novices (undergraduates, medical students, and biologists new to mathematical modeling) while still having much to offer experienced modelers--whether their interests are microbes, organs, whole organisms, diseases, synthetic biology, or just about any field that investigates living systems. |
biology by the numbers: Water Bears: The Biology of Tardigrades Ralph O. Schill, 2019-02-14 Offering extensive information on tardigrades, this volume begins with a chapter on the history of tardigrades, from the first description by Goeze in 1773, until 1929, when the most comprehensive monographic approach by E. Marcus was published. Tardigrades’ organ systems, including their integument, body cavity, digestive, muscular, nervous and reproductive systems, as well as their overall external morphology, are summarized in the second chapter. Subsequent chapters present the current state of knowledge on tardigrade phylogeny, biogeography, paleontology, cytology and cytogenetics. In addition, the book provides insights into the ecology of tardigrades in marine, freshwater and terrestrial habitats. The reproduction, development and life cycles are summarized and the extraordinary environmental adaptations of encystment and cyclomorphosis, desiccation tolerance, freezing tolerance and radiation tolerance are discussed in detail. Further chapters provide an overview of key approaches in molecular tardigrade studies and describe techniques for sampling and sample processing. The book closes with a list of tardigrade taxa up to a sub-generic level, including the type species of each genus, the numbers of lower taxa in each taxon, and the main environments in which the taxa were found. Given its depth of coverage, the volume offers an invaluable resource for scientists from various disciplines who plan to research tardigrades, and for all others who are interested in these fascinating animals. |
biology by the numbers: Diagnostic Molecular Biology Chang-Hui Shen, 2023-06-29 Diagnostic Molecular Biology, Second Edition describes the fundamentals of molecular biology in a clear, concise manner with each technique explained within its conceptual framework and current applications of clinical laboratory techniques comprehensively covered. This targeted approach covers the principles of molecular biology, including basic knowledge of nucleic acids, proteins and chromosomes; the basic techniques and instrumentations commonly used in the field of molecular biology, including detailed procedures and explanations; and the applications of the principles and techniques currently employed in the clinical laboratory. Topics such as whole exome sequencing, whole genome sequencing, RNA-seq, and ChIP-seq round out the discussion. Fully updated, this new edition adds recent advances in the detection of respiratory virus infections in humans, like influenza, RSV, hAdV, hRV but also corona. This book expands the discussion on NGS application and its role in future precision medicine. - Provides explanations on how techniques are used to diagnosis at the molecular level - Explains how to use information technology to communicate and assess results in the lab - Enhances our understanding of fundamental molecular biology and places techniques in context - Places protocols into context with practical applications - Includes extra chapters on respiratory viruses (Corona) |
biology by the numbers: The Machinery of Life David S. Goodsell, 2013-03-09 A journey into the sub-microscopic world of molecular machines. Readers are first introduced to the types of molecules built by cells: proteins, nucleic acids, lipids, and polysaccharides. Then, in a series of distinctive illustrations, the reader is guided through the interior world of cells, exploring the ways in which molecules work in concert to perform the processes of living. Finally, the author shows us how vitamins, viruses, poisons, and drugs each have their effects on the molecules in our bodies. David Goodsell, author and illustrator, has prepared a fascinating introduction to biochemistry for the non-specialist. His book combines a lucid text with an abundance of drawings and computer graphics that present the world of cells and their components in a truly unique way. |
biology by the numbers: Biology at Work Kingsley R. Browne, 2002-06-06 Does biology help explain why women, on average, earn less money than men? Is there any evolutionary basis for the scarcity of female CEOs in Fortune 500 companies? According to Kingsley Browne, the answer may be yes. Biology at Work brings an evolutionary perspective to bear on issues of women in the workplace: the glass ceiling, the gender gap in pay, sexual harassment, and occupational segregation. While acknowledging the role of discrimination and sexist socialization, Browne suggests that until we factor real biological differences between men and women into the equation, the explanation remains incomplete. Browne looks at behavioral differences between men and women as products of different evolutionary pressures facing them throughout human history. Womens biological investment in their offspring has led them to be on average more nurturing and risk averse, and to value relationships over competition. Men have been biologically rewarded, over human history, for displays of strength and skill, risk taking, and status acquisition. These behavioral differences have numerous workplace consequences. Not surprisingly, sex differences in the drive for status lead to sex differences in the achievement of status. Browne argues that decision makers should recognize that policies based on the assumption of a single androgynous human nature are unlikely to be successful. Simply removing barriers to inequality will not achieve equality, as women and men typically value different things in the workplace and will make different workplace choices based on their different preferences. Rather than simply putting forward the nature side of the debate, Browne suggests that dichotomies such as nature/nurture have impeded our understanding of the origins of human behavior. Through evolutionary biology we can understand not only how natural selection has created predispositions toward certain types of behavior but also how the social environment interacts with these predispositions to produce observed behavioral patterns. |
biology by the numbers: Quickstart Molecular Biology Philip N. Benfey, 2014 This book is an introductory course in molecular biology for mathematicians, physicists, and engineers. It covers the basic features of DNA, proteins, and cells but in the context of recent technological advances, such as next-generation sequencing and high-throughput screens, and their applications. This enables readers to move rapidly from the b |
biology by the numbers: Biology For Dummies Rene Fester Kratz, 2017-03-20 The ultimate guide to understanding biology Have you ever wondered how the food you eat becomes the energy your body needs to keep going? The theory of evolution says that humans and chimps descended from a common ancestor, but does it tell us how and why? We humans are insatiably curious creatures who can't help wondering how things work—starting with our own bodies. Wouldn't it be great to have a single source of quick answers to all our questions about how living things work? Now there is. From molecules to animals, cells to ecosystems, Biology For Dummies answers all your questions about how living things work. Written in plain English and packed with dozens of enlightening illustrations, this reference guide covers the most recent developments and discoveries in evolutionary, reproductive, and ecological biology. It's also complemented with lots of practical, up-to-date examples to bring the information to life. Discover how living things work Think like a biologist and use scientific methods Understand lifecycle processes Whether you're enrolled in a biology class or just want to know more about this fascinating and ever-evolving field of study, Biology For Dummies will help you unlock the mysteries of how life works. |
biology by the numbers: Biology of Disease Nessar Ahmed, Chris Smith, Maureen Dawson, Ed Wood, 2007-01-24 Biology of Disease describes the biology of many of the human disorders and disease that are encountered in a clinical setting. It is designed for first and second year students in biomedical science programs and will also be a highly effective reference for health science professionals as well as being valuable to students beginning medical school. Real cases are used to illustrate the importance of biology in understanding the causes of diseases, as well as in diagnosis and therapy. |
biology by the numbers: Introduction to Cell Biology John K. Young, 2010 This book is intended to be an accessible introduction to the cell biology of mammalian cells for junior or senior undergraduate students who have already had an introduction to biological sciences. This engaging and stimulating text focuses on current controversies in cell biology. To solve these puzzles, the reader will learn how to answer a number of fundamental yet hard-hitting questions in the field. He or she is thus able to approach the subject with the right scientific attitude and build a firm foundation of understanding. Basic features of mammalian cells ? secretion, division, motility, cell-cell interactions ? are described using up-to-date references to the most current scientific literature. The text is well illustrated with clearly understandable diagrams and numerous micrographs of cells. This text will enable non-specialists to acquire a better understanding of current issues in mammalian cell biology. |
biology by the numbers: Molecular and Cell Biology For Dummies Rene Fester Kratz, 2009-05-06 Your hands-on study guide to the inner world of the cell Need to get a handle on molecular and cell biology? This easy-to-understand guide explains the structure and function of the cell and how recombinant DNA technology is changing the face of science and medicine. You discover how fundamental principles and concepts relate to everyday life. Plus, you get plenty of study tips to improve your grades and score higher on exams! Explore the world of the cell take a tour inside the structure and function of cells and see how viruses attack and destroy them Understand the stuff of life (molecules) get up to speed on the structure of atoms, types of bonds, carbohydrates, proteins, DNA, RNA, and lipids Watch as cells function and reproduce see how cells communicate, obtain matter and energy, and copy themselves for growth, repair, and reproduction Make sense of genetics learn how parental cells organize their DNA during sexual reproduction and how scientists can predict inheritance patterns Decode a cell's underlying programming examine how DNA is read by cells, how it determines the traits of organisms, and how it's regulated by the cell Harness the power of DNA discover how scientists use molecular biology to explore genomes and solve current world problems Open the book and find: Easy-to-follow explanations of key topics The life of a cell what it needs to survive and reproduce Why molecules are so vital to cells Rules that govern cell behavior Laws of thermodynamics and cellular work The principles of Mendelian genetics Useful Web sites Important events in the development of DNA technology Ten great ways to improve your biology grade |
biology by the numbers: What is Life? Paul Nurse, 2020-09-03 Life is all around us, abundant and diverse, it is extraordinary. But what does it actually mean to be alive? Nobel prize-winner Paul Nurse has spent his career revealing how living cells work. In this book, he takes up the challenge of defining life in a way that every reader can understand. It is a shared journey of discovery; step by step he illuminates five great ideas that underpin biology. He traces the roots of his own curiosity and knowledge to reveal how science works, both now and in the past. Using his personal experiences, in and out of the lab, he shares with us the challenges, the lucky breaks, and the thrilling eureka moments of discovery.To survive the challenges that face the human race today - from climate change, to pandemics, loss of biodiversity and food security - it is vital that we all understand what life is. |
biology by the numbers: Goodman's Medical Cell Biology Steven R. Goodman, 2020-06-11 Goodman's Medical Cell Biology, Fourth Edition, has been student tested and approved for decades. This updated edition of this essential textbook provides a concise focus on eukaryotic cell biology (with a discussion of the microbiome) as it relates to human and animal disease. This is accomplished by explaining general cell biology principles in the context of organ systems and disease.This new edition is richly illustrated in full color with both descriptive schematic diagrams and laboratory findings obtained in clinical studies. This is a classic reference for moving forward into advanced study. - Includes five new chapters: Mitochondria and Disease, The Cell Biology of the Immune System, Stem Cells and Regenerative Medicine, Omics, Informatics, and Personalized Medicine, and The Microbiome and Disease - Contains over 150 new illustrations, along with revised and updated illustrations - Maintains the same vision as the prior editions, teaching cell biology in a medically relevant manner in a concise, focused textbook |
biology by the numbers: Physics of Biological Membranes Patricia Bassereau, Pierre Sens, 2018-12-30 This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike. |
biology by the numbers: Principles of Biology Lisa Bartee, Walter Shiner, Catherine Creech, 2017 The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research. |
biology by the numbers: The Principles of Biology Herbert Spencer, 1898 |
biology by the numbers: Chemistry for the Biosciences Jonathan Crowe, Tony Bradshaw, 2010-03-25 Education In Chemistry, on the first edition of Chemistry for the Biosciences. -- |
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…