Bioprocess Engineering Basic Concepts

Advertisement



  bioprocess engineering basic concepts: Bioprocess Engineering Michael L. Shuler, Fikret Kargi, 2002 This concise yet comprehensive text introduces the essential concepts of bioprocessing - internal structure and functions of different types of microorganisms, major metabolic pathways, enzymes, microbial genetics, kinetics and stoichiometry of growth and product information - to traditional chemical engineers and those in related disciplines. It explores the engineering principles necessary for bioprocess synthesis and design, and illustrates the application of these principles to modern biotechnology for production of pharmaceuticals and biologics, solution of environmental problems, production of commodities, and medical applications.
  bioprocess engineering basic concepts: Bioprocess Engineering Michael L. Shuler, Fikret Kargi, Matthew DeLisa, 2017 The Leading Introduction to Biochemical and Bioprocess Engineering, Updated with Key Advances in Productivity, Innovation, and Safety Bioprocess Engineering, Third Edition, is an extensive update of the world's leading introductory textbook on biochemical and bioprocess engineering and reflects key advances in productivity, innovation, and safety. The authors review relevant fundamentals of biochemistry, microbiology, and molecular biology, including enzymes, cell functions and growth, major metabolic pathways, alteration of cellular information, and other key topics. They then introduce evolving biological tools for manipulating cell biology more effectively and to reduce costs of bioprocesses. This edition presents major advances in the production of biologicals; highly productive techniques for making heterologous proteins; new commercial applications for both animal and plant cell cultures; key improvements in recombinant DNA microbe engineering; techniques for more consistent authentic post-translational processing of proteins; and other advanced topics. It includes new, improved, or expanded coverage of The role of small RNAs as regulators Transcription, translation, regulation, and differences between prokaryotes and eukaryotes Cell-free processes, metabolic engineering, and protein engineering Biofuels and energy, including coordinated enzyme systems, mixed-inhibition and enzyme-activation kinetics, and two-phase enzymatic reactions Synthetic biology The growing role of genomics and epigenomics Population balances and the Gompetz equation for batch growth and product formation Microreactors for scale-up/scale-down, including rapid scale-up of vaccine production The development of single-use technology in bioprocesses Stem cell technology and utilization Use of microfabrication, nanobiotechnology, and 3D printing techniques Advances in animal and plant cell biotechnology The text makes extensive use of illustrations, examples, and problems, and contains references for further reading as well as a detailed appendix describing traditional bioprocesses.
  bioprocess engineering basic concepts: Bioprocess Engineering Michael L. Shuler, Fikret Kargi, 2014 For Senior-level and graduate courses in Biochemical Engineering, and for programs in Agricultural and Biological Engineering or Bioengineering. This concise yet comprehensive text introduces the essential concepts of bioprocessing-internal structure and functions of different types of microorganisms, major metabolic pathways, enzymes, microbial genetics, kinetics and stoichiometry of growth and product information-to traditional chemical engineers and those in related disciplines. It explores the engineering principles necessary for bioprocess synthesis and design, and illustrates the application of these principles to modern biotechnology for production of pharmaceuticals and biologics, solution of environmental problems, production of commodities, and medical applications.
  bioprocess engineering basic concepts: Bioprocess Engineering : Basic Concepts Michael L. Shuler, 2018
  bioprocess engineering basic concepts: Bioprocess Engineering Principles Pauline M. Doran, 1995-04-03 The emergence and refinement of techniques in molecular biology has changed our perceptions of medicine, agriculture and environmental management. Scientific breakthroughs in gene expression, protein engineering and cell fusion are being translated by a strengthening biotechnology industry into revolutionary new products and services. Many a student has been enticed by the promise of biotechnology and the excitement of being near the cutting edge of scientific advancement. However, graduates trained in molecular biology and cell manipulation soon realise that these techniques are only part of the picture. Reaping the full benefits of biotechnology requires manufacturing capability involving the large-scale processing of biological material. Increasingly, biotechnologists are being employed by companies to work in co-operation with chemical engineers to achieve pragmatic commercial goals. For many years aspects of biochemistry and molecular genetics have been included in chemical engineering curricula, yet there has been little attempt until recently to teach aspects of engineering applicable to process design to biotechnologists.This textbook is the first to present the principles of bioprocess engineering in a way that is accessible to biological scientists. Other texts on bioprocess engineering currently available assume that the reader already has engineering training. On the other hand, chemical engineering textbooks do not consider examples from bioprocessing, and are written almost exclusively with the petroleum and chemical industries in mind. This publication explains process analysis from an engineering point of view, but refers exclusively to the treatment of biological systems. Over 170 problems and worked examples encompass a wide range of applications, including recombinant cells, plant and animal cell cultures, immobilised catalysts as well as traditional fermentation systems.* * First book to present the principles of bioprocess engineering in a way that is accessible to biological scientists* Explains process analysis from an engineering point of view, but uses worked examples relating to biological systems* Comprehensive, single-authored* 170 problems and worked examples encompass a wide range of applications, involving recombinant plant and animal cell cultures, immobilized catalysts, and traditional fermentation systems* 13 chapters, organized according to engineering sub-disciplines, are groupled in four sections - Introduction, Material and Energy Balances, Physical Processes, and Reactions and Reactors* Each chapter includes a set of problems and exercises for the student, key references, and a list of suggestions for further reading* Includes useful appendices, detailing conversion factors, physical and chemical property data, steam tables, mathematical rules, and a list of symbols used* Suitable for course adoption - follows closely curricula used on most bioprocessing and process biotechnology courses at senior undergraduate and graduate levels.
  bioprocess engineering basic concepts: Bioprocess Engineering Shijie Liu, 2012-11-21 Bioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. Bioprocess Kinetics and Systems Engineering first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. - Contains extensive illustrative drawings which make the understanding of the subject easy - Contains worked examples of the various process parameters, their significance and their specific practical use - Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways - Incorporates sustainability concepts into the various bioprocesses
  bioprocess engineering basic concepts: Bioprocess Engineering Michael L. Shuler, Fikret Kargı, 1992
  bioprocess engineering basic concepts: Chemical and Bioprocess Engineering Ricardo Simpson, Sudhir K. Sastry, 2013-12-04 The goal of this textbook is to provide first-year engineering students with a firm grounding in the fundamentals of chemical and bioprocess engineering. However, instead of being a general overview of the two topics, Fundamentals of Chemical and Bioprocess Engineering will identify and focus on specific areas in which attaining a solid competency is desired. This strategy is the direct result of studies showing that broad-based courses at the freshman level often leave students grappling with a lot of material, which results in a low rate of retention. Specifically, strong emphasis will be placed on the topic of material balances, with the intent that students exiting a course based upon this textbook will be significantly higher on Bloom’s Taxonomy (knowledge, comprehension, application, analysis and synthesis, evaluation, creation) relating to material balances. In addition, this book also provides students with a highly developed ability to analyze problems from the material balances perspective, which leaves them with important skills for the future. The textbook consists of numerous exercises and their solutions. Problems are classified by their level of difficulty. Each chapter has references and selected web pages to vividly illustrate each example. In addition, to engage students and increase their comprehension and rate of retention, many examples involve real-world situations.
  bioprocess engineering basic concepts: Fundamentals of Modern Bioprocessing Sarfaraz K. Niazi, Justin L. Brown, 2017-07-27 Biological drug and vaccine manufacturing has quickly become one of the highest-value fields of bioprocess engineering, and many bioprocess engineers are now finding job opportunities that have traditionally gone to chemical engineers. Fundamentals of Modern Bioprocessing addresses this growing demand. Written by experts well-established in the field, this book connects the principles and applications of bioprocessing engineering to healthcare product manufacturing and expands on areas of opportunity for qualified bioprocess engineers and students. The book is divided into two sections: the first half centers on the engineering fundamentals of bioprocessing; while the second half serves as a handbook offering advice and practical applications. Focused on the fundamental principles at the core of this discipline, this work outlines every facet of design, component selection, and regulatory concerns. It discusses the purpose of bioprocessing (to produce products suitable for human use), describes the manufacturing technologies related to bioprocessing, and explores the rapid expansion of bioprocess engineering applications relevant to health care product manufacturing. It also considers the future of bioprocessing—the use of disposable components (which is the fastest growing area in the field of bioprocessing) to replace traditional stainless steel. In addition, this text: Discusses the many types of genetically modified organisms Outlines laboratory techniques Includes the most recent developments Serves as a reference and contains an extensive bibliography Emphasizes biological manufacturing using recombinant processing, which begins with creating a genetically modified organism using recombinant techniques Fundamentals of Modern Bioprocessing outlines both the principles and applications of bioprocessing engineering related to healthcare product manufacturing. It lays out the basic concepts, definitions, methods and applications of bioprocessing. A single volume comprehensive reference developed to meet the needs of students with a bioprocessing background; it can also be used as a source for professionals in the field.
  bioprocess engineering basic concepts: Bioseparations Science and Engineering Roger G. Harrison, Paul W. Todd, Scott R. Rudge, Demetri P. Petrides, 2015-01-27 Designed for undergraduates, graduate students, and industry practitioners, Bioseparations Science and Engineering fills a critical need in the field of bioseparations. Current, comprehensive, and concise, it covers bioseparations unit operations in unprecedented depth. In each of the chapters, the authors use a consistent method of explaining unit operations, starting with a qualitative description noting the significance and general application of the unit operation. They then illustrate the scientific application of the operation, develop the required mathematical theory, and finally, describe the applications of the theory in engineering practice, with an emphasis on design and scaleup. Unique to this text is a chapter dedicated to bioseparations process design and economics, in which a process simular, SuperPro Designer® is used to analyze and evaluate the production of three important biological products. New to this second edition are updated discussions of moment analysis, computer simulation, membrane chromatography, and evaporation, among others, as well as revised problem sets. Unique features include basic information about bioproducts and engineering analysis and a chapter with bioseparations laboratory exercises. Bioseparations Science and Engineering is ideal for students and professionals working in or studying bioseparations, and is the premier text in the field.
  bioprocess engineering basic concepts: Bioprocess Engineering Michael Shuler L.. Fikret Kargi. Matthew DeLisa,
  bioprocess engineering basic concepts: Biochemical Engineering, Second Edition Douglas S. Clark, Harvey W. Blanch, 1997-02-14 This work provides comprehensive coverage of modern biochemical engineering, detailing the basic concepts underlying the behaviour of bioprocesses as well as advances in bioprocess and biochemical engineering science. It includes discussions of topics such as enzyme kinetics and biocatalysis, microbial growth and product formation, bioreactor design, transport in bioreactors, bioproduct recovery and bioprocess economics and design. A solutions manual is available to instructors only.
  bioprocess engineering basic concepts: Putting Biotechnology to Work National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Committee on Bioprocess Engineering, 1992-02-01 The ability of the United States to sustain a dominant global position in biotechnology lies in maintaining its primacy in basic life-science research and developing a strong resource base for bioprocess engineering and bioproduct manufacturing. This book examines the status of bioprocessing and biotechnology in the United States; current bioprocess technology, products, and opportunities; and challenges of the future and what must be done to meet those challenges. It gives recommendations for action to provide suitable incentives to establish a national program in bioprocess-engineering research, development, education, and technology transfer.
  bioprocess engineering basic concepts: BIOCHEMICAL ENGINEERING MUKESH DOBLE, SATHYANARAYANA N. GUMMADI, 2007-01-21 This text is intended to provide students with a solid grounding in basic principles of biochemical engineering. Beginning with a historical review and essential concepts of biochemical engineering in part I, the next three parts are devoted to a comprehensive discussion of various topics in the areas of life sciences, kinetics of biological reactions and engineering principles. Having described the different building blocks of life, microbes, metabolism and bioenergetics, the book proceeds to explain enzymatic kinetics and kinetics of cell growth and product formation. The engineering principles cover transport phenomena in bioprocess systems and various bioreactors, downstream processing and environmental technology. Finally, the book concludes with an introduction to recombinant DNA technology. This textbook is designed for B.Tech. courses in biotechnology, B.Tech. courses in chemical engineering and other allied disciplines, and M.Sc. courses in biotechnology.
  bioprocess engineering basic concepts: Bioprocess Engineering Bjorn K. Lydersen, Nancy A. D'Elia, Kim L. Nelson, 1994-04-18 Divided into four sections, the first and third reflect the fact that there are two types of equipment required in the plant--one in which the actual product is synthesized or processed such as the fermentor, centrifuge and chromatographic columns; and the other that supplies support for the facility or process including air conditioning, water and waste systems. Part two describes such components as pumps, filters and valves not limited to a certain type of equipment. Lastly, it covers planning and designing the entire facility along with requirements for containment and validation of the process.
  bioprocess engineering basic concepts: Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts Claire Komives, Weichang Zhou, 2018-12-27 Written for industrial and academic researchers and development scientists in the life sciences industry, Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts is a guide to the tools, approaches, and useful developments in bioprocessing. This important guide: • Summarizes state-of-the-art bioprocessing methods and reviews applications in life science industries • Includes illustrative case studies that review six milestone bio-products • Discuses a wide selection of host strain types and disruptive bioprocess technologies
  bioprocess engineering basic concepts: An Introduction To Metabolic And Cellular Engineering Miguel Antonio Aon, Sonia Del Carmen Cortassa, Alberto Alvaro Iglesias, David Lloyd, 2002-03-07 Metabolic and cellular engineering, as presented in this book, is a powerful alliance of two technologies: genetics-molecular biology and fermentation technology. Both are driven by continuous refinement of the basic understanding of metabolism, physiology and cellular biology (growth, division, differentiation), as well as the development of new mathematical modeling techniques. The authors' approach is original in that it integrates several disciplines into a coordinated scheme, i.e. microbial physiology and bioenergetics, thermodynamics and enzyme kinetics, biomathematics and biochemistry, genetics and molecular biology. Thus, it is called a transdisciplinary approach (TDA). The TDA provides the basis for the rational design of microorganisms or cells in a way that has rarely been utilized to its full extent.
  bioprocess engineering basic concepts: Cell Culture Bioprocess Engineering, Second Edition Wei-Shou Hu, 2020-03-06 This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.
  bioprocess engineering basic concepts: Bioprocess Engineering Michael L Shuler, Fikret Kargi, 2001-11-01
  bioprocess engineering basic concepts: Biochemical Engineering Shigeo Katoh, Jun-ichi Horiuchi, Fumitake Yoshida, 2015-02-02 Completely revised, updated, and enlarged, this second edition now contains a subchapter on biorecognition assays, plus a chapter on bioprocess control added by the new co-author Jun-ichi Horiuchi, who is one of the leading experts in the field. The central theme of the textbook remains the application of chemical engineering principles to biological processes in general, demonstrating how a chemical engineer would address and solve problems. To create a logical and clear structure, the book is divided into three parts. The first deals with the basic concepts and principles of chemical engineering and can be read by those students with no prior knowledge of chemical engineering. The second part focuses on process aspects, such as heat and mass transfer, bioreactors, and separation methods. Finally, the third section describes practical aspects, including medical device production, downstream operations, and fermenter engineering. More than 40 exemplary solved exercises facilitate understanding of the complex engineering background, while self-study is supported by the inclusion of over 80 exercises at the end of each chapter, which are supplemented by the corresponding solutions. An excellent, comprehensive introduction to the principles of biochemical engineering.
  bioprocess engineering basic concepts: Solutions Manual Pauline M. Doran, 1997
  bioprocess engineering basic concepts: Bioprocess Engineering Kim Gail Clarke, 2013-10-31 Biotechnology is an expansive field incorporating expertise in both the life science and engineering disciplines. In biotechnology, the scientist is concerned with developing the most favourable biocatalysts, while the engineer is directed towards process performance, defining conditions and strategies that will maximize the production potential of the biocatalyst. Increasingly, the synergistic effect of the contributions of engineering and life sciences is recognised as key to the translation of new bioproducts from the laboratory bench to commercial bioprocess. Fundamental to the successful realization of the bioprocess is a need for process engineers and life scientists competent in evaluating biological systems from a cross-disciplinary viewpoint. Bioprocess engineering aims to generate core competencies through an understanding of the complementary biotechnology disciplines and their interdependence, and an appreciation of the challenges associated with the application of engineering principles in a life science context. Initial chapters focus on the microbiology, biochemistry and molecular biology that underpin biocatalyst potential for product accumulation. The following chapters develop kinetic and mass transfer principles that quantify optimum process performance and scale up. The text is wide in scope, relating to bioprocesses using bacterial, fungal and enzymic biocatalysts, batch, fed-batch and continuous strategies and free and immobilised configurations. - Details the application of chemical engineering principles for the development, design, operation and scale up of bioprocesses - Details the knowledge in microbiology, biochemistry and molecular biology relevant to bioprocess design, operation and scale up - Discusses the significance of these life sciences in defining optimum bioprocess performance
  bioprocess engineering basic concepts: Chemical and Biochemical Engineering Ali Pourhashemi, Gennady E. Zaikov, A. K. Haghi, 2015-01-28 This book facilitates the study of problematic chemicals in such applications as chemical fate modeling, chemical process design, and experimental design. This volume provides comprehensive coverage of modern biochemical engineering, detailing the basic concepts underlying the behavior of bioprocesses as well as advances in bioprocess and biochemic
  bioprocess engineering basic concepts: Bioseparations Downstream Processing for Biotechnology Paul A. Belter, E. L. Cussler, Wei-Shou Hu, 1994-10-25 Offers a concise introduction to the separation and purification of biochemicals. Bridges two scientific cultures, providing an introduction to bioseparations for scientists with no background in engineering and for engineers with little grounding in biology. The authors supplement the ideas by simple worked examples, making the techniques of bioseparations easy to learn. Discusses removal of insolubles, product isolation, purification and polishing.
  bioprocess engineering basic concepts: Control in Bioprocessing Pablo A. López Pérez, Ricardo Aguilar López, Ricardo Femat, 2020-03-03 Closes the gap between bioscience and mathematics-based process engineering This book presents the most commonly employed approaches in the control of bioprocesses. It discusses the role that control theory plays in understanding the mechanisms of cellular and metabolic processes, and presents key results in various fields such as dynamic modeling, dynamic properties of bioprocess models, software sensors designed for the online estimation of parameters and state variables, and control and supervision of bioprocesses Control in Bioengineering and Bioprocessing: Modeling, Estimation and the Use of Sensors is divided into three sections. Part I, Mathematical preliminaries and overview of the control and monitoring of bioprocess, provides a general overview of the control and monitoring of bioprocesses, and introduces the mathematical framework necessary for the analysis and characterization of bioprocess dynamics. Part II, Observability and control concepts, presents the observability concepts which form the basis of design online estimation algorithms (software sensor) for bioprocesses, and reviews controllability of these concepts, including automatic feedback control systems. Part III, Software sensors and observer-based control schemes for bioprocesses, features six application cases including dynamic behavior of 3-dimensional continuous bioreactors; observability analysis applied to 2D and 3D bioreactors with inhibitory and non-inhibitory models; and regulation of a continuously stirred bioreactor via modeling error compensation. Applicable across all areas of bioprocess engineering, including food and beverages, biofuels and renewable energy, pharmaceuticals and nutraceuticals, fermentation systems, product separation technologies, wastewater and solid-waste treatment technology, and bioremediation Provides a clear explanation of the mass-balance–based mathematical modelling of bioprocesses and the main tools for its dynamic analysis Offers industry-based applications on: myco-diesel for implementing quality of observability; developing a virtual sensor based on the Just-In-Time Model to monitor biological control systems; and virtual sensor design for state estimation in a photocatalytic bioreactor for hydrogen production Control in Bioengineering and Bioprocessing is intended as a foundational text for graduate level students in bioengineering, as well as a reference text for researchers, engineers, and other practitioners interested in the field of estimation and control of bioprocesses.
  bioprocess engineering basic concepts: Neural Networks in Bioprocessing and Chemical Engineering D. R. Baughman, Y. A. Liu, 1995 Neural networks have received a great deal of attention among scientists and engineers. In chemical engineering, neural computing has moved from pioneering projects toward mainstream industrial applications. This book introduces the fundamental principles of neural computing, and is the first to focus on its practical applications in bioprocessing and chemical engineering. Examples, problems, and 10 detailed case studies demonstrate how to develop, train, and apply neural networks. A disk containing input data files for all illustrative examples, case studies, and practice problems provides the opportunity for hands-on experience. An important goal of the book is to help the student or practitioner learn and implement neural networks quickly and inexpensively using commercially available, PC-based software tools. Detailed network specifications and training procedures are included for all neural network examples discussed in the book.
  bioprocess engineering basic concepts: Basic Concepts in Turbomachinery ,
  bioprocess engineering basic concepts: Bioreaction Engineering Principles Jens Nielsen, John Villadsen, Gunnar Lidén, 2012-12-06 This is the second edition of the text Bioreaction Engineering Principles by Jens Nielsen and John Villadsen, originally published in 1994 by Plenum Press (now part of Kluwer). Time runs fast in Biotechnology, and when Kluwer Plenum stopped reprinting the first edition and asked us to make a second, revised edition we happily accepted. A text on bioreactions written in the early 1990's will not reflect the enormous development of experimental as well as theoretical aspects of cellular reactions during the past decade. In the preface to the first edition we admitted to be newcomers in the field. One of us (JV) has had 10 more years of job training in biotechnology, and the younger author (IN) has now received international recognition for his work with the hottest topics of modem biotechnology. Furthermore we are happy to have induced Gunnar Liden, professor of chemical reaction engineering at our sister university in Lund, Sweden to join us as co-author of the second edition. His contribution, especially on the chemical engineering aspects of real bioreactors has been of the greatest value. Chapter 8 of the present edition is largely unchanged from the first edition. We wish to thank professor Martin Hjortso from LSU for his substantial help with this chapter.
  bioprocess engineering basic concepts: Bioprocessing for Value-Added Products from Renewable Resources Shang-Tian Yang, 2011-08-11 Bioprocessing for Value-Added Products from Renewable Resources provides a timely review of new and unconventional techniques for manufacturing high-value products based on simple biological material. The book discusses the principles underpinning modern industrial biotechnology and describes a unique collection of novel bioprocesses for a sustainable future. This book begins in a very structured way. It first looks at the modern technologies that form the basis for creating a bio-based industry before describing the various organisms that are suitable for bioprocessing - from bacteria to algae - as well as their unique characteristics. This is followed by a discussion of novel, experimental bioprocesses, such as the production of medicinal chemicals, the production of chiral compounds and the design of biofuel cells. The book concludes with examples where biological, renewable resources become an important feedstock for large-scale industrial production. This book is suitable for researchers, practitioners, students, and consultants in the bioprocess and biotechnology fields, and for others who are interested in biotechnology, engineering, industrial microbiology and chemical engineering. ·Reviews the principles underpinning modern industrial biotechnology ·Provides a unique collection of novel bioprocesses for a sustainable future ·Gives examples of economical use of renewable resources as feedstocks ·Suitable for both non-experts and experts in the bioproduct industry
  bioprocess engineering basic concepts: Pharmaceutical Process Engineering Anthony J. Hickey, David Ganderton, 2016-03-09 With step-by-step methods of drug production and knowledge of major unit operations and key concepts of pharmaceutical engineering, this guide will help to improve communication among the varied professionals working in the pharmaceutical industry. Key features: REVISION OF A BESTSELLER - Updates include recent advances in the field to keep pharmac
  bioprocess engineering basic concepts: Food and Bio Process Engineering Heinz-Gerhard Kessler, 2002
  bioprocess engineering basic concepts: BIOPROCESS ENGINEERING MICHAEL. KARGI SHULER (FIKRET. DELISA, MATTHEW.), 2020
  bioprocess engineering basic concepts: Analysis, Synthesis, and Design of Chemical Processes Richard Turton, Joseph A. Shaeiwitz, Debangsu Bhattacharyya, Wallace B. Whiting, 2018-06-15 The Leading Integrated Chemical Process Design Guide: With Extensive Coverage of Equipment Design and Other Key Topics More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Fifth Edition, presents design as a creative process that integrates the big-picture and small details, and knows which to stress when and why. Realistic from start to finish, it moves readers beyond classroom exercises into open-ended, real-world problem solving. The authors introduce up-to-date, integrated techniques ranging from finance to operations, and new plant design to existing process optimization. The fifth edition includes updated safety and ethics resources and economic factors indices, as well as an extensive, new section focused on process equipment design and performance, covering equipment design for common unit operations, such as fluid flow, heat transfer, separations, reactors, and more. Conceptualization and analysis: process diagrams, configurations, batch processing, product design, and analyzing existing processes Economic analysis: estimating fixed capital investment and manufacturing costs, measuring process profitability, and more Synthesis and optimization: process simulation, thermodynamic models, separation operations, heat integration, steady-state and dynamic process simulators, and process regulation Chemical equipment design and performance: a full section of expanded and revamped coverage of designing process equipment and evaluating the performance of current equipment Advanced steady-state simulation: goals, models, solution strategies, and sensitivity and optimization results Dynamic simulation: goals, development, solution methods, algorithms, and solvers Societal impacts: ethics, professionalism, health, safety, environmental issues, and green engineering Interpersonal and communication skills: working in teams, communicating effectively, and writing better reports This text draws on a combined 55 years of innovative instruction at West Virginia University (WVU) and the University of Nevada, Reno. It includes suggested curricula for one- and two-semester design courses, case studies, projects, equipment cost data, and extensive preliminary design information for jump-starting more detailed analyses.
  bioprocess engineering basic concepts: Protein Chromatography Giorgio Carta, Alois Jungbauer, 2020-06-02 An all-in-one practical guide on how to efficiently use chromatographic separation methods Based on a training course that teaches the theoretical as well as practical aspects of protein bioseparation to bioprocess professionals, this fully updated and revised new edition offers comprehensive coverage of continuous chromatography and provides readers with many relevant examples from the biopharmaceutical industry. Divided into two large parts, Protein Chromatography: Process Development and Scale-Up, Second Edition presents all the necessary knowledge for effective process development in chromatographic bioseparation, both on small and large scale. The first part introduces chromatographic theory, including process design principles, to enable the reader to rationalize the set-up of a bioseparation process. The second part illustrates by way of case studies and sample protocols how the theory learned in the first part may be applied to real-life problems. Chapters look at: Downstream Processing of Biotechnology Products; Chromatography Media; Laboratory and Process Columns and Equipment; Adsorption Equilibrium; Rate Processes; and Dynamics of Chromatography Columns. The book closes with chapters on: Effects of Dispersion and Rate Processes on Column Performance; Gradient Elution Chromatography; and Chromatographic Column Design and Optimization. -Presents the most pertinent examples from the biopharmaceutical industry, including monoclonal antibodies -Provides an overview of the field along with design tools and examples illustrating the advantages of continuous processing in biopharmaceutical productions -Focuses on process development and large-scale bioseparation tasks, making it an ideal guide for the professional bioengineer in the biotech and pharma industries -Offers field-tested information based on decades of training courses for biotech and chemical engineers in Europe and the U.S. Protein Chromatography: Process Development and Scale-Up, Second Edition will appeal to biotechnologists, analytical chemists, chromatographers, chemical engineers, pharmaceutical industry, biotechnological industry, and biochemists.
  bioprocess engineering basic concepts: Kern's Process Heat Transfer Ann Marie Flynn, Toshihiro Akashige, Louis Theodore, 2019-05-16 This edition ensures the legacy of the original 1950 classic, Process Heat Transfer, by Donald Q. Kern that by many is held to be the gold standard. This second edition book is divided into three parts: Fundamental Principles; Heat Exchangers; and Other Heat Transfer Equipment/ Considerations. Part I provides a series of chapters concerned with introductory topics that are required when solving heat transfer problems. This part of the book deals with topics such as steady-state heat conduction, unsteady-state conduction, forced convection, free convection, and radiation. Part II is considered by the authors to be the meat of the book, and the primary reason for undertaking this project. Other than minor updates, Part II remains relatively unchanged from the first edition. Notably, it includes Kern's original design methodology for double-pipe, shell-and-tube, and extended surface heat exchangers. Part II also includes boiling and condensation, boilers, cooling towers and quenchers, as well as newly designed open-ended problems. Part III of the book examines other related topics of interest, including refrigeration and cryogenics, batch and unsteady-state processes, health & safety, and the accompanying topic of risk. In addition, this part also examines the impact of entropy calculations on exchanger design. A 36-page Appendix includes 12 tables of properties, layouts and design factors. WHAT IS NEW IN THE 2ND EDITION Changes that are addressed in the 2nd edition so that Kern's original work continues to remain relevant in 21st century process engineering include: Updated Heat Exchanger Design Increased Number of Illustrative Examples Energy Conservation/ Entropy Considerations Environmental Considerations Health & Safety Risk Assessment Refrigeration and Cryogenics
  bioprocess engineering basic concepts: Advances in Bioprocess Engineering Enrique Galindo, Octavio R. Ramírez, 2013-04-17 Bioprocess engineering has played a key role in biotechnology, contributing towards bringing the exciting new discoveries of molecular and cellular biology into the applied sphere, and in maintaining established processes, some centuries-old, efficient and essential for today's industry. Novel developments and new application areas of biotechnology, along with increasing constraints in costs, product quality, regulatory and environmental considerations, have placed the biochemical engineer at the forefront of new challenges. This second volume of Advances in Bioprocess Engineering reflects precisely the multidisciplinary nature of the field, where new and traditional areas of application are nurtured by a better understanding of fundamental phenomena and by the utilization of novel techniques and methodologies. The chapters in this book were written by the invited speakers to the 2nd International Symposium on Bioprocess Engineering, Mazatlan, Mexico, September 1997.
  bioprocess engineering basic concepts: Process Control Fundamentals Raghunathan Rengaswamy, Babji Srinivasan, Nirav Pravinbhai Bhatt, 2020-05-31 The field of process control has evolved gradually over the years, with emphasis on key aspects including designing and tuning of controllers. This textbook covers fundamental concepts of basic and multivariable process control, and important monitoring and diagnosis techniques. It discusses topics including state-space models, Laplace transform to convert state-space models to transfer function models, linearity and linearization, inversion formulae, conversion of output to time domain, stability analysis through partial fraction expansion, and stability analysis using Routh table and Nyquits plots. The text also covers basics of relative gain array, multivariable controller design and model predictive control. The text comprehensively covers minimum variable controller (MVC) and minimum variance benchmark with the help of solved examples for better understanding. Fundamentals of diagnosis of control loop problems are also explained and explanations are bolstered through solved examples. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understanding. The textbook is primarily written for senior undergraduate and graduate students in the field of chemical engineering and biochemical engineering for a course on process control. The textbook will be accompanied by teaching resource such a collection of slides for the course material and a includsolution manual for the instructors.
  bioprocess engineering basic concepts: Bioprocess Engineering Principles Pauline M. Doran, 2013 The emergence and refinement of techniques in molecular biology has changed our perceptions of medicine, agriculture, and environmental management. This textbook presents the principles of bioprocess engineering in a way that is accessible to biological scientists.
  bioprocess engineering basic concepts: Biological Reaction Engineering Irving J. Dunn, Elmar Heinzle, Jiri E. Prenosil, John Ingham, 1992-11-13 This book is the admirable result of ten years' experience in organizing and teaching courses in biological reaction engineering. It gives engineers and scientists the information they need to analyze the behavior of complex biological reactors using mathematical equations and a dynamic simulation computer language. Part I treats the fundamentals of modelling (mass balance equations, involving reaction kinetics and mass-transfer rates), making them readily understandable to those new in the field. Part II gives 45 example problems, complete with models and programs. This book is the first of its kind to include a diskette with a commercial simulation language. The diskette can be run on any DOS personal computer. Users will appreciate how the simulation runs can be interrupted for interactive parameter changes and instructive plotting.
  bioprocess engineering basic concepts: Fundamentals of Chemical Engineering Thermodynamics Themis Matsoukas, 2012-10-02 The Clear, Well-Organized Introduction to Thermodynamics Theory and Calculations for All Chemical Engineering Undergraduate Students This text is designed to make thermodynamics far easier for undergraduate chemical engineering students to learn, and to help them perform thermodynamic calculations with confidence. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas focuses on “why” as well as “how.” He offers extensive imagery to help students conceptualize the equations, illuminating thermodynamics with more than 100 figures, as well as 190 examples from within and beyond chemical engineering. Part I clearly introduces the laws of thermodynamics with applications to pure fluids. Part II extends thermodynamics to mixtures, emphasizing phase and chemical equilibrium. Throughout, Matsoukas focuses on topics that link tightly to other key areas of undergraduate chemical engineering, including separations, reactions, and capstone design. More than 300 end-of-chapter problems range from basic calculations to realistic environmental applications; these can be solved with any leading mathematical software. Coverage includes • Pure fluids, PVT behavior, and basic calculations of enthalpy and entropy • Fundamental relationships and the calculation of properties from equations of state • Thermodynamic analysis of chemical processes • Phase diagrams of binary and simple ternary systems • Thermodynamics of mixtures using equations of state • Ideal and nonideal solutions • Partial miscibility, solubility of gases and solids, osmotic processes • Reaction equilibrium with applications to single and multiphase reactions
BioProcess International
BioProcess International magazine covers the whole bioprocessing industry: biotherapeutic process and product development and biomanufacturing.

BioProcess Insider recent news - BioProcess International
Be the catalyst for change and experience the future of bioprocessing. Slash biologics development costs, supercharge your pipeline, and deliver transformative therapies with …

BioProcess International April 2025: Product Development Issue …
That broad spectral range, combined with high power density, enables accurate chemical analysis across a wide, dynamic range for all bioprocess analytes. A key advantage of HPTLS is its low …

Thermo Fisher expands India footprint with bioprocess design center
Nov 7, 2024 · The bioprocess vendor has signed a Memorandum of Understanding (MoU) with the Government of Telangana, a state in India, for the facility, which is expected to open early …

BioProcess International May 2025: Advanced Therapies Issue …
Depending on the types of PTM performed, a given protein’s net charge can be either acidic or basic. Cell-culture nutrient composition and other bioprocess-related parameters can cause …

Bioreactor Design and Bioprocess Controls for Industrialized Cell ...
Specific bioreactor designs and bioprocess controls may be needed for expansion of proliferating cells and other culture specifications for differentiation of stem cells into a mature cell …

BioProcess International Europe 2025
May 12, 2025 · event listing for BPI Europe 2025. Be the catalyst for change and experience the future of bioprocessing. Slash biologics development costs, supercharge your pipeline, and …

BioProcess International Issue Archive
BioProcess International Each issue provides the global industrial biotherapeutic community with up-to-date, peer-reviewed information detailing the business, politics, ethics, applications, …

FDA cites contamination concerns in warning to Sanofi MA plant …
Jan 22, 2025 · Journalist covering the international biopharmaceutical manufacturing and processing industries. Founder and editor of Bioprocess Insider, a daily news offshoot of …

BioProcess International March 2025 Issue 2025 - March
He has trained about 90 PhD students in bioprocess engineering and has written hundreds of papers, with chromatography being a favorite topic. “I stumbled into this field,” Jungbauer told …

BioProcess International
BioProcess International magazine covers the whole bioprocessing industry: biotherapeutic process and product development and biomanufacturing.

BioProcess Insider recent news - BioProcess International
Be the catalyst for change and experience the future of bioprocessing. Slash biologics development costs, supercharge your pipeline, and deliver transformative therapies with …

BioProcess International April 2025: Product Development Issue …
That broad spectral range, combined with high power density, enables accurate chemical analysis across a wide, dynamic range for all bioprocess analytes. A key advantage of HPTLS is its low …

Thermo Fisher expands India footprint with bioprocess design center
Nov 7, 2024 · The bioprocess vendor has signed a Memorandum of Understanding (MoU) with the Government of Telangana, a state in India, for the facility, which is expected to open early …

BioProcess International May 2025: Advanced Therapies Issue …
Depending on the types of PTM performed, a given protein’s net charge can be either acidic or basic. Cell-culture nutrient composition and other bioprocess-related parameters can cause …

Bioreactor Design and Bioprocess Controls for Industrialized Cell ...
Specific bioreactor designs and bioprocess controls may be needed for expansion of proliferating cells and other culture specifications for differentiation of stem cells into a mature cell …

BioProcess International Europe 2025
May 12, 2025 · event listing for BPI Europe 2025. Be the catalyst for change and experience the future of bioprocessing. Slash biologics development costs, supercharge your pipeline, and …

BioProcess International Issue Archive
BioProcess International Each issue provides the global industrial biotherapeutic community with up-to-date, peer-reviewed information detailing the business, politics, ethics, applications, …

FDA cites contamination concerns in warning to Sanofi MA plant …
Jan 22, 2025 · Journalist covering the international biopharmaceutical manufacturing and processing industries. Founder and editor of Bioprocess Insider, a daily news offshoot of …

BioProcess International March 2025 Issue 2025 - March
He has trained about 90 PhD students in bioprocess engineering and has written hundreds of papers, with chromatography being a favorite topic. “I stumbled into this field,” Jungbauer told …