Advertisement
biology vs biomedical sciences: Research in Medical and Biological Sciences Petter Laake, Haakon Breien Benestad, Bjorn R. Olsen, 2015-06-05 Research in Medical and Biological Sciences covers the wide range of topics that a researcher must be familiar with in order to become a successful biomedical scientist. Perfect for aspiring as well as practicing professionals in the medical and biological sciences, this publication discusses a broad range of topics that are common yet not traditionally considered part of formal curricula, including philosophy of science, ethics, statistics, and grant applications. The information presented in this book also facilitates communication across conventional disciplinary boundaries, in line with the increasingly multidisciplinary nature of modern research projects. - Covers the breadth of topics that a researcher must understand in order to be a successful experimental scientist - Provides a broad scientific perspective that is perfect for students with various professional backgrounds - Contains easily accessible, concise material about diverse methods - Includes extensive online resources such as further reading suggestions, data files, statistical tables, and the StaTable application package - Emphasizes the ethics and statistics of medical and biological sciences |
biology vs biomedical sciences: Advancing the Nation's Health Needs National Research Council, Policy and Global Affairs, Board on Higher Education and Workforce, Committee for Monitoring the Nation's Changing Needs for Biomedical, Behavioral, and Clinical Personnel, 2005-08-13 This report is the twelfth assessment of the National Institutes of Health National Research Service Awards program. The research training needs of the country in basic biomedical, clinical, and behavioral and social sciences are considered. Also included are the training needs of oral health, nursing, and health services research. The report has been broadly constructed to take into account the rapidly evolving national and international health care needs. The past and present are analyzed, and predictions with regard to future needs are presented. |
biology vs biomedical sciences: The Funding of Young Investigators in the Biological and Biomedical Sciences National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Committee on the Funding of Young Investigators in the Biological and Biomedical Sciences, 1994-02-01 This book brings to light trends in the support of life scientists beginning their professional careers. In 1985, 3,040 scientists under the age of 36 applied for individual investigator (R01) grants from the National Institutes of Health, and 1,002 received awards, for a success rate of 33%. In 1993, 1,389 scientists under the age of 36 applied for R01 grants and 302 received awards, for a success rate of 21.7%. Even when R23/R29 grant awards (both intended for new investigators) are added to the R01 awards, the number of R01 plus R23 awards made in 1985 was 1,308, and in 1993, the number of R01 plus R29 was 527. These recent trends in the funding of young biomedical research scientists, and the fact that young nonbiomedical scientists historically have had a smaller base of support to draw upon when beginning their careers, raises serious questions about the future of life science research. It is the purpose of this volume to present data about the trends and examine their implications. |
biology vs biomedical sciences: Biochemistry and Cell Biology of Ageing: Part I Biomedical Science J. Robin Harris, Viktor I. Korolchuk, 2019-02-18 This new volume in the Subcellular Biochemistry series will focus on the biochemistry and cellular biology of aging processes in human cells. The chapters will be written by experts in their respective fields and will focus on a number of the current key areas of research in subcellular aging research. Main topics for discussion are mitochondrial aging, protein homeostasis and aging and the genetic processes that are involved in aging. There will also be chapters that are dedicated to the study of the roles of a variety of vitamins and minerals on aging and a number of other external factors (microbiological, ROS, inflammation, nutrition). This book will provide the reader with a state of the art overview of the subcellular aging field. This book will be published in cooperation with a second volume that will discuss the translation of the cell biology of aging to a more clinical setting and it is hoped that the combination of these two volumes will bring a deeper understanding of the links between the cell and the body during aging. |
biology vs biomedical sciences: Career Options for Biomedical Scientists Kaaren A. Janssen, Richard Sever, 2015 Most people who do a PhD and postdoctoral work in the biomedical sciences do not end up as principal investigators in a research lab. Despite this, graduate courses and postdoctoral fellowships tend to focus almost exclusively on training for bench science rather than other career paths. This book plugs the gap by providing information about a wide variety of different careers that individuals with a PhD in the life sciences can pursue. Covering everything from science writing and grant administration to patent law and management consultancy, the book includes firsthand accounts of what the jobs are like, the skills required, and advice on how to get a foot in the door. It will be a valuable resource for all life scientists considering their career options and laboratory heads who want to give career advice to their students and postdocs. |
biology vs biomedical sciences: Biology of Disease Nessar Ahmed, Chris Smith, Maureen Dawson, Ed Wood, 2007-01-24 Biology of Disease describes the biology of many of the human disorders and disease that are encountered in a clinical setting. It is designed for first and second year students in biomedical science programs and will also be a highly effective reference for health science professionals as well as being valuable to students beginning medical school. Real cases are used to illustrate the importance of biology in understanding the causes of diseases, as well as in diagnosis and therapy. |
biology vs biomedical sciences: Biomedical Science Practice Nessar Ahmed, Hedley Glencross, Qiuyu Wang, 2016 Biomedical scientists are the foundation of modern healthcare, from cancer screening to diagnosing HIV, from blood transfusion for surgery to food poisoning and infection control. Without biomedical scientists, the diagnosis of disease, the evaluation of the effectiveness of treatment, and research into the causes and cures of disease would not be possible. The Fundamentals of Biomedical Science series has been written to reflect the challenges of practicing biomedical science today. It draws together essential basic science with insights into laboratory practice to show how an understanding of the biology of disease is coupled to the analytical approaches that lead to diagnosis. Assuming only a minimum of prior knowledge, the series reviews the full range of disciplines to which a Biomedical Scientist may be exposed - from microbiology to cytopathology to transfusion science. A core text in the Fundamentals of Biomedical Science series, Biomedical Science Practice gives a comprehensive overview of the key laboratory techniques and professional skills that students need to master. The text is supported throughout with engaging clinical case studies, written to emphasize the link between theory and practice, providing a strong foundation for beginning biomedical science students. |
biology vs biomedical sciences: Oxford Handbook of Medical Sciences Robert Wilkins, Simon Cross, Ian Megson, David Meredith, 2011-09-22 Written by biomedical scientists and clinicians, with the purpose of disseminating the fundamental scientific principles that underpin medicine, this new edition of the Oxford Handbook of Medical Sciences provides a clear, easily digestible account of basic cell physiology and biochemistry. It also includes an investigation of the traditional pillars of medicine (anatomy, physiology, biochemistry, pathology and pharmacology) integrated in the context of each of the major systems relevant to the human body. Cross-referenced to the Oxford Handbook of Clinical Medicine, and thoroughly illustrated, it is the ideal introduction to the medical sciences for medical students and biomedical scientists, as well as a valuable refresher for junior doctors. |
biology vs biomedical sciences: Biomedical Science Ian Lyons, 2011-11-16 This brand new Lecture Notes title provides the core biomedical science study and revision material that medical students need to know. Matching the common systems-based approach taken by the majority of medical schools, it provides concise, student-led content that is rooted in clinical relevance. The book is filled with learning features such as key definitions and key conditions, and is cross-referenced to develop interdisciplinary awareness. Although designed predominantly for medical students, this new Lecture Notes book is also useful for students of dentistry, pharmacology and nursing. Biomedical Science Lecture Notes provides: A brand new title in the award-winning Lecture Notes series A concise, full colour study and revision guide A 'one-stop-shop' for the biomedical sciences Clinical relevance and cross referencing to develop interdisciplinary skills Learning features such as key definitions to aid understanding |
biology vs biomedical sciences: Advances in Synthetic Biology Vijai Singh, 2020-04-13 This book addresses the design of emerging conceptual tools, technologies and systems including novel synthetic parts, devices, circuits, oscillators, biological gates, and small regulatory RNAs (riboregulators and riboswitches), which serve as versatile control elements for regulating gene expression. Synthetic biology, a rapidly growing field that involves the application of engineering principles in biology, is now being used to develop novel systems for a wide range of applications including diagnostics, cell reprogramming, therapeutics, enzymes, vaccines, biomaterials, biofuels, fine chemicals and many more. The book subsequently summarizes recent developments in technologies for assembling synthetic genomes, minimal genomes, synthetic biology toolboxes, CRISPR-Cas systems, cell-free protein synthesis systems and microfluidics. Accordingly, it offers a valuable resource not only for beginners in synthetic biology, but also for researchers, students, scientists, clinicians, stakeholders and policymakers interested in the potential held by synthetic biology. |
biology vs biomedical sciences: Biological Science Jon (Emeritus Professor of Bioscience Education Scott, Emeritus Professor of Bioscience Education University of Leicester), Jon Scott, Mark (Associate Professor in the Department of Genetics and Genome Biology Goodwin, Associate Professor in the Department of Genetics and Genome Biology University of Leicester), Gus Cameron, Anne Goodenough, Gus (Reader in Biomedical Science Education Cameron, School of Biochemistry Reader in Biomedical Science Education School of Biochemistry University of Bristol), Anne (Professor in Applied Ecology Goodenough, Professor in Applied Ecology University of Gloucestershire), Dawn Hawkins, Dawn (Reader Hawkins, Faculty of Science and Engineering Reader Faculty of Science and Engineering Anglia Ruskin University), Jenny Koenig, Jenny (Assistant Professor in Pharmacology Koenig, Therapeutics and Toxicology Faculty of Medicine & Health Sciences Assistant Professor in Pharmacology Therapeutics and Toxicology Faculty of Medicine & Health Sciences University of Nottingham), Despo (Reader of Medical Education Papachristodoulou, Reader of Medical Education King's College London), Alison (Reader in Bioscience Education Snape, Reader in Bioscience Education King's College London), Kay (Professor of Science Communication Yeoman, School of Biological Sciences Professor of Science Communication School of Biological Sciences University of East Anglia), 2022-06-24 Biological Science: Exploring the Science of Life responds to the key needs of lecturers and their students by placing a clear central narrative, carefully-structured active learning, and confidence with quantitative concepts and scientific enquiry central to its approach.Written by a team of dedicated and passionate academics, and shaped by feedback from over 55 institutions, its straightforward narrative, reinforced by key concept overview videos for every chapter, communicate key ideas clearly: the right information is provided at the right time, and at the rightdepth.Its pause and think features, self-check quizzes, and graded end of chapter questions, augmented by flashcards of key terms, directly support active learning. The combination of narrative text and learning features promote a rich, active learning experience: read, watch, and do.Its combination of Quantitative Toolkits, Scientific Process panels, and the Life and its Exploration chapters provide more insight and support than any other general biology text; they prepare students to engage with this quantitative and experimental discipline with confidence, and set them on apath for success throughout their future studies.With coverage that spans the full scale of biological science - from molecule to ecosystem - and with an approach that fully supports flexible, self-paced learning, Biological Science: Exploring the Science of Life will set you on a path towards a deeper understanding of the key concepts inbiology, and a greater appreciation of biology as a dynamic experimental science.Digital formats and resourcesBiological Science: Exploring the Science of Life is available for students and institutions to purchase in a variety of formats.The enhanced ebook is enriched with features that offer extra learning support: www.oxfordtextbooks.co.uk/ebooks- Key concepts videos support students from the start of every chapter and as they make their way through every Module.- Self-check questions at the end of each chapter section give students quick and formative feedback, building their confidence and comprehension as they study and revise.- Quantitative skills video screencasts help students to master the foundational skills required by this discipline.- Interactive figures give students the control they need to step through, and gain mastery over, key concepts.- Per-chapter flashcard glossaries help students to recall the key terms and concepts on which further study can be built. |
biology vs biomedical sciences: Stem Cell Biology and Tissue Engineering in Dental Sciences Ajaykumar Vishwakarma, Paul Sharpe, Songtao Shi, Murugan Ramalingam, 2014-11-05 Stem Cell Biology and Tissue Engineering in Dental Sciences bridges the gap left by many tissue engineering and stem cell biology titles to highlight the significance of translational research in this field in the medical sciences. It compiles basic developmental biology with keen focus on cell and matrix biology, stem cells with relevance to tissue engineering biomaterials including nanotechnology and current applications in various disciplines of dental sciences; viz., periodontology, endodontics, oral & craniofacial surgery, dental implantology, orthodontics & dentofacial orthopedics, organ engineering and transplant medicine. In addition, it covers research ethics, laws and industrial pitfalls that are of particular importance for the future production of tissue constructs. Tissue Engineering is an interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. This ever-emerging area of research applies an understanding of normal tissue physiology to develop novel biomaterial, acellular and cell-based technologies for clinical and non-clinical applications. As evident in numerous medical disciplines, tissue engineering strategies are now being increasingly developed and evaluated as potential routine therapies for oral and craniofacial tissue repair and regeneration. - Diligently covers all the aspects related to stem cell biology and tissue engineering in dental sciences: basic science, research, clinical application and commercialization - Provides detailed descriptions of new, modern technologies, fabrication techniques employed in the fields of stem cells, biomaterials and tissue engineering research including details of latest advances in nanotechnology - Includes a description of stem cell biology with details focused on oral and craniofacial stem cells and their potential research application throughout medicine - Print book is available and black and white, and the ebook is in full color |
biology vs biomedical sciences: Physics in a New Era National Research Council, Division on Engineering and Physical Sciences, Board on Physics and Astronomy, Physics Survey Overview Committee, 2001-07-15 Physics at the beginning of the twenty-first century has reached new levels of accomplishment and impact in a society and nation that are changing rapidly. Accomplishments have led us into the information age and fueled broad technological and economic development. The pace of discovery is quickening and stronger links with other fields such as the biological sciences are being developed. The intellectual reach has never been greater, and the questions being asked are more ambitious than ever before. Physics in a New Era is the final report of the NRC's six-volume decadal physics survey. The book reviews the frontiers of physics research, examines the role of physics in our society, and makes recommendations designed to strengthen physics and its ability to serve important needs such as national security, the economy, information technology, and education. |
biology vs biomedical sciences: Biomedical Chemistry Nuno Vale, 2015-01-01 Biomedical Chemistry provides readers with an understanding of how fundamental chemical concepts are used to combat some diseases. The authors explain the interdisciplinary relationship of chemistry with biology, physics, pharmacy and medicine. The results of chemical research can be applied to understand chemical processes in cells and in the body, and new methods for drug transportation. Also, basic chemical ideas and determination of disease etiology are approached by developing techniques to ensure optimum interaction between drugs and human cells. This Book is an excellent resource for students and researchers in health-related fields with frontier topics in medicinal and pharmaceutical chemistry, organic chemistry and biochemistry. |
biology vs biomedical sciences: Biostatistics for Medical and Biomedical Practitioners Julien I. E. Hoffman, 2015-09-03 Biostatistics for Practitioners: An Interpretative Guide for Medicine and Biology deals with several aspects of statistics that are indispensable for researchers and students across the biomedical sciences. The book features a step-by-step approach, focusing on standard statistical tests, as well as discussions of the most common errors. The book is based on the author's 40+ years of teaching statistics to medical fellows and biomedical researchers across a wide range of fields. - Discusses how to use the standard statistical tests in the biomedical field, as well as how to make statistical inferences (t test, ANOVA, regression etc.) - Includes non-standards tests, including equivalence or non-inferiority testing, extreme value statistics, cross-over tests, and simple time series procedures such as the runs test and Cusums - Introduces procedures such as multiple regression, Poisson regression, meta-analysis and resampling statistics, and provides references for further studies |
biology vs biomedical sciences: The Zebrafish in Biomedical Research Samuel Cartner, Judith S. Eisen, Susan F. Farmer, Karen J. Guillemin, Michael L. Kent, George E. Sanders, 2019-11-22 The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications is a comprehensive work that fulfills a critical need for a thorough compilation of information on this species. The text provides significant updates for working vivarium professionals maintaining zebrafish colonies, veterinarians responsible for their care and well-being, zoologists and ethologists studying the species, and investigators using the species to gain critical insights into human physiology and disease. As the zebrafish has become an important model organism for the study of vertebrate development and disease, organ function, behavior, toxicology, cancer, and drug discovery, this book presents an important resource for future research. - Presents a complete view of the zebrafish, covering their biology, husbandry, diseases and research applications - Includes the work of world-renowned authors - Provides the first authoritative and comprehensive treatment of zebrafish in biomedical research as part of the ACLAM series |
biology vs biomedical sciences: Atlas of the Human Skeleton Gerard J. Tortora, 1996 This text accompanies Principles of Anatomy and Physiology, 8th edition, by Tortora and Grabowski. The photographs have been carefully selected, oriented and labelled as a supplement to the illustrations in the textbook and as a laboratory guide. |
biology vs biomedical sciences: A Guide to Methods in the Biomedical Sciences Ronald B. Corley, 2006-01-16 Thousands of methods have been developed in the various biomedical disciplines, and those covered in this book represent the basic, essential and most widely used methods in several different disciplines. |
biology vs biomedical sciences: Introduction to Molecular Biology, Genomics and Proteomics for Biomedical Engineers Robert B. Northrop, Anne N. Connor, 2008-10-28 Illustrates the Complex Biochemical Relations that Permit Life to ExistIt can be argued that the dawn of the 21st century has emerged as the age focused on molecular biology, which includes all the regulatory mechanisms that make cellular biochemical reaction pathways stable and life possible. For biomedical engineers, this concept is essential to |
biology vs biomedical sciences: List of Journals Indexed in Index Medicus National Library of Medicine (U.S.), 1989 Issues for 1977-1979 include also Special List journals being indexed in cooperation with other institutions. Citations from these journals appear in other MEDLARS bibliographies and in MEDLING, but not in Index medicus. |
biology vs biomedical sciences: Catalog of Federal Domestic Assistance , 2006 Identifies and describes specific government assistance opportunities such as loans, grants, counseling, and procurement contracts available under many agencies and programs. |
biology vs biomedical sciences: Departments of Labor, Health and Human Services, Education, and Related Agencies Appropriations for Fiscal Year 1988 United States. Congress. Senate. Committee on Appropriations. Subcommittee on Departments of Labor, Health and Human Services, Education, and Related Agencies, 1988 |
biology vs biomedical sciences: The Third Lens Andrew S. Reynolds, 2018-06-21 Does science aim at providing an account of the world that is literally true or objectively true? Understanding the difference requires paying close attention to metaphor and its role in science. In The Third Lens, Andrew S. Reynolds argues that metaphors, like microscopes and other instruments, are a vital tool in the construction of scientific knowledge and explanations of how the world works. More than just rhetorical devices for conveying difficult ideas, metaphors provide the conceptual means with which scientists interpret and intervene in the world. Reynolds here investigates the role of metaphors in the creation of scientific concepts, theories, and explanations, using cell theory as his primary case study. He explores the history of key metaphors that have informed the field and the experimental, philosophical, and social circumstances under which they have emerged, risen in popularity, and in some cases faded from view. How we think of cells—as chambers, organisms, or even machines—makes a difference to scientific practice. Consequently, an accurate picture of how scientific knowledge is made requires us to understand how the metaphors scientists use—and the social values that often surreptitiously accompany them—influence our understanding of the world, and, ultimately, of ourselves. The influence of metaphor isn’t limited to how we think about cells or proteins: in some cases they can even lead to real material change in the very nature of the thing in question, as scientists use technology to alter the reality to fit the metaphor. Drawing out the implications of science’s reliance upon metaphor, The Third Lens will be of interest to anyone working in the areas of history and philosophy of science, science studies, cell and molecular biology, science education and communication, and metaphor in general. |
biology vs biomedical sciences: Encyclopedia of Evolutionary Biology , 2016-04-14 Encyclopedia of Evolutionary Biology, Four Volume Set is the definitive go-to reference in the field of evolutionary biology. It provides a fully comprehensive review of the field in an easy to search structure. Under the collective leadership of fifteen distinguished section editors, it is comprised of articles written by leading experts in the field, providing a full review of the current status of each topic. The articles are up-to-date and fully illustrated with in-text references that allow readers to easily access primary literature. While all entries are authoritative and valuable to those with advanced understanding of evolutionary biology, they are also intended to be accessible to both advanced undergraduate and graduate students. Broad topics include the history of evolutionary biology, population genetics, quantitative genetics; speciation, life history evolution, evolution of sex and mating systems, evolutionary biogeography, evolutionary developmental biology, molecular and genome evolution, coevolution, phylogenetic methods, microbial evolution, diversification of plants and fungi, diversification of animals, and applied evolution. Presents fully comprehensive content, allowing easy access to fundamental information and links to primary research Contains concise articles by leading experts in the field that ensures current coverage of each topic Provides ancillary learning tools like tables, illustrations, and multimedia features to assist with the comprehension process |
biology vs biomedical sciences: Research at the Intersection of the Physical and Life Sciences National Research Council, Division on Earth and Life Studies, Division on Engineering and Physical Sciences, Board on Chemical Sciences and Technology, Board on Life Sciences, Board on Physics and Astronomy, Committee on Research at the Intersection of the Physical and Life Sciences, 2010-03-25 Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies. |
biology vs biomedical sciences: Poly(ADP-Ribose) Polymerase Alexei V. Tulin, 2022-12-14 This detailed volume explores poly(ADP-ribose) polymerases (PARPs) in the biology of eukaryotes and their relevance to human health. Beginning with a section on the detection and quantification of poly(ADP-ribose) polymer (pADPr), the book continues by delving into the identification of protein targets, functional analysis, the poly(ADP-ribosyl)ating pathway in chromatin and genes expression, as well as the use of animal models and PARP1 inhibitor design and testing, and more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Poly(ADP-Ribose) Polymerase: Methods and Protocols, Third Edition presents essential new and classical methods for studying the pADPr-pathway. |
biology vs biomedical sciences: Research Fraud in the Behavioral and Biomedical Sciences David J. Miller, Michel Hersen, 1992-03-24 Deals with the issues of fraud in research, a subject which has appeared in the newspapers with increasing frequency of late. Includes moral and ethical aspects and legal ramifications as well as the institutional and career pressures to perform. |
biology vs biomedical sciences: Sourcebook of Models for Biomedical Research P. Michael Conn, 2008-03-07 The collection of systems represented in this volume is a unique effort to reflect the diversity and utility of models used in biomedicine. That utility is based on the consideration that observations made in particular organisms will provide insight into the workings of other, more complex systems. This volume is therefore a comprehensive and extensive collection of these important medical parallels. |
biology vs biomedical sciences: Single-Cell-Based Models in Biology and Medicine Alexander Anderson, Katarzyna Rejniak, 2007-08-08 Aimed at postgraduate students in a variety of biology-related disciplines, this volume presents a collection of mathematical and computational single-cell-based models and their application. The main sections cover four general model groupings: hybrid cellular automata, cellular potts, lattice-free cells, and viscoelastic cells. Each section is introduced by a discussion of the applicability of the particular modelling approach and its advantages and disadvantages, which will make the book suitable for students starting research in mathematical biology as well as scientists modelling multicellular processes. |
biology vs biomedical sciences: Model Organisms to Study Biological Activities and Toxicity of Nanoparticles Busi Siddhardha, Madhu Dyavaiah, Kaviyarasu Kasinathan, 2020-03-28 This book provides a comprehensive overview of state-of-the-art applications of nanotechnology in biology and medicine, as well as model organisms that can help us understand the biological activity and associated toxicity of nanoparticles, and devise strategies to minimize toxicity and enhance therapies. Thanks to their high surface-to-volume ratio, nanoparticles are characterized by excellent biocompatibility and bioavailability, a high therapeutic index, and relatively low toxicity, which has led to their widespread application in the early diagnosis of diseases, comprehensive monitoring of disease progression, and improved therapeutics. The book also explores nanoparticle-based insecticides and their mechanisms of action, and provides a comparative analysis of the various model organisms that are used to understand the biological properties of nanoparticles. Further, it describes various in-vivo models that yield important insights into nanomaterial-mediated toxicity, promoting the optimal utilization of nanoparticles. In closing, the book discusses future perspectives and regulatory issues concerning the use of nanomaterials in translational research. |
biology vs biomedical sciences: The Nuclear Envelope David Evans, Chris Hutchison, John Bryant, 2004-08-02 The Nuclear Envelope brings together the major current topics in nuclear envelope structure, transport, transcriptional regulation and cell signaling. The volume is divided into four sections: 1. Proteins of the nuclear envelope, including nuclear envelope proteomics, structure and function. 2. Nuclear pores and transport at the nuclear envelope, including pore complex structure, assembly and function and import and export pathways. 3. Nuclear envelope dynamics, including dynamics of lamina assembly and disassembly. 4. Nuclear signaling and transcription regulation, including signaling to the nucleus and spectrin repeat proteins and their implications or communication between the nucleus and cytoplasm. |
biology vs biomedical sciences: Fractals in Biology and Medicine Theo F. Nonnenmacher, Gabriele A. Losa, Ewald R. Weibel, 2013-03-07 Fractals in Biology and Medicine explores the potential of fractal geometry for describing and understanding biological organisms, their development and growth as well as their structural design and functional properties. It extends these notions to assess changes associated with disease in the hope to contribute to the understanding of pathogenetic processes in medicine. The book is the first comprehensive presentation of the importance of the new concept of fractal geometry for biological and medical sciences. It collates in a logical sequence extended papers based on invited lectures and free communications presented at a symposium in Ascona, Switzerland, attended by leading scientists in this field, among them the originator of fractal geometry, Benoit Mandelbrot. Fractals in Biology and Medicine begins by asking how the theoretical construct of fractal geometry can be applied to biomedical sciences and then addresses the role of fractals in the design and morphogenesis of biological organisms as well as in molecular and cell biology. The consideration of fractal structure in understanding metabolic functions and pathological changes is a particularly promising avenue for future research. |
biology vs biomedical sciences: The Biology and Identification of the Coccidia (Apicomplexa) of Marsupials of the World Donald W. Duszynski, 2015-09-10 The Biology and Identification of the Coccidia (Apicomplexa) of Marsupials of the World contains the most up-to-date information on the former order marsupial that is now partitioned by mammalogists into seven separate orders that contain 20 families, 86 genera, and 318 species that live on land or in trees in Oceania and the Americas. Marsupials, like other vertebrate animals have many different kinds of parasites (e.g. viruses, protozoa, worms, arthropods, etc.), but there is no definitive text that covers any one of these groups found in all marsupials. Coccidiosis is a serious global problem in most domesticated animals, and under increasing circumstances of loss of habitat and crowding, may also affect some wild animal populations, thus, there is a real need for their identification and control. - Offers line drawings and photomicrograph of each parasite from each hosts species, including methods of identification and treatment - Presents a complete historical rendition of all known publications on coccidia (and their closest relatives) from all marsupials species on Earth, and evaluates the scientific and scholarly merit of each - Provides a complete species analysis of the known biology of every coccidian described from marsupials - Reviews the most current taxonomy of marsupials and their phylogenetic relationships needed to help assess host-specificity and evaluate what little cross-transmission work is available |
biology vs biomedical sciences: Marine Biotechnology, Revealing an Ocean of Opportunities Ana Rotter, Susana P. Gaudêncio, Marlen Ines Vasquez, Arita Dubnika, 2022-03-18 |
biology vs biomedical sciences: Promising Practices for Addressing the Underrepresentation of Women in Science, Engineering, and Medicine National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Committee on Women in Science, Engineering, and Medicine, Committee on Increasing the Number of Women in Science, Technology, Engineering, Mathematics, and Medicine (STEMM), 2020-03-19 Careers in science, engineering, and medicine offer opportunities to advance knowledge, contribute to the well-being of communities, and support the security, prosperity, and health of the United States. But many women do not pursue or persist in these careers, or advance to leadership positions - not because they lack the talent or aspirations, but because they face barriers, including: implicit and explicit bias; sexual harassment; unequal access to funding and resources; pay inequity; higher teaching and advising loads; and fewer speaking invitations, among others. There are consequences from this underrepresentation of women for the nation as well: a labor shortage in many science, engineering, and medical professions that cannot be filled unless institutions and organizations recruit from a broad and diverse talent pool; lost opportunities for innovation and economic gain; and lost talent as a result of discrimination, unconscious bias, and sexual harassment. Promising Practices for Addressing the Underrepresentation of Women in Science, Engineering, and Medicine reviews and synthesizes existing research on policies, practices, programs, and other interventions for improving the recruitment, retention, and sustained advancement into leadership roles of women in these disciplines. This report makes actionable recommendations to leverage change and drive swift, coordinated improvements to the systems of education, research, and employment in order to improve both the representation and leadership of women. |
biology vs biomedical sciences: Reader's Guide to the History of Science Arne Hessenbruch, 2013-12-16 The Reader's Guide to the History of Science looks at the literature of science in some 550 entries on individuals (Einstein), institutions and disciplines (Mathematics), general themes (Romantic Science) and central concepts (Paradigm and Fact). The history of science is construed widely to include the history of medicine and technology as is reflected in the range of disciplines from which the international team of 200 contributors are drawn. |
biology vs biomedical sciences: Index of NLM Serial Titles National Library of Medicine (U.S.), A keyword listing of serial titles currently received by the National Library of Medicine. |
biology vs biomedical sciences: Analytical Techniques in Biosciences Chukwuebuka Egbuna, Kingsley C. Patrick-Iwuanyanwu, Muhammad Ajmal Shah, Jonathan C. Ifemeje, Azhar Rasul, 2021-10-21 Analytical Techniques in Biosciences: From Basics to Applications presents comprehensive and up-to-date information on the various analytical techniques obtainable in bioscience research laboratories across the world. This book contains chapters that discuss the basic bioanalytical protocols and sample preparation guidelines. Commonly encountered analytical techniques, their working principles, and applications were presented. Techniques, considered in this book, include centrifugation techniques, electrophoretic techniques, chromatography, titrimetry, spectrometry, and hyphenated techniques. Subsequent chapters emphasize molecular weight determination and electroanalytical techniques, biosensors, and enzyme assay protocols. Other chapters detail microbial techniques, statistical methods, computational modeling, and immunology and immunochemistry.The book draws from experts from key institutions around the globe, who have simplified the chapters in a way that will be useful to early-stage researchers as well as advanced scientists. It is also carefully structured and integrated sequentially to aid flow, consistency, and continuity. This is a must-have reference for graduate students and researchers in the field of biosciences. - Presents basic analytical protocols and sample-preparation guidelines - Details the various analytical techniques, including centrifugation, spectrometry, chromatography, and titrimetry - Describes advanced techniques such as hyphenated techniques, electroanalytical techniques, and the application of biosensors in biomedical research - Presents biostatistical tools and methods and basic computational models in biosciences |
biology vs biomedical sciences: Basic Issues in Biomedical and Behavioral Research, 1976 United States. Congress. Senate. Committee on Labor and Public Welfare. Subcommittee on Health, 1976 |
biology vs biomedical sciences: Species John S. Wilkins, 2018-01-29 Over time the complex idea of species has evolved, yet its meaning is far from resolved. This comprehensive work is a fresh look at an idea central to the field of biology by tracing its history from antiquity to today. Species is a benchmark exploration and clarification of a concept fundamental to the past, present, and future of the natural sciences. In this edition, a section is added on the debate over species since the time of the New Synthesis, and brings the book up to date. A section on recent philosophical debates over species has also been added. This edition is better suited non-specialists in philosophy, so that it will be of greater use for scientists wishing to understand how the notion came to be that living organisms form species. Key Selling Features: Covers the philosophical and historical development of the concept of species Documents that variation was recognized by pre-Darwinian scholars Includes a section on the debates since the time of the New Synthesis Better suited to non-philosophers |
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…