Advertisement
biology with specialization in bioinformatics: Bioinformatics Algorithms Phillip Compeau, Pavel Pevzner, 1986-06 Bioinformatics Algorithms: an Active Learning Approach is one of the first textbooks to emerge from the recent Massive Online Open Course (MOOC) revolution. A light-hearted and analogy-filled companion to the authors' acclaimed online course (http://coursera.org/course/bioinformatics), this book presents students with a dynamic approach to learning bioinformatics. It strikes a unique balance between practical challenges in modern biology and fundamental algorithmic ideas, thus capturing the interest of students of biology and computer science students alike.Each chapter begins with a central biological question, such as Are There Fragile Regions in the Human Genome? or Which DNA Patterns Play the Role of Molecular Clocks? and then steadily develops the algorithmic sophistication required to answer this question. Hundreds of exercises are incorporated directly into the text as soon as they are needed; readers can test their knowledge through automated coding challenges on Rosalind (http://rosalind.info), an online platform for learning bioinformatics.The textbook website (http://bioinformaticsalgorithms.org) directs readers toward additional educational materials, including video lectures and PowerPoint slides. |
biology with specialization in bioinformatics: Schedule of Classes University of California, San Diego, 2003 |
biology with specialization in bioinformatics: Bioinformatics For Dummies Jean-Michel Claverie, Cedric Notredame, 2011-02-10 Were you always curious about biology but were afraid to sit through long hours of dense reading? Did you like the subject when you were in high school but had other plans after you graduated? Now you can explore the human genome and analyze DNA without ever leaving your desktop! Bioinformatics For Dummies is packed with valuable information that introduces you to this exciting new discipline. This easy-to-follow guide leads you step by step through every bioinformatics task that can be done over the Internet. Forget long equations, computer-geek gibberish, and installing bulky programs that slow down your computer. You’ll be amazed at all the things you can accomplish just by logging on and following these trusty directions. You get the tools you need to: Analyze all types of sequences Use all types of databases Work with DNA and protein sequences Conduct similarity searches Build a multiple sequence alignment Edit and publish alignments Visualize protein 3-D structures Construct phylogenetic trees This up-to-date second edition includes newly created and popular databases and Internet programs as well as multiple new genomes. It provides tips for using servers and places to seek resources to find out about what’s going on in the bioinformatics world. Bioinformatics For Dummies will show you how to get the most out of your PC and the right Web tools so you'll be searching databases and analyzing sequences like a pro! |
biology with specialization in bioinformatics: Practical Bioinformatics Janusz M. Bujnicki, 2004-03-03 Bridges the gap between bioinformaticists and molecular biologists, i.e. the developers and the users of computational methods for biological data analysis and in that it presents examples of practical applications of the bioinformatics tools in the daily practice of an experimental research scientist. |
biology with specialization in bioinformatics: Introduction to Bioinformatics Arthur M. Lesk, 2019 Lesk provides an accessible and thorough introduction to a subject which is becoming a fundamental part of biological science today. The text generates an understanding of the biological background of bioinformatics. |
biology with specialization in bioinformatics: A First Course in Systems Biology Eberhard Voit, 2017-09-05 A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection. |
biology with specialization in bioinformatics: Introduction to Genomics Arthur Lesk, 2012 This book covers the latest techniques that enable us to study the genome in detail, the book explores what the genome tells us about life at the level of the molecule, the cell, and the organism |
biology with specialization in bioinformatics: Lewin's GENES X Benjamin Lewin, Jocelyn Krebs, Stephen T. Kilpatrick, Elliott S. Goldstein, 2011 Jacket. |
biology with specialization in bioinformatics: Encyclopedia of Bioinformatics and Computational Biology , 2018-08-21 Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases |
biology with specialization in bioinformatics: Applied Bioinformatics Paul Maria Selzer, Richard Marhöfer, Andreas Rohwer, 2008-01-18 At last, here is a baseline book for anyone who is confused by cryptic computer programs, algorithms and formulae, but wants to learn about applied bioinformatics. Now, anyone who can operate a PC, standard software and the internet can also learn to understand the biological basis of bioinformatics, of the existence as well as the source and availability of bioinformatics software, and how to apply these tools and interpret results with confidence. This process is aided by chapters that introduce important aspects of bioinformatics, detailed bioinformatics exercises (including solutions), and to cap it all, a glossary of definitions and terminology relating to bioinformatics. |
biology with specialization in bioinformatics: Translational Biomedical Informatics Bairong Shen, Haixu Tang, Xiaoqian Jiang, 2016-10-31 This book introduces readers to essential methods and applications in translational biomedical informatics, which include biomedical big data, cloud computing and algorithms for understanding omics data, imaging data, electronic health records and public health data. The storage, retrieval, mining and knowledge discovery of biomedical big data will be among the key challenges for future translational research. The paradigm for precision medicine and healthcare needs to integratively analyze not only the data at the same level – e.g. different omics data at the molecular level – but also data from different levels – the molecular, cellular, tissue, clinical and public health level. This book discusses the following major aspects: the structure of cross-level data; clinical patient information and its shareability; and standardization and privacy. It offers a valuable guide for all biologists, biomedical informaticians and clinicians with an interest in Precision Medicine Informatics. |
biology with specialization in bioinformatics: Systems Biology, Bioinformatics and Livestock Science Anupam Nath Jha, Sandeep Swargam, Indu Kumari, 2023-11-08 This book explores the intricate world of livestock sciences and production through the lens of systems biology. Offering a comprehensive exploration of both fundamental and advanced aspects, it unearths the potential of systems biology in the realm of livestock. The book presents 13 edited chapters on cutting-edge knowledge about systems biology and omics technology, showcasing genomics, transcriptomics, proteomics, metabolomics, and more. It illuminates the role of systems biology in livestock and disease management. Readers will learn about power of technologies that merge computational biology, nanobiotechnology, artificial intelligence, and single-cell sequencing. Each chapter is written by scientific experts and includes references for further reading. The book covers 4 key themes: Introduction to Systems Biology in Livestock Science: Uncover the foundation of integrating systems biology with omics data for animal scientists. Multi-scale Modeling Techniques: Explore how multi-scale modeling is shaping the future of system biology. Livestock Viral Diseases: Gain insights into how systems biology is revolutionizing our understanding of livestock viral diseases. Single Cell RNA-Sequencing: Understand the potential of this advanced technique in studying livestock animals at a cellular level. This book is a timely resource for students and researchers, offering a pathway to comprehend the crucial role systems biology plays in sustainable livestock production and management. |
biology with specialization in bioinformatics: Creative Minds, Charmed Lives Yu Kiang Leong, 2010 This book features interviews of 38 eminent mathematicians and mathematical scientists who were invited to participate in the programs of the Institute for Mathematical Sciences, National University of Singapore. Originally published in its newsletter Imprints from 2003 to 2009, these interviews give a fascinating and insightful glimpse into the passion driving some of the most creative minds in modern research in pure mathematics, applied mathematics, statistics, economics and engineering. The reader is drawn into a panorama of the past and present development of some of the ideas that have revolutionized modern science and mathematics. This book should be relevant to those who are interested in the history and psychology of ideas. It should provide motivation, inspiration and guidance to students who aspire to do research and to beginning researchers who are looking for career niches. For those who wish to be broadly educated, it is informative without delving into excessive technical details and is, at the same time, thought provoking enough to arouse their curiosity to learn more about the world around them. |
biology with specialization in bioinformatics: Quick Guide to Choosing Your College Major Laurence Shatkin, 2020-04-21 This easy-to-use guide moves from self-assessment to information to decision making. The decision-making process begins with an explanation of what a college major is and what should be considered when making a decision. The next chapters offer three quick exercises to help readers clarify dimensions that are relevant to the choice of a major: their personality type, their strongest skills, and their favorite high school courses. Using the results of these exercises, readers construct a hot list of the college majors that seem to suit them the most, plus any others that look interesting. Then they explore their possible choices by reading fact-packed descriptions of 61 popular college majors and the 164 occupations and 95 job specializations linked to these majors. Finally, readers fill out a decision-making checklist, comparing the results of their self-assessment exercises with the facts they have learned about various majors. They weigh the pros and cons to reach a tentative conclusion and receive hints about how to do additional exploration to confirm their decision. With Quick Guide to Choosing Your College Major, the reader will be able to determine their future path fast! |
biology with specialization in bioinformatics: Bioinformatics Algorithms Miguel Rocha, Pedro G. Ferreira, 2018-06-08 Bioinformatics Algorithms: Design and Implementation in Python provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and showing how to implement them. The book focuses on the use of the Python programming language and its algorithms, which is quickly becoming the most popular language in the bioinformatics field. Readers will find the tools they need to improve their knowledge and skills with regard to algorithm development and implementation, and will also uncover prototypes of bioinformatics applications that demonstrate the main principles underlying real world applications. - Presents an ideal text for bioinformatics students with little to no knowledge of computer programming - Based on over 12 years of pedagogical materials used by the authors in their own classrooms - Features a companion website with downloadable codes and runnable examples (such as using Jupyter Notebooks) and exercises relating to the book |
biology with specialization in bioinformatics: Algorithms in Bioinformatics Wing-Kin Sung, 2009-11-24 Thoroughly Describes Biological Applications, Computational Problems, and Various Algorithmic Solutions Developed from the author's own teaching material, Algorithms in Bioinformatics: A Practical Introduction provides an in-depth introduction to the algorithmic techniques applied in bioinformatics. For each topic, the author clearly details the bi |
biology with specialization in bioinformatics: Physical Biology Ahmed H. Zewail, 2008 Addresses significant problems in physical biology and adjacent disciplines. This volume provides a perspective on the methods and concepts at the heart of chemical and biological behavior, covering the topics of visualization; theory and computation for complexity; and macromolecular function, protein folding, and protein misfolding |
biology with specialization in bioinformatics: Bioinformatics in Agriculture Pradeep Sharma, Dinesh Yadav, R.K. Gaur, 2022-04-28 Bioinformatics in Agriculture: Next Generation Sequencing Era is a comprehensive volume presenting an integrated research and development approach to the practical application of genomics to improve agricultural crops. Exploring both the theoretical and applied aspects of computational biology, and focusing on the innovation processes, the book highlights the increased productivity of a translational approach. Presented in four sections and including insights from experts from around the world, the book includes: Section I: Bioinformatics and Next Generation Sequencing Technologies; Section II: Omics Application; Section III: Data mining and Markers Discovery; Section IV: Artificial Intelligence and Agribots. Bioinformatics in Agriculture: Next Generation Sequencing Era explores deep sequencing, NGS, genomic, transcriptome analysis and multiplexing, highlighting practices forreducing time, cost, and effort for the analysis of gene as they are pooled, and sequenced. Readers will gain real-world information on computational biology, genomics, applied data mining, machine learning, and artificial intelligence. This book serves as a complete package for advanced undergraduate students, researchers, and scientists with an interest in bioinformatics. - Discusses integral aspects of molecular biology and pivotal tool sfor molecular breeding - Enables breeders to design cost-effective and efficient breeding strategies - Provides examples ofinnovative genome-wide marker (SSR, SNP) discovery - Explores both the theoretical and practical aspects of computational biology with focus on innovation processes - Covers recent trends of bioinformatics and different tools and techniques |
biology with specialization in bioinformatics: Quick Reference for Counselors , 2011 |
biology with specialization in bioinformatics: Evolution of Translational Omics Institute of Medicine, Board on Health Sciences Policy, Board on Health Care Services, Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials, 2012-09-13 Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials. |
biology with specialization in bioinformatics: Post-genome Informatics 實·金久, 2000-01 Blueprint of life. Molecular biology databases. Sequence analysis of nucleic acids and proteins. Network analysis of molecular interactions. |
biology with specialization in bioinformatics: The Processes of Life Lawrence E. Hunter, 2012-01-13 A brief and accessible introduction to molecular biology for students and professionals who want to understand this rapidly expanding field. Recent research in molecular biology has produced a remarkably detailed understanding of how living things operate. Becoming conversant with the intricacies of molecular biology and its extensive technical vocabulary can be a challenge, though, as introductory materials often seem more like a barrier than an invitation to the study of life. This text offers a concise and accessible introduction to molecular biology, requiring no previous background in science, aimed at students and professionals in fields ranging from engineering to journalism—anyone who wants to get a foothold in this rapidly expanding field. It will be particularly useful for computer scientists exploring computational biology. A reader who has mastered the information in The Processes of Life is ready to move on to more complex material in almost any area of contemporary biology. |
biology with specialization in bioinformatics: Bioinformation Bronwyn Parry, Beth Greenhough, 2017-11-10 From DNA sequences stored on computer databases to archived forensic samples and biomedical records, bioinformation comes in many forms. Its unique provenance – the fact that it is 'mined' from the very fabric of the human body – makes it a mercurial resource; one that no one seemingly owns, but in which many have deeply vested interests. Who has the right to exploit and benefit from bioinformation? The individual or community from whom it was derived? The scientists and technicians who make its extraction both possible and meaningful or the commercial and political interests which fund this work? Who is excluded or even at risk from its commercialisation? And what threats and opportunities might the generation of 'Big Bioinformational Data' raise? In this groundbreaking book, authors Bronwyn Parry and Beth Greenhough explore the complex economic, social and political questions arising from the creation and use of bioinformation. Drawing on a range of highly topical cases, including the commercialization of human sequence data; the forensic use of retained bioinformation; biobanking and genealogical research, they show how demand for this resource has grown significantly driving a burgeoning but often highly controversial global economy in bioinformation. But, they argue, change is afoot as new models emerge that challenge the ethos of privatisation by creating instead a dynamic open source 'bioinformational commons' available for all future generations. |
biology with specialization in bioinformatics: What Can You Do with a Major in Biology? Bart Astor, 2007-08-13 Your guide to glide from campus to career This book helps you get from the lab to life! Whether you're considering majoring in biology, choosing a college or classes, or already have your degree and your lab coat, this is your definitive guide to diverse career opportunities, some of which you probably haven't considered. It goes beyond the basics to address specific concerns of biology majors with valuable information, including: * Advice on college and curriculum choices---- courses, internships, advanced degrees, and more * Tips to energize and expand your job search * Profiles of real graduates, their jobs, and how they got them * Eye-opening, objective information from a healthcare professional, education and outreach program manager, zookeeper, science reporter, healthcare attorney, and public health consultant * Overviews of typical salary levels, hours, and work environments * Extensive additional resources, including Web sites, professional organizations, periodicals, and more * Licensing requirements Learn what your peers in the work world like about their jobs--and what they don't. Learn about the routes they took and the mistakes they made. Then you'll be prepared to thoroughly examine your options and chart your course to success! |
biology with specialization in bioinformatics: Bioconductor Case Studies Florian Hahne, Wolfgang Huber, Robert Gentleman, Seth Falcon, 2010-06-09 Bioconductor software has become a standard tool for the analysis and comprehension of data from high-throughput genomics experiments. Its application spans a broad field of technologies used in contemporary molecular biology. In this volume, the authors present a collection of cases to apply Bioconductor tools in the analysis of microarray gene expression data. Topics covered include: (1) import and preprocessing of data from various sources; (2) statistical modeling of differential gene expression; (3) biological metadata; (4) application of graphs and graph rendering; (5) machine learning for clustering and classification problems; (6) gene set enrichment analysis. Each chapter of this book describes an analysis of real data using hands-on example driven approaches. Short exercises help in the learning process and invite more advanced considerations of key topics. The book is a dynamic document. All the code shown can be executed on a local computer, and readers are able to reproduce every computation, figure, and table. |
biology with specialization in bioinformatics: BIOS Instant Notes in Bioinformatics J Howard Parish, Richard M Twyman, Charlie Hodgman, Andrew French, David Westhead, 2009-12-16 The second edition of Instant Notes in Bioinformatics introduced the readers to the themes and terminology of bioinformatics. It is divided into three parts: the first being an introduction to bioinformatics in biology; the second covering the physical, mathematical, statistical and computational basis of bioinformatics, using biological examples wherever possible; the third describing applications, giving specific detail and including data standards. The applications covered are sequence analysis and annotation, transcriptomics, proteomics, metabolite study, supramolecular organization, systems biology and the integration of-omic data, physiology, image analysis, and text analysis. |
biology with specialization in bioinformatics: Data Analysis for the Life Sciences with R Rafael A. Irizarry, Michael I. Love, 2016-10-04 This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained. |
biology with specialization in bioinformatics: Genomics in the Cloud Geraldine A. Van der Auwera, Brian D. O'Connor, 2020-04-02 Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytesâ??or over 50 million gigabytesâ??of genomic data, and theyâ??re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian Oâ??Connor of the UC Santa Cruz Genomics Institute, guide you through the process. Youâ??ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra |
biology with specialization in bioinformatics: Human Interface and the Management of Information. Visual Information and Knowledge Management Sakae Yamamoto, Hirohiko Mori, 2019-07-08 This two-volume set LNCS 11569 and 11570 constitutes the refereed proceedings of the Thematic Area on Human Interface and the Management of Information, HIMI 2019, held as part of HCI International 2019 in Orlando, FL, USA. HCII 2019 received a total of 5029 submissions, of which 1275 papers and 209 posters were accepted for publication after a careful reviewing process. The 91 papers presented in the two volumes were organized in topical sections named: Visual information; Data visualization and analytics; Information, cognition and learning; Information, empathy and persuasion; Knowledge management and sharing; Haptic and tactile interaction; Information in virtual and augmented reality; Machine learning and intelligent systems; Human motion and expression recognition and tracking; Medicine, healthcare and quality of life applications. |
biology with specialization in bioinformatics: Systems Biology: A Very Short Introduction Eberhard O. Voit, 2020-03-26 Systems biology came about as growing numbers of engineers and scientists from other fields created algorithms which supported the analysis of biological data in incredible quantities. Whereas biologists of the past had been forced to study one item or aspect at a time, due to technical and biological limitations, it suddenly became possible to study biological phenomena within their natural contexts. This interdisciplinary field offers a holistic approach to interpreting these processes, and has been responsible for some of the most important developments in the science of human health and environmental sustainability. This Very Short Introduction outlines the exciting processes and possibilities in the new field of systems biology. Eberhard O. Voit describes how it enabled us to learn how intricately the expression of every gene is controlled, how signaling systems keep organisms running smoothly, and how complicated even the simplest cells are. He explores what this field is about, why it is needed, and how it will affect our understanding of life, particularly in the areas of personalized medicine, drug development, food and energy production, and sustainable stewardship of our environments. Throughout he considers how new tools are being provided from the fields of mathematics, computer science, engineering, physics, and chemistry to grasp the complexity of the countless interacting processes in cells which would overwhelm the cognitive and analytical capabilities of the human mind. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable. |
biology with specialization in bioinformatics: Analysis of Biological Networks Björn H. Junker, Falk Schreiber, 2011-09-20 An introduction to biological networks and methods for their analysis Analysis of Biological Networks is the first book of its kind to provide readers with a comprehensive introduction to the structural analysis of biological networks at the interface of biology and computer science. The book begins with a brief overview of biological networks and graph theory/graph algorithms and goes on to explore: global network properties, network centralities, network motifs, network clustering, Petri nets, signal transduction and gene regulation networks, protein interaction networks, metabolic networks, phylogenetic networks, ecological networks, and correlation networks. Analysis of Biological Networks is a self-contained introduction to this important research topic, assumes no expert knowledge in computer science or biology, and is accessible to professionals and students alike. Each chapter concludes with a summary of main points and with exercises for readers to test their understanding of the material presented. Additionally, an FTP site with links to author-provided data for the book is available for deeper study. This book is suitable as a resource for researchers in computer science, biology, bioinformatics, advanced biochemistry, and the life sciences, and also serves as an ideal reference text for graduate-level courses in bioinformatics and biological research. |
biology with specialization in bioinformatics: Essential Bioinformatics Jin Xiong, 2006-03-13 Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research. |
biology with specialization in bioinformatics: Data Mining for Bioinformatics Sumeet Dua, Pradeep Chowriappa, 2012-11-06 Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field. The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections: Supplies a complete overview of the evolution of the field and its intersection with computational learning Describes the role of data mining in analyzing large biological databases—explaining the breath of the various feature selection and feature extraction techniques that data mining has to offer Focuses on concepts of unsupervised learning using clustering techniques and its application to large biological data Covers supervised learning using classification techniques most commonly used in bioinformatics—addressing the need for validation and benchmarking of inferences derived using either clustering or classification The book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biological databases, it considers systems of both single and ensemble classifiers and shares effort-saving tips for model selection and performance estimation strategies. |
biology with specialization in bioinformatics: Practical Bioinformatics Michael Agostino, 2012-09-26 Practical Bioinformatics is specifically designed for biology majors, with a heavy emphasis on the steps required to perform bioinformatics analysis to answer biological questions. It is written for courses that have a practical, hands-on element and contains many exercises (for example, database searches, protein analysis, data interpretation) to |
biology with specialization in bioinformatics: Data Mining in Bioinformatics Jason T. L. Wang, 2005 Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery. |
biology with specialization in bioinformatics: Essentials of Bioinformatics, Volume III Khalid Rehman Hakeem, Noor Ahmad Shaik, Babajan Banaganapalli, Ramu Elango, 2019-11-01 Bioinformatics is an integrative field of computer science, genetics, genomics, proteomics, and statistics, which has undoubtedly revolutionized the study of biology and medicine in past decades. It mainly assists in modeling, predicting and interpreting large multidimensional biological data by utilizing advanced computational methods. Despite its enormous potential, bioinformatics is not widely integrated into the academic curriculum as most life science students and researchers are still not equipped with the necessary knowledge to take advantage of this powerful tool. Hence, the primary purpose of our book is to supplement this unmet need by providing an easily accessible platform for students and researchers starting their career in life sciences. This book aims to avoid sophisticated computational algorithms and programming. Instead, it will mostly focus on simple DIY analysis and interpretation of biological data with personal computers. Our belief is that once the beginners acquire these basic skillsets, they will be able to handle most of the bioinformatics tools for their research work and to better understand their experimental outcomes. The third volume is titled In Silico Life Sciences: Agriculture. It focuses on plant genetic, genomic, transcriptomic, proteomic and metabolomics data. Using examples of new crop diseases-emergence, crop productivity and biotic/abiotic stress tolerance, this book illustrates how bioinformatics can be an integral components of modern day plant science research. |
biology with specialization in bioinformatics: Statistical Methods in Bioinformatics Warren J. Ewens, Gregory R. Grant, 2005-09-30 Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly. (Biometrics) Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces. (Naturwissenschaften) The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details. (Journal American Statistical Association) The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book. (Metrika) |
biology with specialization in bioinformatics: Choose Your College Major in a Day Laurence Shatkin, 2015-05-15 Written by a leading expert on career information, this book is the ultimate guide to choosing your college major! It’s the ideal resource if you need to decide on a college major but don’t have a lot of time. Following its proven strategy, you will combine insights about yourself with up-todate facts and reach a decision. The first part will guide you through assessing your personality type, your skills, and your favorite and best high school courses and help you find potential majors that fit your profile. In the second part, college majors are described with a definition, related high school courses, specializations, a list of common course requirements, a typical career path, and a list of related occupations. All related occupations are described with a definition, annual earnings averages, employment outlook, personality type, top skills, typical entry requirements, and related college majors. Finally, the last part will help you weigh the pluses and minuses of the majors on your list, making a tentative choice, and ultimately testing and confirming that choice. |
biology with specialization in bioinformatics: BIO2010 National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century, 2003-02-13 Biological sciences have been revolutionized, not only in the way research is conductedâ€with the introduction of techniques such as recombinant DNA and digital technologyâ€but also in how research findings are communicated among professionals and to the public. Yet, the undergraduate programs that train biology researchers remain much the same as they were before these fundamental changes came on the scene. This new volume provides a blueprint for bringing undergraduate biology education up to the speed of today's research fast track. It includes recommendations for teaching the next generation of life science investigators, through: Building a strong interdisciplinary curriculum that includes physical science, information technology, and mathematics. Eliminating the administrative and financial barriers to cross-departmental collaboration. Evaluating the impact of medical college admissions testing on undergraduate biology education. Creating early opportunities for independent research. Designing meaningful laboratory experiences into the curriculum. The committee presents a dozen brief case studies of exemplary programs at leading institutions and lists many resources for biology educators. This volume will be important to biology faculty, administrators, practitioners, professional societies, research and education funders, and the biotechnology industry. |
biology with specialization in bioinformatics: Introduction to Biotech Entrepreneurship: From Idea to Business Florentina Matei, Daniela Zirra, 2019-08-16 Primarily intended for biotechnology graduates, this handbook provides an overview of the requirements, opportunities and drawbacks of Biotech Entrepreneurship, while also presenting valuable training materials tailored to the industrial and market reality in the European Biotech Business. Potential investors and business consultants will find essential information on the benefits and potential risks involved in supporting biotech businesses. Further, the book addresses a broad range of Biotechnology fields, e.g. food biotech, industrial biotech, bioinformatics, animal and human health. Readers will learn the essentials of creating innovations, founding a biotech start-up, business management strategies, and European funding sources. In addition, the book discusses topics such as intellectual property management and innovation transfer. The book offers a comparative analysis of different countries’ perspectives and reviews the status quo in Western and Eastern European regions, also in comparison with other leading biotech countries such as the USA and Canada. A long list of potentially profitable biotech start-up ideas and a collection of success stories involving European companies are also included. The book is based on the Erasmus+ Strategic Partnership project “Supporting biotechnology students oriented towards an entrepreneurial path” (www.supbioent.usamv.ro), which involved the collaboration of Life Sciences and Economics departments at higher education institutions throughout Western and Eastern Europe. |
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add …
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into …
How do I cram for the exam??? - Biology Forum
Oct 27, 2009 · I have been studying Biology by correspondence through Unilearn for the last couple of months. I have completed my required 10 modules so getting ready to sit the exam. …
Definition of a solution - Biology Forum
Jan 28, 2007 · In my introductory biology class, we are learning about how water creates aqueous solutions. I am not sure about the definition of a solution, however. Does a solution mean that …
DNA 3' end & 5' end - Biology Forum
Jul 19, 2011 · I can't quite grasp the "ends" of DNA. When we say "3' end", does it mean that we can only add the nucleotides to the 5's, and not the 3's?
WHAT A BIOLOGY? - Biology Forum
Dec 3, 2006 · Biology is the study of living things… In this we study about the structure , function , interactions, of living organisms…It is a vast field divided into many branches. December 3, …
Evolution - Biology Forum
Dec 20, 2007 · Evolution does'nt makes sense to me. According to Darwin, humans have evolved from apes. I want to know why some apes evolved into humans, why not all evolved?
what is depolymerisation - Biology Forum
Jul 23, 2006 · I think depolymerisation is the removal of the monomers, in this case the removal of the monomers of microtubules.
Topics Archive - Biology Forum
360 Wiki Writers. General Discussion. 2; 2
Imperfect Design - Biology Forum
Aug 28, 2007 · Imperfect Design Darwin’s theory of Evolution explains how living things adapt to changing environments over time so as to survive and procreate the species.
Meniscus? - Biology Forum
Apr 21, 2006 · My biology teacher gave us instructions on how to set up a potometer. According to him the way to measure the rate of transpiration is to measure the distance moved by the …
What is the String Theory? - Biology Forum
Feb 15, 2006 · The string theory is a notion of cuantum physics that tries to explain how is it that our space and time can expand and contract influenced by the energy of everything…