Advertisement
churn analysis data science: Fighting Churn with Data Carl S. Gold, 2020-12-22 The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. Summary The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. This hands-on guide is packed with techniques for converting raw data into measurable metrics, testing hypotheses, and presenting findings that are easily understandable to non-technical decision makers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Keeping customers active and engaged is essential for any business that relies on recurring revenue and repeat sales. Customer turnover—or “churn”—is costly, frustrating, and preventable. By applying the techniques in this book, you can identify the warning signs of churn and learn to catch customers before they leave. About the book Fighting Churn with Data teaches developers and data scientists proven techniques for stopping churn before it happens. Packed with real-world use cases and examples, this book teaches you to convert raw data into measurable behavior metrics, calculate customer lifetime value, and improve churn forecasting with demographic data. By following Zuora Chief Data Scientist Carl Gold’s methods, you’ll reap the benefits of high customer retention. What's inside Calculating churn metrics Identifying user behavior that predicts churn Using churn reduction tactics with customer segmentation Applying churn analysis techniques to other business areas Using AI for accurate churn forecasting About the reader For readers with basic data analysis skills, including Python and SQL. About the author Carl Gold (PhD) is the Chief Data Scientist at Zuora, Inc., the industry-leading subscription management platform. Table of Contents: PART 1 - BUILDING YOUR ARSENAL 1 The world of churn 2 Measuring churn 3 Measuring customers 4 Observing renewal and churn PART 2 - WAGING THE WAR 5 Understanding churn and behavior with metrics 6 Relationships between customer behaviors 7 Segmenting customers with advanced metrics PART 3 - SPECIAL WEAPONS AND TACTICS 8 Forecasting churn 9 Forecast accuracy and machine learning 10 Churn demographics and firmographics 11 Leading the fight against churn |
churn analysis data science: Developing Churn Models Using Data Mining Techniques and Social Network Analysis Klepac, Goran, 2014-07-31 This book provides an in-depth analysis of attrition modeling relevant to business planning and management, offering insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytic tools--Provided by publisher. |
churn analysis data science: Public Policy Analytics Ken Steif, 2021-08-18 Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory indicators; understand ‘spatial process’ and develop spatial analytics; how to develop ‘useful’ predictive analytics; how to convey these outputs to non-technical decision-makers through the medium of data visualization; and why, ultimately, data science and ‘Planning’ are one and the same. A graduate-level introduction to data science, this book will appeal to researchers and data scientists at the intersection of data analytics and public policy, as well as readers who wish to understand how algorithms will affect the future of government. |
churn analysis data science: Fighting Churn with Data Carl Gold, 2020-11-13 The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. Summary The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. This hands-on guide is packed with techniques for converting raw data into measurable metrics, testing hypotheses, and presenting findings that are easily understandable to non-technical decision makers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Keeping customers active and engaged is essential for any business that relies on recurring revenue and repeat sales. Customer turnover—or “churn”—is costly, frustrating, and preventable. By applying the techniques in this book, you can identify the warning signs of churn and learn to catch customers before they leave. About the book Fighting Churn with Data teaches developers and data scientists proven techniques for stopping churn before it happens. Packed with real-world use cases and examples, this book teaches you to convert raw data into measurable behavior metrics, calculate customer lifetime value, and improve churn forecasting with demographic data. By following Zuora Chief Data Scientist Carl Gold’s methods, you’ll reap the benefits of high customer retention. What's inside Calculating churn metrics Identifying user behavior that predicts churn Using churn reduction tactics with customer segmentation Applying churn analysis techniques to other business areas Using AI for accurate churn forecasting About the reader For readers with basic data analysis skills, including Python and SQL. About the author Carl Gold (PhD) is the Chief Data Scientist at Zuora, Inc., the industry-leading subscription management platform. Table of Contents: PART 1 - BUILDING YOUR ARSENAL 1 The world of churn 2 Measuring churn 3 Measuring customers 4 Observing renewal and churn PART 2 - WAGING THE WAR 5 Understanding churn and behavior with metrics 6 Relationships between customer behaviors 7 Segmenting customers with advanced metrics PART 3 - SPECIAL WEAPONS AND TACTICS 8 Forecasting churn 9 Forecast accuracy and machine learning 10 Churn demographics and firmographics 11 Leading the fight against churn |
churn analysis data science: Computer Applications for Database, Education and Ubiquitous Computing Tai-hoon Kim, Jianhua Ma, Wai-chi Fang, Yanchun Zhang, Alfredo Cuzzocrea, 2012-11-27 This volume constitutes the refereed proceedings of the International Conferences, EL, DTA and UNESST 2012, held as part of the Future Generation Information Technology Conference, FGIT 2012, Kangwondo, Korea, in December 2012. The papers presented were carefully reviewed and selected from numerous submissions and focus on the various aspects of education and learning, database theory and application and u- and e-service, science and technology. |
churn analysis data science: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates |
churn analysis data science: Data Science for Marketing Analytics Tommy Blanchard, Debasish Behera, Pranshu Bhatnagar, 2019-03-30 Explore new and more sophisticated tools that reduce your marketing analytics efforts and give you precise results Key FeaturesStudy new techniques for marketing analyticsExplore uses of machine learning to power your marketing analysesWork through each stage of data analytics with the help of multiple examples and exercisesBook Description Data Science for Marketing Analytics covers every stage of data analytics, from working with a raw dataset to segmenting a population and modeling different parts of the population based on the segments. The book starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach, and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models, and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modeling customer product choices. By the end of this book, you will be able to build your own marketing reporting and interactive dashboard solutions. What you will learnAnalyze and visualize data in Python using pandas and MatplotlibStudy clustering techniques, such as hierarchical and k-means clusteringCreate customer segments based on manipulated data Predict customer lifetime value using linear regressionUse classification algorithms to understand customer choiceOptimize classification algorithms to extract maximal informationWho this book is for Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts. It'll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary. |
churn analysis data science: Analytics in a Big Data World Bart Baesens, 2014-04-15 The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities. |
churn analysis data science: Advanced Data Mining and Applications Shuigeng Zhou, Songmao Zhang, George Karypis, 2012-12-09 This book constitutes the refereed proceedings of the 8th International Conference on Advanced Data Mining and Applications, ADMA 2012, held in Nanjing, China, in December 2012. The 32 regular papers and 32 short papers presented in this volume were carefully reviewed and selected from 168 submissions. They are organized in topical sections named: social media mining; clustering; machine learning: algorithms and applications; classification; prediction, regression and recognition; optimization and approximation; mining time series and streaming data; Web mining and semantic analysis; data mining applications; search and retrieval; information recommendation and hiding; outlier detection; topic modeling; and data cube computing. |
churn analysis data science: Predictive Analytics Eric Siegel, 2016-01-12 Mesmerizing & fascinating... —The Seattle Post-Intelligencer The Freakonomics of big data. —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a |
churn analysis data science: Artificial Intelligence and Applied Mathematics in Engineering Problems D. Jude Hemanth, Utku Kose, 2020-01-03 This book features research presented at the 1st International Conference on Artificial Intelligence and Applied Mathematics in Engineering, held on 20–22 April 2019 at Antalya, Manavgat (Turkey). In today’s world, various engineering areas are essential components of technological innovations and effective real-world solutions for a better future. In this context, the book focuses on problems in engineering and discusses research using artificial intelligence and applied mathematics. Intended for scientists, experts, M.Sc. and Ph.D. students, postdocs and anyone interested in the subjects covered, the book can also be used as a reference resource for courses related to artificial intelligence and applied mathematics. |
churn analysis data science: Fundamentals of Machine Learning for Predictive Data Analytics, second edition John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, 2020-10-20 The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning. |
churn analysis data science: Data Science and Data Analytics Amit Kumar Tyagi, 2021-09-22 Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured (labeled) and unstructured (unlabeled) data. It is the future of Artificial Intelligence (AI) and a necessity of the future to make things easier and more productive. In simple terms, data science is the discovery of data or uncovering hidden patterns (such as complex behaviors, trends, and inferences) from data. Moreover, Big Data analytics/data analytics are the analysis mechanisms used in data science by data scientists. Several tools, such as Hadoop, R, etc., are used to analyze this large amount of data to predict valuable information and for decision-making. Note that structured data can be easily analyzed by efficient (available) business intelligence tools, while most of the data (80% of data by 2020) is in an unstructured form that requires advanced analytics tools. But while analyzing this data, we face several concerns, such as complexity, scalability, privacy leaks, and trust issues. Data science helps us to extract meaningful information or insights from unstructured or complex or large amounts of data (available or stored virtually in the cloud). Data Science and Data Analytics: Opportunities and Challenges covers all possible areas, applications with arising serious concerns, and challenges in this emerging field in detail with a comparative analysis/taxonomy. FEATURES Gives the concept of data science, tools, and algorithms that exist for many useful applications Provides many challenges and opportunities in data science and data analytics that help researchers to identify research gaps or problems Identifies many areas and uses of data science in the smart era Applies data science to agriculture, healthcare, graph mining, education, security, etc. Academicians, data scientists, and stockbrokers from industry/business will find this book useful for designing optimal strategies to enhance their firm’s productivity. |
churn analysis data science: Data Mining and Predictive Analytics Daniel T. Larose, 2015-02-19 Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives. |
churn analysis data science: Fundamentals of Predictive Analytics with JMP, Second Edition Ron Klimberg, B. D. McCullough, 2017-12-19 Going beyond the theoretical foundation, this step-by-step book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. -- |
churn analysis data science: Data Science for Marketing Analytics Mirza Rahim Baig, Gururajan Govindan, Vishwesh Ravi Shrimali, 2021-09-07 Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language Key FeaturesUse data analytics and machine learning in a sales and marketing contextGain insights from data to make better business decisionsBuild your experience and confidence with realistic hands-on practiceBook Description Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects. You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions. As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior. By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making. What you will learnLoad, clean, and explore sales and marketing data using pandasForm and test hypotheses using real data sets and analytics toolsVisualize patterns in customer behavior using MatplotlibUse advanced machine learning models like random forest and SVMUse various unsupervised learning algorithms for customer segmentationUse supervised learning techniques for sales predictionEvaluate and compare different models to get the best outcomesOptimize models with hyperparameter tuning and SMOTEWho this book is for This marketing book is for anyone who wants to learn how to use Python for cutting-edge marketing analytics. Whether you're a developer who wants to move into marketing, or a marketing analyst who wants to learn more sophisticated tools and techniques, this book will get you on the right path. Basic prior knowledge of Python and experience working with data will help you access this book more easily. |
churn analysis data science: Predictive Analytics with Microsoft Azure Machine Learning Valentine Fontama, Roger Barga, Wee Hyong Tok, 2014-11-25 Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft. |
churn analysis data science: Data Warehousing and Knowledge Discovery Torben Bach Pedersen, Mukesh K. Mohania, A Min Tjoa, 2009-08-17 This book constitutes the refereed proceedings of the 11th International Conference on Data Warehousing and Knowledge Discovery, DaWak 2009 held in Linz, Austria in August/September 2009. The 36 revised full papers presented were carefully reviewed and selected from 124 submissions. The papers are organized in topical sections on data warehouse modeling, data streams, physical design, pattern mining, data cubes, data mining applications, analytics, data mining, clustering, spatio-temporal mining, rule mining, and OLAP recommendation. |
churn analysis data science: Database Marketing Robert C. Blattberg, Byung-Do Kim, Scott A. Neslin, 2010-02-26 Database marketing is at the crossroads of technology, business strategy, and customer relationship management. Enabled by sophisticated information and communication systems, today’s organizations have the capacity to analyze customer data to inform and enhance every facet of the enterprise—from branding and promotion campaigns to supply chain management to employee training to new product development. Based on decades of collective research, teaching, and application in the field, the authors present the most comprehensive treatment to date of database marketing, integrating theory and practice. Presenting rigorous models, methodologies, and techniques (including data collection, field testing, and predictive modeling), and illustrating them through dozens of examples, the authors cover the full spectrum of principles and topics related to database marketing. This is an excellent in-depth overview of both well-known and very recent topics in customer management models. It is an absolute must for marketers who want to enrich their knowledge on customer analytics. (Peter C. Verhoef, Professor of Marketing, Faculty of Economics and Business, University of Groningen) A marvelous combination of relevance and sophisticated yet understandable analytical material. It should be a standard reference in the area for many years. (Don Lehmann, George E. Warren Professor of Business, Columbia Business School) The title tells a lot about the book's approach—though the cover reads, database, the content is mostly about customers and that's where the real-world action is. Most enjoyable is the comprehensive story – in case after case – which clearly explains what the analysis and concepts really mean. This is an essential read for those interested in database marketing, customer relationship management and customer optimization. (Richard Hochhauser, President and CEO, Harte-Hanks, Inc.) In this tour de force of careful scholarship, the authors canvass the ever expanding literature on database marketing. This book will become an invaluable reference or text for anyone practicing, researching, teaching or studying the subject. (Edward C. Malthouse, Theodore R. and Annie Laurie Sills Associate Professor of Integrated Marketing Communications, Northwestern University) |
churn analysis data science: Data Analytics Applications in Gaming and Entertainment Günter Wallner, 2019-07-11 The last decade has witnessed the rise of big data in game development as the increasing proliferation of Internet-enabled gaming devices has made it easier than ever before to collect large amounts of player-related data. At the same time, the emergence of new business models and the diversification of the player base have exposed a broader potential audience, which attaches great importance to being able to tailor game experiences to a wide range of preferences and skill levels. This, in turn, has led to a growing interest in data mining techniques, as they offer new opportunities for deriving actionable insights to inform game design, to ensure customer satisfaction, to maximize revenues, and to drive technical innovation. By now, data mining and analytics have become vital components of game development. The amount of work being done in this area nowadays makes this an ideal time to put together a book on this subject. Data Analytics Applications in Gaming and Entertainment seeks to provide a cross section of current data analytics applications in game production. It is intended as a companion for practitioners, academic researchers, and students seeking knowledge on the latest practices in game data mining. The chapters have been chosen in such a way as to cover a wide range of topics and to provide readers with a glimpse at the variety of applications of data mining in gaming. A total of 25 authors from industry and academia have contributed 12 chapters covering topics such as player profiling, approaches for analyzing player communities and their social structures, matchmaking, churn prediction and customer lifetime value estimation, communication of analytical results, and visual approaches to game analytics. This book’s perspectives and concepts will spark heightened interest in game analytics and foment innovative ideas that will advance the exciting field of online gaming and entertainment. |
churn analysis data science: Discovering Knowledge in Data Daniel T. Larose, 2005-01-28 Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a white box methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online. |
churn analysis data science: Introduction to Statistical and Machine Learning Methods for Data Science Carlos Andre Reis Pinheiro, Mike Patetta, 2021-08-06 Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have. |
churn analysis data science: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
churn analysis data science: Introduction to Algorithmic Marketing Ilya Katsov, 2017-12 A comprehensive guide to advanced marketing automation for marketing strategists, data scientists, product managers, and software engineers. The book covers the main areas of marketing that require programmatic micro-decisioning - targeted promotions and advertisements, eCommerce search, recommendations, pricing, and assortment optimization. |
churn analysis data science: The Great Mental Models, Volume 1 Shane Parrish, Rhiannon Beaubien, 2024-10-15 Discover the essential thinking tools you’ve been missing with The Great Mental Models series by Shane Parrish, New York Times bestselling author and the mind behind the acclaimed Farnam Street blog and “The Knowledge Project” podcast. This first book in the series is your guide to learning the crucial thinking tools nobody ever taught you. Time and time again, great thinkers such as Charlie Munger and Warren Buffett have credited their success to mental models–representations of how something works that can scale onto other fields. Mastering a small number of mental models enables you to rapidly grasp new information, identify patterns others miss, and avoid the common mistakes that hold people back. The Great Mental Models: Volume 1, General Thinking Concepts shows you how making a few tiny changes in the way you think can deliver big results. Drawing on examples from history, business, art, and science, this book details nine of the most versatile, all-purpose mental models you can use right away to improve your decision making and productivity. This book will teach you how to: Avoid blind spots when looking at problems. Find non-obvious solutions. Anticipate and achieve desired outcomes. Play to your strengths, avoid your weaknesses, … and more. The Great Mental Models series demystifies once elusive concepts and illuminates rich knowledge that traditional education overlooks. This series is the most comprehensive and accessible guide on using mental models to better understand our world, solve problems, and gain an advantage. |
churn analysis data science: Heuristics in Analytics Carlos Andre Reis Pinheiro, Fiona McNeill, 2014-03-03 Employ heuristic adjustments for truly accurate analysis Heuristics in Analytics presents an approach to analysis that accounts for the randomness of business and the competitive marketplace, creating a model that more accurately reflects the scenario at hand. With an emphasis on the importance of proper analytical tools, the book describes the analytical process from exploratory analysis through model developments, to deployments and possible outcomes. Beginning with an introduction to heuristic concepts, readers will find heuristics applied to statistics and probability, mathematics, stochastic, and artificial intelligence models, ending with the knowledge applications that solve business problems. Case studies illustrate the everyday application and implication of the techniques presented, while the heuristic approach is integrated into analytical modeling, graph analysis, text analytics, and more. Robust analytics has become crucial in the corporate environment, and randomness plays an enormous role in business and the competitive marketplace. Failing to account for randomness can steer a model in an entirely wrong direction, negatively affecting the final outcome and potentially devastating the bottom line. Heuristics in Analytics describes how the heuristic characteristics of analysis can be overcome with problem design, math and statistics, helping readers to: Realize just how random the world is, and how unplanned events can affect analysis Integrate heuristic and analytical approaches to modeling and problem solving Discover how graph analysis is applied in real-world scenarios around the globe Apply analytical knowledge to customer behavior, insolvency prevention, fraud detection, and more Understand how text analytics can be applied to increase the business knowledge Every single factor, no matter how large or how small, must be taken into account when modeling a scenario or event—even the unknowns. The presence or absence of even a single detail can dramatically alter eventual outcomes. From raw data to final report, Heuristics in Analytics contains the information analysts need to improve accuracy, and ultimately, predictive, and descriptive power. |
churn analysis data science: Data Science and Big Data Analytics EMC Education Services, 2014-12-19 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today! |
churn analysis data science: Data Science Bookcamp Leonard Apeltsin, 2021-12-07 Learn data science with Python by building five real-world projects! Experiment with card game predictions, tracking disease outbreaks, and more, as you build a flexible and intuitive understanding of data science. In Data Science Bookcamp you will learn: - Techniques for computing and plotting probabilities - Statistical analysis using Scipy - How to organize datasets with clustering algorithms - How to visualize complex multi-variable datasets - How to train a decision tree machine learning algorithm In Data Science Bookcamp you’ll test and build your knowledge of Python with the kind of open-ended problems that professional data scientists work on every day. Downloadable data sets and thoroughly-explained solutions help you lock in what you’ve learned, building your confidence and making you ready for an exciting new data science career. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology A data science project has a lot of moving parts, and it takes practice and skill to get all the code, algorithms, datasets, formats, and visualizations working together harmoniously. This unique book guides you through five realistic projects, including tracking disease outbreaks from news headlines, analyzing social networks, and finding relevant patterns in ad click data. About the book Data Science Bookcamp doesn’t stop with surface-level theory and toy examples. As you work through each project, you’ll learn how to troubleshoot common problems like missing data, messy data, and algorithms that don’t quite fit the model you’re building. You’ll appreciate the detailed setup instructions and the fully explained solutions that highlight common failure points. In the end, you’ll be confident in your skills because you can see the results. What's inside - Web scraping - Organize datasets with clustering algorithms - Visualize complex multi-variable datasets - Train a decision tree machine learning algorithm About the reader For readers who know the basics of Python. No prior data science or machine learning skills required. About the author Leonard Apeltsin is the Head of Data Science at Anomaly, where his team applies advanced analytics to uncover healthcare fraud, waste, and abuse. Table of Contents CASE STUDY 1 FINDING THE WINNING STRATEGY IN A CARD GAME 1 Computing probabilities using Python 2 Plotting probabilities using Matplotlib 3 Running random simulations in NumPy 4 Case study 1 solution CASE STUDY 2 ASSESSING ONLINE AD CLICKS FOR SIGNIFICANCE 5 Basic probability and statistical analysis using SciPy 6 Making predictions using the central limit theorem and SciPy 7 Statistical hypothesis testing 8 Analyzing tables using Pandas 9 Case study 2 solution CASE STUDY 3 TRACKING DISEASE OUTBREAKS USING NEWS HEADLINES 10 Clustering data into groups 11 Geographic location visualization and analysis 12 Case study 3 solution CASE STUDY 4 USING ONLINE JOB POSTINGS TO IMPROVE YOUR DATA SCIENCE RESUME 13 Measuring text similarities 14 Dimension reduction of matrix data 15 NLP analysis of large text datasets 16 Extracting text from web pages 17 Case study 4 solution CASE STUDY 5 PREDICTING FUTURE FRIENDSHIPS FROM SOCIAL NETWORK DATA 18 An introduction to graph theory and network analysis 19 Dynamic graph theory techniques for node ranking and social network analysis 20 Network-driven supervised machine learning 21 Training linear classifiers with logistic regression 22 Training nonlinear classifiers with decision tree techniques 23 Case study 5 solution |
churn analysis data science: Knowledge Discovery in Databases: PKDD 2004 Jean-Francois Boulicaut, Floriana Esposito, Fosca Giannotti, Dino Pedreschi, 2004-09-10 This book constitutes the refereed proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2004, held in Pisa, Italy, in September 2004 jointly with ECML 2004. The 39 revised full papers and 9 revised short papers presented together with abstracts of 5 invited talks were carefully reviewed and selected from 194 papers submitted to PKDD and 107 papers submitted to both, PKDD and ECML. The papers present a wealth of new results in knowledge discovery in databases and address all current issues in the area. |
churn analysis data science: API Security in Action Neil Madden, 2020-12-08 API Security in Action teaches you how to create secure APIs for any situation. By following this hands-on guide you’ll build a social network API while mastering techniques for flexible multi-user security, cloud key management, and lightweight cryptography. Summary A web API is an efficient way to communicate with an application or service. However, this convenience opens your systems to new security risks. API Security in Action gives you the skills to build strong, safe APIs you can confidently expose to the world. Inside, you’ll learn to construct secure and scalable REST APIs, deliver machine-to-machine interaction in a microservices architecture, and provide protection in resource-constrained IoT (Internet of Things) environments. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology APIs control data sharing in every service, server, data store, and web client. Modern data-centric designs—including microservices and cloud-native applications—demand a comprehensive, multi-layered approach to security for both private and public-facing APIs. About the book API Security in Action teaches you how to create secure APIs for any situation. By following this hands-on guide you’ll build a social network API while mastering techniques for flexible multi-user security, cloud key management, and lightweight cryptography. When you’re done, you’ll be able to create APIs that stand up to complex threat models and hostile environments. What's inside Authentication Authorization Audit logging Rate limiting Encryption About the reader For developers with experience building RESTful APIs. Examples are in Java. About the author Neil Madden has in-depth knowledge of applied cryptography, application security, and current API security technologies. He holds a Ph.D. in Computer Science. Table of Contents PART 1 - FOUNDATIONS 1 What is API security? 2 Secure API development 3 Securing the Natter API PART 2 - TOKEN-BASED AUTHENTICATION 4 Session cookie authentication 5 Modern token-based authentication 6 Self-contained tokens and JWTs PART 3 - AUTHORIZATION 7 OAuth2 and OpenID Connect 8 Identity-based access control 9 Capability-based security and macaroons PART 4 - MICROSERVICE APIs IN KUBERNETES 10 Microservice APIs in Kubernetes 11 Securing service-to-service APIs PART 5 - APIs FOR THE INTERNET OF THINGS 12 Securing IoT communications 13 Securing IoT APIs |
churn analysis data science: Data Pipelines with Apache Airflow Bas P. Harenslak, Julian de Ruiter, 2021-04-27 This book teaches you how to build and maintain effective data pipelines. Youll explore the most common usage patterns, including aggregating multiple data sources, connecting to and from data lakes, and cloud deployment. -- |
churn analysis data science: Leviathan Wakes James S. A. Corey, 2011-06-15 From a New York Times bestselling and Hugo award-winning author comes a modern masterwork of science fiction, introducing a captain, his crew, and a detective as they unravel a horrifying solar system wide conspiracy that begins with a single missing girl. Now a Prime Original series. Humanity has colonized the solar system—Mars, the Moon, the Asteroid Belt and beyond—but the stars are still out of our reach. Jim Holden is XO of an ice miner making runs from the rings of Saturn to the mining stations of the Belt. When he and his crew stumble upon a derelict ship, the Scopuli, they find themselves in possession of a secret they never wanted. A secret that someone is willing to kill for—and kill on a scale unfathomable to Jim and his crew. War is brewing in the system unless he can find out who left the ship and why. Detective Miller is looking for a girl. One girl in a system of billions, but her parents have money and money talks. When the trail leads him to the Scopuli and rebel sympathizer Holden, he realizes that this girl may be the key to everything. Holden and Miller must thread the needle between the Earth government, the Outer Planet revolutionaries, and secretive corporations—and the odds are against them. But out in the Belt, the rules are different, and one small ship can change the fate of the universe. Interplanetary adventure the way it ought to be written. —George R. R. Martin The Expanse Leviathan Wakes Caliban's War Abaddon's Gate Cibola Burn Nemesis Games Babylon's Ashes Persepolis Rising Tiamat's Wrath Leviathan Falls Memory's Legion The Expanse Short Fiction Drive The Butcher of Anderson Station Gods of Risk The Churn The Vital Abyss Strange Dogs Auberon The Sins of Our Fathers |
churn analysis data science: Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing Amit Kumar Tyagi, Shrikant Tiwari, Gulshan Soni, 2024-10-23 Today, in this smart era, data analytics and artificial intelligence (AI) play an important role in predictive maintenance (PdM) within the manufacturing industry. This innovative approach aims to optimize maintenance strategies by predicting when equipment or machinery is likely to fail so that maintenance can be performed just in time to prevent costly breakdowns. This book contains up-to-date information on predictive maintenance and the latest advancements, trends, and tools required to reduce costs and save time for manufacturers and industries. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing provides an extensive and in-depth exploration of the intersection of data analytics, artificial intelligence, and predictive maintenance in the manufacturing industry and covers fundamental concepts, advanced techniques, case studies, and practical applications. Using a multidisciplinary approach, this book recognizes that predictive maintenance in manufacturing requires collaboration among engineers, data scientists, and business professionals and includes case studies from various manufacturing sectors showcasing successful applications of predictive maintenance. The real-world examples explain the useful benefits and ROI achieved by organizations. The emphasis is on scalability, making it suitable for both small and large manufacturing operations, and readers will learn how to adapt predictive maintenance strategies to different scales and industries. This book presents resources and references to keep readers updated on the latest advancements, tools, and trends, ensuring continuous learning. Serving as a reference guide, this book focuses on the latest advancements, trends, and tools relevant to predictive maintenance and can also serve as an educational resource for students studying manufacturing, data science, or related fields. |
churn analysis data science: Profit Driven Business Analytics Wouter Verbeke, Bart Baesens, Cristian Bravo, 2017-10-09 Maximize profit and optimize decisions with advanced business analytics Profit-Driven Business Analytics provides actionable guidance on optimizing the use of data to add value and drive better business. Combining theoretical and technical insights into daily operations and long-term strategy, this book acts as a development manual for practitioners seeking to conceive, develop, and manage advanced analytical models. Detailed discussion delves into the wide range of analytical approaches and modeling techniques that can help maximize business payoff, and the author team draws upon their recent research to share deep insight about optimal strategy. Real-life case studies and examples illustrate these techniques at work, and provide clear guidance for implementation in your own organization. From step-by-step instruction on data handling, to analytical fine-tuning, to evaluating results, this guide provides invaluable guidance for practitioners seeking to reap the advantages of true business analytics. Despite widespread discussion surrounding the value of data in decision making, few businesses have adopted advanced analytic techniques in any meaningful way. This book shows you how to delve deeper into the data and discover what it can do for your business. Reinforce basic analytics to maximize profits Adopt the tools and techniques of successful integration Implement more advanced analytics with a value-centric approach Fine-tune analytical information to optimize business decisions Both data stored and streamed has been increasing at an exponential rate, and failing to use it to the fullest advantage equates to leaving money on the table. From bolstering current efforts to implementing a full-scale analytics initiative, the vast majority of businesses will see greater profit by applying advanced methods. Profit-Driven Business Analytics provides a practical guidebook and reference for adopting real business analytics techniques. |
churn analysis data science: Analytical Skills for AI and Data Science Daniel Vaughan, 2020-05-21 While several market-leading companies have successfully transformed their business models by following data- and AI-driven paths, the vast majority have yet to reap the benefits. How can your business and analytics units gain a competitive advantage by capturing the full potential of this predictive revolution? This practical guide presents a battle-tested end-to-end method to help you translate business decisions into tractable prescriptive solutions using data and AI as fundamental inputs. Author Daniel Vaughan shows data scientists, analytics practitioners, and others interested in using AI to transform their businesses not only how to ask the right questions but also how to generate value using modern AI technologies and decision-making principles. You’ll explore several use cases common to many enterprises, complete with examples you can apply when working to solve your own issues. Break business decisions into stages that can be tackled using different skills from the analytical toolbox Identify and embrace uncertainty in decision making and protect against common human biases Customize optimal decisions to different customers using predictive and prescriptive methods and technologies Ask business questions that create high value through AI- and data-driven technologies |
churn analysis data science: Big Data Analytics Kiran Chaudhary, Mansaf Alam, 2022-01-19 Big Data Analytics: Applications in Business and Marketing explores the concepts and applications related to marketing and business as well as future research directions. It also examines how this emerging field could be extended to performance management and decision-making. Investment in business and marketing analytics can create value through proper allocation of resources and resource orchestration process. The use of data analytics tools can be used to diagnose and improve performance. The book is divided into five parts. The first part introduces data science, big data, and data analytics. The second part focuses on applications of business analytics including: Big data analytics and algorithm Market basket analysis Anticipating consumer purchase behavior Variation in shopping patterns Big data analytics for market intelligence The third part looks at business intelligence and features an evaluation study of churn prediction models for business Intelligence. The fourth part of the book examines analytics for marketing decision-making and the roles of big data analytics for market intelligence and of consumer behavior. The book concludes with digital marketing, marketing by consumer analytics, web analytics for digital marketing, and smart retailing. This book covers the concepts, applications and research trends of marketing and business analytics with the aim of helping organizations increase profitability by improving decision-making through data analytics. |
churn analysis data science: Sales Engagement Manny Medina, Max Altschuler, Mark Kosoglow, 2019-03-12 Engage in sales—the modern way Sales Engagement is how you engage and interact with your potential buyer to create connection, grab attention, and generate enough interest to create a buying opportunity. Sales Engagement details the modern way to build the top of the funnel and generate qualified leads for B2B companies. This book explores why a Sales Engagement strategy is so important, and walks you through the modern sales process to ensure you’re effectively connecting with customers every step of the way. • Find common factors holding your sales back—and reverse them through channel optimization • Humanize sales with personas and relevant information at every turn • Understand why A/B testing is so incredibly critical to success, and how to do it right • Take your sales process to the next level with a rock solid, modern Sales Engagement strategy This book is essential reading for anyone interested in up-leveling their game and doing more than they ever thought possible. |
churn analysis data science: Hands-On Data Science for Marketing Yoon Hyup Hwang, 2019-03-29 Optimize your marketing strategies through analytics and machine learning Key FeaturesUnderstand how data science drives successful marketing campaignsUse machine learning for better customer engagement, retention, and product recommendationsExtract insights from your data to optimize marketing strategies and increase profitabilityBook Description Regardless of company size, the adoption of data science and machine learning for marketing has been rising in the industry. With this book, you will learn to implement data science techniques to understand the drivers behind the successes and failures of marketing campaigns. This book is a comprehensive guide to help you understand and predict customer behaviors and create more effectively targeted and personalized marketing strategies. This is a practical guide to performing simple-to-advanced tasks, to extract hidden insights from the data and use them to make smart business decisions. You will understand what drives sales and increases customer engagements for your products. You will learn to implement machine learning to forecast which customers are more likely to engage with the products and have high lifetime value. This book will also show you how to use machine learning techniques to understand different customer segments and recommend the right products for each customer. Apart from learning to gain insights into consumer behavior using exploratory analysis, you will also learn the concept of A/B testing and implement it using Python and R. By the end of this book, you will be experienced enough with various data science and machine learning techniques to run and manage successful marketing campaigns for your business. What you will learnLearn how to compute and visualize marketing KPIs in Python and RMaster what drives successful marketing campaigns with data scienceUse machine learning to predict customer engagement and lifetime valueMake product recommendations that customers are most likely to buyLearn how to use A/B testing for better marketing decision makingImplement machine learning to understand different customer segmentsWho this book is for If you are a marketing professional, data scientist, engineer, or a student keen to learn how to apply data science to marketing, this book is what you need! It will be beneficial to have some basic knowledge of either Python or R to work through the examples. This book will also be beneficial for beginners as it covers basic-to-advanced data science concepts and applications in marketing with real-life examples. |
churn analysis data science: Quantitative Methods for Management Miguel Ángel Canela, Inés Alegre, Alberto Ibarra, 2019-07-03 This book focuses on the use of quantitative methods for both business and management, helping readers understand the most relevant quantitative methods for managerial decision-making. Pursuing a highly practical approach, the book reduces the theoretical information to a minimum, so as to give full prominence to the analysis of real business problems. Each chapter includes a brief theoretical explanation, followed by a real-life managerial case that needs to be solved, which is accompanied by a corresponding Microsoft Excel® dataset. The practical cases and exercises are solved using Excel, and for each problem, the authors provide an Excel file with the complete solution and corresponding calculations, which can be downloaded easily from the book’s website. Further, in an appendix, readers can find solutions to the same problems, but using the R statistical language. The book represents a valuable reference guide for postgraduate, MBA and executive education students, as it offers a hands-on, practical approach to learning quantitative methods in a managerial context. It will also be of interest to managers looking for a practical and straightforward way to learn about quantitative methods and improve their decision-making processes. |
churn analysis data science: Business Intelligence Ramesh Sharda, Dursun Delen, Efraim Turban, 2017-01-13 For courses on Business Intelligence or Decision Support Systems. A managerial approach to understanding business intelligence systems. To help future managers use and understand analytics, Business Intelligence provides students with a solid foundation of BI that is reinforced with hands-on practice. |
metabolism - Why are 6 turns of the Calvin cycle needed to make …
Oct 6, 2021 · $\begingroup$ @David Added; I think the question is pretty clear. Textbooks often say you need "6 runs" through the Calvin cycle to make glucose; this makes a lot of sense …
Does food continue to stay sequential once it is inside my body?
Feb 4, 2016 · In general, food is not kept in any particular sequential order. The stomach has a lot of smooth muscle which churns the food, very rapidly erasing any "order" to the food.
fluorescent microscopy - How to set threshold in ImageJ for …
What was a "silver churn" in the Gilbert and Sullivan opera "Patience"? John Deere D125 lawn mower only makes buzz sound How does the Donnan effect generate an electrical potential?
metabolism - Why are 6 turns of the Calvin cycle needed to make …
Oct 6, 2021 · $\begingroup$ @David Added; I think the question is pretty clear. Textbooks often say you need "6 runs" through the Calvin cycle to make glucose; this makes a lot of sense …
Does food continue to stay sequential once it is inside my body?
Feb 4, 2016 · In general, food is not kept in any particular sequential order. The stomach has a lot of smooth muscle which churns the food, very rapidly erasing any "order" to the food.
fluorescent microscopy - How to set threshold in ImageJ for …
What was a "silver churn" in the Gilbert and Sullivan opera "Patience"? John Deere D125 lawn mower only makes buzz sound How does the Donnan effect generate an electrical potential?