civil engineering machine learning: Probabilistic Machine Learning for Civil Engineers James-A. Goulet, 2020-04-14 An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws. The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment. |
civil engineering machine learning: Artificial Intelligence and Machine Learning Techniques for Civil Engineering Plevris, Vagelis, Ahmad, Afaq, Lagaros, Nikos D., 2023-06-05 In recent years, artificial intelligence (AI) has drawn significant attention with respect to its applications in several scientific fields, varying from big data handling to medical diagnosis. A tremendous transformation has taken place with the emerging application of AI. AI can provide a wide range of solutions to address many challenges in civil engineering. Artificial Intelligence and Machine Learning Techniques for Civil Engineering highlights the latest technologies and applications of AI in structural engineering, transportation engineering, geotechnical engineering, and more. It features a collection of innovative research on the methods and implementation of AI and machine learning in multiple facets of civil engineering. Covering topics such as damage inspection, safety risk management, and information modeling, this premier reference source is an essential resource for engineers, government officials, business leaders and executives, construction managers, students and faculty of higher education, librarians, researchers, and academicians. |
civil engineering machine learning: A Primer on Machine Learning Applications in Civil Engineering Paresh Chandra Deka, 2019-10-28 Machine learning has undergone rapid growth in diversification and practicality, and the repertoire of techniques has evolved and expanded. The aim of this book is to provide a broad overview of the available machine-learning techniques that can be utilized for solving civil engineering problems. The fundamentals of both theoretical and practical aspects are discussed in the domains of water resources/hydrological modeling, geotechnical engineering, construction engineering and management, and coastal/marine engineering. Complex civil engineering problems such as drought forecasting, river flow forecasting, modeling evaporation, estimation of dew point temperature, modeling compressive strength of concrete, ground water level forecasting, and significant wave height forecasting are also included. Features Exclusive information on machine learning and data analytics applications with respect to civil engineering Includes many machine learning techniques in numerous civil engineering disciplines Provides ideas on how and where to apply machine learning techniques for problem solving Covers water resources and hydrological modeling, geotechnical engineering, construction engineering and management, coastal and marine engineering, and geographical information systems Includes MATLAB® exercises |
civil engineering machine learning: Machine Learning Applications in Civil Engineering Kundan Meshram, 2023-09-29 Machine Learning Applications in Civil Engineering discusses machine learning and deep learning models for different civil engineering applications. These models work for stochastic methods wherein internal processing is done using randomized prototypes. The book explains various machine learning model designs that will assist researchers to design multi domain systems with maximum efficiency. It introduces Machine Learning and its applications to different Civil Engineering tasks, including Basic Machine Learning Models for data pre-processing, models for data representation, classification models for Civil Engineering Applications, Bioinspired Computing models for Civil Engineering, and their case studies. Using this book, civil engineering students and researchers can deep dive into Machine Learning, and identify various solutions to practical Civil Engineering tasks. - Introduces various ML models for Civil Engineering Applications that will assist readers in their analysis of design and development interfaces for building these applications - Reviews different lacunas and challenges in current models used for Civil Engineering scenarios - Explores designs for customized components for optimum system deployment - Explains various machine learning model designs that will assist researchers to design multi domain systems with maximum efficiency |
civil engineering machine learning: Probabilistic Machine Learning for Civil Engineers James-A. Goulet, 2020-03-16 An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws. The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment. |
civil engineering machine learning: Artificial Intelligence Applications for Sustainable Construction Moncef L. Nehdi, Harish Chandra Arora, Krishna Kumar, Robertas Damaševičius, Aman Kumar, 2024-02-13 Artificial Intelligence Applications for Sustainable Construction presents the latest developments in AI and ML technologies applied to real-world civil engineering concerns. With an increasing amount of attention on the environmental impact of every industry, more construction projects are going to require sustainable construction practices. This volume offers research evidence, simulation results, and case studies to support this change. Sustainable construction, in fact, not only uses renewable and recyclable materials when building new structures or repairing deteriorating ones, but also adopts all possible methods to reduce energy consumption and waste. The concisely written but comprehensive, practical knowledge put forward by this international group of highly specialized editors and contributors will prove to be beneficial to engineering students and professionals alike. - Presents convincing success stories that encourage application of AI-powered tools to civil engineering - Provides a wealth of valuable technical information to address and resolve many challenging construction problems - Illustrates the most recent shifts in thinking and practice for sustainable construction |
civil engineering machine learning: Artificial Intelligence in Construction Engineering and Management Limao Zhang, Yue Pan, Xianguo Wu, Mirosław J. Skibniewski, 2021-06-18 This book highlights the latest technologies and applications of Artificial Intelligence (AI) in the domain of construction engineering and management. The construction industry worldwide has been a late bloomer to adopting digital technology, where construction projects are predominantly managed with a heavy reliance on the knowledge and experience of construction professionals. AI works by combining large amounts of data with fast, iterative processing, and intelligent algorithms (e.g., neural networks, process mining, and deep learning), allowing the computer to learn automatically from patterns or features in the data. It provides a wide range of solutions to address many challenging construction problems, such as knowledge discovery, risk estimates, root cause analysis, damage assessment and prediction, and defect detection. A tremendous transformation has taken place in the past years with the emerging applications of AI. This enables industrial participants to operate projects more efficiently and safely, not only increasing the automation and productivity in construction but also enhancing the competitiveness globally. |
civil engineering machine learning: Machine Learning for Engineers Ryan G. McClarren, 2021-09-21 All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit. |
civil engineering machine learning: Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering Gebrail Bekdas, Sinan Melih Nigdeli, Melda Yucel, 2019 This book examines the application of artificial intelligence and machine learning civil, mechanical, and industrial engineering-- |
civil engineering machine learning: Probabilistic Machine Learning Kevin P. Murphy, 2022-03-01 A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach. |
civil engineering machine learning: Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure M. Z. Naser, 2023-10-18 The past few years have demonstrated how civil infrastructure continues to experience an unprecedented scale of extreme loading conditions (i.e. hurricanes, wildfires and earthquakes). Despite recent advancements in various civil engineering disciplines, specific to the analysis, design and assessment of structures, it is unfortunate that it is common nowadays to witness large scale damage in buildings, bridges and other infrastructure. The analysis, design and assessment of infrastructure comprises of a multitude of dimensions spanning a highly complex paradigm across material sciences, structural engineering, construction and planning among others. While traditional methods fall short of adequately accounting for such complexity, fortunately, computational intelligence presents novel solutions that can effectively tackle growing demands of intense extreme events and modern designs of infrastructure – especially in this era where infrastructure is reaching new heights and serving larger populations with high social awareness and expectations. Computational Intelligence for Analysis, Design and Assessment of Civil Infrastructure highlights the growing trend of fostering the use of CI to realize contemporary, smart and safe infrastructure. This is an emerging area that has not fully matured yet and hence the book will draw considerable interest and attention. In a sense, the book presents results of innovative efforts supplemented with case studies from leading researchers that can be used as benchmarks to carryout future experiments and/or facilitate development of future experiments and advanced numerical models. The book is written with the intention to serve as a guide for a wide audience including senior postgraduate students, academic and industrial researchers, materials scientists and practicing engineers working in civil, structural and mechanical engineering. - Presents the fundamentals of AI/ML and how they can be applied in civil and environmental engineering - Shares the latest advances in explainable and interpretable methods for AI/ML in the context of civil and environmental engineering - Focuses on civil and environmental engineering applications (day-to-day and extreme events) and features case studies and examples covering various aspects of applications |
civil engineering machine learning: Artificial Intelligence in Structural Engineering Ian Smith, 1998-07-15 This book presents the state of the art of artificial intelligence techniques applied to structural engineering. The 28 revised full papers by leading scientists were solicited for presentation at a meeting held in Ascona, Switzerland, in July 1998. The recent advances in information technology, in particular decreasing hardware cost, Internet communication, faster computation, increased bandwidth, etc., allow for the application of new AI techniques to structural engineering. The papers presented deal with new aspects of information technology support for the design, analysis, monitoring, control and diagnosis of various structural engineering systems. |
civil engineering machine learning: Proceedings of the 18th International Conference on Computing in Civil and Building Engineering Eduardo Toledo Santos, Sergio Scheer, 2020-07-14 This book gathers the latest advances, innovations, and applications in the field of information technology in civil and building engineering, presented at the 18th International Conference on Computing in Civil and Building Engineering (ICCCBE), São Paulo, Brazil, August 18-20, 2020. It covers highly diverse topics such as BIM, construction information modeling, knowledge management, GIS, GPS, laser scanning, sensors, monitoring, VR/AR, computer-aided construction, product and process modeling, big data and IoT, cooperative design, mobile computing, simulation, structural health monitoring, computer-aided structural control and analysis, ICT in geotechnical engineering, computational mechanics, asset management, maintenance, urban planning, facility management, and smart cities. Written by leading researchers and engineers, and selected by means of a rigorous international peer-review process, the contributions highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations. |
civil engineering machine learning: Machine Learning for Civil and Environmental Engineers M. Z. Naser, 2023-07-17 Accessible and practical framework for machine learning applications and solutions for civil and environmental engineers This textbook introduces engineers and engineering students to the applications of artificial intelligence (AI), machine learning (ML), and machine intelligence (MI) in relation to civil and environmental engineering projects and problems, presenting state-of-the-art methodologies and techniques to develop and implement algorithms in the engineering domain. Through real-world projects like analysis and design of structural members, optimizing concrete mixtures for site applications, examining concrete cracking via computer vision, evaluating the response of bridges to hazards, and predicating water quality and energy expenditure in buildings, this textbook offers readers in-depth case studies with solved problems that are commonly faced by civil and environmental engineers. The approaches presented range from simplified to advanced methods, incorporating coding-based and coding-free techniques. Professional engineers and engineering students will find value in the step-by-step examples that are accompanied by sample databases and codes for readers to practice with. Written by a highly qualified professional with significant experience in the field, Machine Learning includes valuable information on: The current state of machine learning and causality in civil and environmental engineering as viewed through a scientometrics analysis, plus a historical perspective Supervised vs. unsupervised learning for regression, classification, and clustering problems Explainable and causal methods for practical engineering problems Database development, outlining how an engineer can effectively collect and verify appropriate data to be used in machine intelligence analysis A framework for machine learning adoption and application, covering key questions commonly faced by practitioners This textbook is a must-have reference for undergraduate/graduate students to learn concepts on the use of machine learning, for scientists/researchers to learn how to integrate machine learning into civil and environmental engineering, and for design/engineering professionals as a reference guide for undertaking MI design, simulation, and optimization for infrastructure. |
civil engineering machine learning: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN CIVIL ENGINEERING DR M.S.V.K.V.PRASAD, AZHARUDDIN AHMED, DR.M.VADIVEL, DR. NITYANAND S. KUDACHIMATH, MR.P.JAYARAJ, .. |
civil engineering machine learning: Deep Learning for Hydrometeorology and Environmental Science Taesam Lee, Vijay P. Singh, Kyung Hwa Cho, 2021-01-27 This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples with real datasets of hydrometeorology (e.g. streamflow and temperature) and environmental science (e.g. water quality). Deep learning is known as part of machine learning methodology based on the artificial neural network. Increasing data availability and computing power enhance applications of deep learning to hydrometeorological and environmental fields. However, books that specifically focus on applications to these fields are limited. Most of deep learning books demonstrate theoretical backgrounds and mathematics. However, examples with real data and step-by-step explanations to understand the algorithms in hydrometeorology and environmental science are very rare. This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN) as well as the conventional artificial neural network model. |
civil engineering machine learning: Machine Learning Engineering in Action Ben Wilson, 2022-05-17 Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer. |
civil engineering machine learning: Structural Fire Engineering Venkatesh Kodur, Mohannad Naser, 2020-02-28 Actionable strategies for the design and construction of fire-resistant structures This hands-on guide clearly explains the complex building codes and standards that relate to fire design and presents hands-on techniques engineers can apply to prevent or mitigate the effects of fire in structures. Dedicated chapters discuss specific procedures for steel, concrete, and timber buildings. You will get step-by-step guidance on how to evaluate fire resistance using both testing and calculation methods. Structural Fire Engineering begins with an introduction to the behavioral aspects of fire and explains how structural materials react when exposed to elevated temperatures. From there, the book discusses the fire design aspects of key codes and standards, such as the International Building Code, the International Fire Code, and the NFPA Fire Code. Advanced topics are covered in complete detail, including residual capacity evaluation of fire damaged structures and fire design for bridges and tunnels. Explains the fire design requirements of the IBC, IFC, the NFPA Fire Code, and National Building Code of Canada Presents design strategies for steel, concrete, and timber structures as well as for bridges and tunnels Contains downloadable spreadsheets and problems along with solutions for instructors |
civil engineering machine learning: Vibration-based Techniques For Damage Detection And Localization In Engineering Structures Ali Salehzadeh Nobari, M H Ferri Aliabadi, 2018-05-04 In the oil and gas industries, large companies are endeavoring to find and utilize efficient structural health monitoring methods in order to reduce maintenance costs and time. Through an examination of the vibration-based techniques, this title addresses theoretical, computational and experimental methods used within this trend.By providing comprehensive and up-to-date coverage of established and emerging processes, this book enables the reader to draw their own conclusions about the field of vibration-controlled damage detection in comparison with other available techniques. The chapters offer a balance between laboratory and practical applications, in addition to detailed case studies, strengths and weakness are drawn from a broad spectrum of information. |
civil engineering machine learning: Advances in Structural Engineering—Optimization Sinan Melih Nigdeli, Gebrail Bekdaş, Aylin Ece Kayabekir, Melda Yucel, 2020-12-04 This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects. |
civil engineering machine learning: Applications of Machine Learning Prashant Johri, Jitendra Kumar Verma, Sudip Paul, 2020-05-04 This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics. |
civil engineering machine learning: Application of Machine Learning and Deep Learning Methods to Power System Problems Morteza Nazari-Heris, Somayeh Asadi, Behnam Mohammadi-Ivatloo, Moloud Abdar, Houtan Jebelli, Milad Sadat-Mohammadi, 2021-11-21 This book evaluates the role of innovative machine learning and deep learning methods in dealing with power system issues, concentrating on recent developments and advances that improve planning, operation, and control of power systems. Cutting-edge case studies from around the world consider prediction, classification, clustering, and fault/event detection in power systems, providing effective and promising solutions for many novel challenges faced by power system operators. Written by leading experts, the book will be an ideal resource for researchers and engineers working in the electrical power engineering and power system planning communities, as well as students in advanced graduate-level courses. |
civil engineering machine learning: Machine Learning for Civil and Environmental Engineers M. Z. Naser, 2021-08-10 Accessible and practical framework for machine learning applications and solutions for civil and environmental engineers This textbook introduces engineers and engineering students to the applications of artificial intelligence (AI), machine learning (ML), and machine intelligence (MI) in relation to civil and environmental engineering projects and problems, presenting state-of-the-art methodologies and techniques to develop and implement algorithms in the engineering domain. Through real-world projects like analysis and design of structural members, optimizing concrete mixtures for site applications, examining concrete cracking via computer vision, evaluating the response of bridges to hazards, and predicating water quality, and energy expenditure in buildings, this textbook offers readers in-depth case studies with solved problems that are commonly faced by civil and environmental engineers. The approaches presented range from simplified to advanced methods, incorporating coding-based and coding-free techniques. Professional engineers and engineering students will find value in the step-by-step examples that are accompanied by sample databases and codes for readers to practice with. Written by a highly qualified professional with significant experience in the field, Machine Learning includes valuable information on: The current state of machine learning and causality in civil and environmental engineering as viewed through a scientometrics analysis, plus a historical perspective Supervised vs. unsupervised learning for regression, classification, and clustering problems Details explainable and causal methods for practical engineering problems Database development, outlining how an engineer can effectively collect and verify appropriate data to be used in machine intelligence analysis A framework for machine learning adoption and application, covering key questions commonly faced by practitioners This textbook is a must-have reference for undergraduate/graduate students to learn concepts on the use of machine learning, for scientists/researchers to learn how to integrate machine learning into civil and environmental engineering, and for design/engineering professionals as a reference guide for undertaking MI design, simulation, and optimization for infrastructure. |
civil engineering machine learning: Applications of Artificial Intelligence in Engineering Xiao-Zhi Gao, Rajesh Kumar, Sumit Srivastava, Bhanu Pratap Soni, 2021-05-10 This book presents best selected papers presented at the First Global Conference on Artificial Intelligence and Applications (GCAIA 2020), organized by the University of Engineering & Management, Jaipur, India, during 8–10 September 2020. The proceeding will be targeting the current research works in the domain of intelligent systems and artificial intelligence. |
civil engineering machine learning: Fundamentals and Methods of Machine and Deep Learning Pradeep Singh, 2022-02-01 FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers. |
civil engineering machine learning: Practical Machine Learning in R Fred Nwanganga, Mike Chapple, 2020-05-27 Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field. |
civil engineering machine learning: Applications of Artificial Neural Networks and Machine Learning in Civil Engineering Ali Kaveh, 2024-09-27 This book provides different applications of artificial neural networks (ANN) and machine learning (ML) in various problems of material science, structural optimization, and optimal analysis of structures in twenty two chapters. Nowadays, the world has witnessed unprecedented advances in technology and computer science. Artificial intelligence has emerged as a top field captivating global attention. Often referred to as AI, this technology stands apart from other disciplines as it aims to design machines and systems that exhibit intelligence, learn autonomously, and make decisions akin to humans. In order to comprehend the impact of this innovation, one must delve into the workings of artificial intelligence, trace its historical evolution from inception to the present day, and explore its diverse applications in domains like medicine, transportation, broadcasting, and marketing. Artificial intelligence introduces a transformative element to our reality, fostering significant breakthroughs and innovations. The book is used in any AI course, in particular, in Civil Engineering. It is also utilized in various fields of Industrial Civil Engineering. |
civil engineering machine learning: Machine Learning Applications in Civil Engineering Yasmin Murad, Husam Abu Hajar, Iftikhar Azim, 2022-12-16 |
civil engineering machine learning: Recent Advances in 3D Imaging, Modeling, and Reconstruction Voulodimos, Athanasios, Doulamis, Anastasios, 2020-02-28 3D image reconstruction is used in many fields, such as medicine, entertainment, and computer science. This highly demanded process comes with many challenges, such as images becoming blurry by atmospheric turbulence, getting snowed with noise, or becoming damaged within foreign regions. It is imperative to remain well-informed with the latest research in this field. Recent Advances in 3D Imaging, Modeling, and Reconstruction is a collection of innovative research on the methods and common techniques of image reconstruction as well as the accuracy of these methods. Featuring coverage on a wide range of topics such as ray casting, holographic techniques, and machine learning, this publication is ideally designed for graphic designers, computer engineers, medical professionals, robotics engineers, city planners, game developers, researchers, academicians, and students. |
civil engineering machine learning: Handbook of Research on Digital Transformation, Industry Use Cases, and the Impact of Disruptive Technologies Wynn, Martin George, 2021-10-15 Companies from various sectors of the economy are confronted with the new phenomenon of digital transformation and are faced with the challenge of formulating and implementing a company-wide strategy to incorporate what are often viewed as “disruptive” technologies. These technologies are sometimes associated with significant and extremely rapid change, in some cases with even the replacement of established business models. Many of these technologies have been deployed in unison by leading-edge companies acting as the catalyst for significant process change and people skills enhancement. The Handbook of Research on Digital Transformation, Industry Use Cases, and the Impact of Disruptive Technologies examines the phenomenon of digital transformation and the impact of disruptive technologies through the lens of industry case studies where different combinations of these new technologies have been deployed and incorporated into enterprise IT and business strategies. Covering topics including chatbot implementation, multinational companies, cloud computing, internet of things, artificial intelligence, big data and analytics, immersive technologies, and social media, this book is essential for senior management, IT managers, technologists, computer scientists, cybersecurity analysts, academicians, researchers, IT consultancies, professors, and students. |
civil engineering machine learning: Infrastructure Health in Civil Engineering (Two-Volume Set) Mohammed M. Ettouney, 2022-01-18 This two-volume set discusses the importance of linking the decision making concept to damage identification and structural modeling. It examines the process of addressing and maintaining structural health, including measurements, structural identification, and damage identification and discusses the theoretical and practical issues involved for each aspect. Emphasizing state-of-the-art practice as well as future directions, this text also features numerous practical case studies and covers the latest techniques in sensing and sensor utilization. |
civil engineering machine learning: Computing in Civil Engineering 2019 Yong K. Cho, Fernanda Leite, Amir Behzadan, Chao Wang, 2019 Selected papers from the ASCE International Conference on Computing in Civil Engineering 2019, held in Atlanta, Georgia, June 17-19, 2019. Sponsored by the Computing Division of ASCE.This collection contains 77 peer-reviewed papers on data, sensing, and analytics in civil engineering.Topics include: big data and machine learning; reality capture technologies; LiDAR and RGB-D; and robotics, automation, and control.This proceedings will be of interest to researchers and practitioners working with emerging computing technologies in a wide range of civil and construction engineering applications. |
civil engineering machine learning: Conformal Prediction for Reliable Machine Learning Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk, 2014-04-23 The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection |
civil engineering machine learning: Artificial Intelligence in Mechatronics and Civil Engineering Ehsan Momeni, Danial Jahed Armaghani, Aydin Azizi, 2023-02-15 Recent studies highlight the application of artificial intelligence, machine learning, and simulation techniques in engineering. This book covers the successful implementation of different intelligent techniques in various areas of engineering focusing on common areas between mechatronics and civil engineering. The power of artificial intelligence and machine learning techniques in solving some examples of real-life problems in engineering is highlighted in this book. The implementation process to design the optimum intelligent models is discussed in this book. |
civil engineering machine learning: Introduction to Machine Learning Ethem Alpaydin, 2014-08-22 Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments. |
civil engineering machine learning: New Advances in Soft Computing in Civil Engineering Gebrail Bekdaş, |
civil engineering machine learning: Reduced Order Methods for Modeling and Computational Reduction Alfio Quarteroni, Gianluigi Rozza, 2014-06-05 This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems. |
civil engineering machine learning: Pattern Recognition Applications in Engineering Burgos, Diego Alexander Tibaduiza, Vejar, Maribel Anaya, Pozo, Francesc, 2019-12-27 The implementation of data and information analysis has become a trending solution within multiple professions. New tools and approaches are continually being developed within data analysis to further solve the challenges that come with professional strategy. Pattern recognition is an innovative method that provides comparison techniques and defines new characteristics within the information acquisition process. Despite its recent trend, a considerable amount of research regarding pattern recognition and its various strategies is lacking. Pattern Recognition Applications in Engineering is an essential reference source that discusses various strategies of pattern recognition algorithms within industrial and research applications and provides examples of results in different professional areas including electronics, computation, and health monitoring. Featuring research on topics such as condition monitoring, data normalization, and bio-inspired developments, this book is ideally designed for analysts; researchers; civil, mechanical, and electronic engineers; computing scientists; chemists; academicians; and students. |
civil engineering machine learning: Machine Learning and Artificial Intelligence in Geosciences , 2020-09-22 Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics |
civil engineering machine learning: Artificial Intelligence and IoT Kalaiselvi Geetha Manoharan, Jawaharlal Arun Nehru, Sivaraman Balasubramanian, 2021-02-12 This book projects a futuristic scenario that is more existent than they have been at any time earlier. To be conscious of the bursting prospective of IoT, it has to be amalgamated with AI technologies. Predictive and advanced analysis can be made based on the data collected, discovered and analyzed. To achieve all these compatibility, complexity, legal and ethical issues arise due to automation of connected components and gadgets of widespread companies across the globe. While these are a few examples of issues, the authors’ intention in editing this book is to offer concepts of integrating AI with IoT in a precise and clear manner to the research community. In editing this book, the authors’ attempt is to provide novel advances and applications to address the challenge of continually discovering patterns for IoT by covering various aspects of implementing AI techniques to make IoT solutions smarter. The only way to remain pace with this data generated by the IoT and acquire the concealed acquaintance it encloses is to employ AI as the eventual catalyst for IoT. IoT together with AI is more than an inclination or existence; it will develop into a paradigm. It helps those researchers who have an interest in this field to keep insight into different concepts and their importance for applications in real life. This has been done to make the edited book more flexible and to stimulate further interest in topics. All these motivated the authors toward integrating AI in achieving smarter IoT. The authors believe that their effort can make this collection interesting and highly attract the student pursuing pre-research, research and even master in multidisciplinary domain. |
如何知道一个期刊是不是sci? - 知乎
Master Journal List在这个网站能搜到的就是吗?我在web of knowledge 上能搜到文章的杂志就是sci吗?
如何评价期刊nature water? - 知乎
We publish in the natural sciences (primarily Earth and environmental science), in engineering (including environmental, civil, chemical and materials engineering), and in the social sciences …
在一所大学里面 faculty, department, school 之间是什么关系?
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
知乎 - 有问题,就会有答案
知乎是一个问答社区,用户可以在这里提出问题并获得答案。
参考文献为外文文献时应该采用什么格式啊? - 知乎
Winfield,Richard Dien.Law in Civil Society.Madison:U of Wisconsin P,1995. CMS格式. CMS格式,又叫芝加哥论文格式,全称The Chicago Manual of Style,源于芝加哥大学出版社在1906年 …
安全验证 - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
如何做好一次表现高分的 Presentation? - 知乎
I want to confine my talk to the latest developments in civil engineering. Today, I am going to give a talk on the application of computers in medicine. My topic today will deal with the …
什么是 BIM,它的具体作用是什么? - 知乎
举例来说,土方工程使用civil 3d就是具体部分,使用revit来建立整栋大楼的三维模型等就是单体建筑;CIM(关于CIM现在有两种说法,一种是City Intelligent Model,城市智慧模型,这种说法 …
如何知道一个期刊是不是sci? - 知乎
Master Journal List在这个网站能搜到的就是吗?我在web of knowledge 上能搜到文章的杂志就是sci吗?
如何评价期刊nature water? - 知乎
We publish in the natural sciences (primarily Earth and environmental science), in engineering (including environmental, civil, chemical and materials engineering), and in the social sciences …
在一所大学里面 faculty, department, school 之间是什么关系? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
知乎 - 有问题,就会有答案
知乎是一个问答社区,用户可以在这里提出问题并获得答案。
参考文献为外文文献时应该采用什么格式啊? - 知乎
Winfield,Richard Dien.Law in Civil Society.Madison:U of Wisconsin P,1995. CMS格式. CMS格式,又叫芝加哥论文格式,全称The Chicago Manual of Style,源于芝加哥大学出版社在1906年 …
安全验证 - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
如何做好一次表现高分的 Presentation? - 知乎
I want to confine my talk to the latest developments in civil engineering. Today, I am going to give a talk on the application of computers in medicine. My topic today will deal with the …
什么是 BIM,它的具体作用是什么? - 知乎
举例来说,土方工程使用civil 3d就是具体部分,使用revit来建立整栋大楼的三维模型等就是单体建筑;CIM(关于CIM现在有两种说法,一种是City Intelligent Model,城市智慧模型,这种说法 …