Cloud Data Lakes Engineering Services

Advertisement



  cloud data lakes engineering services: The Enterprise Big Data Lake Alex Gorelik, 2019-02-21 The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries
  cloud data lakes engineering services: Data Engineering with Apache Spark, Delta Lake, and Lakehouse Manoj Kukreja, Danil Zburivsky, 2021-10-22 Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
  cloud data lakes engineering services: The Journey Continues: From Data Lake to Data-Driven Organization Mandy Chessell, Ferd Scheepers, Maryna Strelchuk, Ron van der Starre, Seth Dobrin, Daniel Hernandez, IBM Redbooks, 2018-02-19 This IBM RedguideTM publication looks back on the key decisions that made the data lake successful and looks forward to the future. It proposes that the metadata management and governance approaches developed for the data lake can be adopted more broadly to increase the value that an organization gets from its data. Delivering this broader vision, however, requires a new generation of data catalogs and governance tools built on open standards that are adopted by a multi-vendor ecosystem of data platforms and tools. Work is already underway to define and deliver this capability, and there are multiple ways to engage. This guide covers the reasons why this new capability is critical for modern businesses and how you can get value from it.
  cloud data lakes engineering services: Data Mesh Zhamak Dehghani, 2022-03-08 Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.
  cloud data lakes engineering services: Data Lake Analytics on Microsoft Azure Harsh Chawla, Pankaj Khattar, 2020-11-15 Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will This book includes comprehensive coverage of how: To architect data lake analytics solutions by choosing suitable technologies available on Microsoft Azure The advent of microservices applications covering ecommerce or modern solutions built on IoT and how real-time streaming data has completely disrupted this ecosystem These data analytics solutions have been transformed from solely understanding the trends from historical data to building predictions by infusing machine learning technologies into the solutions Data platform professionals who have been working on relational data stores, non-relational data stores, and big data technologies will find the content in this book useful. The book also can help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure. What Will You Learn You will understand the: Concepts of data lake analytics, the modern data warehouse, and advanced data analytics Architecture patterns of the modern data warehouse and advanced data analytics solutions Phases—such as Data Ingestion, Store, Prep and Train, and Model and Serve—of data analytics solutions and technology choices available on Azure under each phase In-depth coverage of real-time and batch mode data analytics solutions architecture Various managed services available on Azure such as Synapse analytics, event hubs, Stream analytics, CosmosDB, and managed Hadoop services such as Databricks and HDInsight Who This Book Is For Data platform professionals, database architects, engineers, and solution architects
  cloud data lakes engineering services: Financial Data Engineering Tamer Khraisha, 2024-10-09 Today, investment in financial technology and digital transformation is reshaping the financial landscape and generating many opportunities. Too often, however, engineers and professionals in financial institutions lack a practical and comprehensive understanding of the concepts, problems, techniques, and technologies necessary to build a modern, reliable, and scalable financial data infrastructure. This is where financial data engineering is needed. A data engineer developing a data infrastructure for a financial product possesses not only technical data engineering skills but also a solid understanding of financial domain-specific challenges, methodologies, data ecosystems, providers, formats, technological constraints, identifiers, entities, standards, regulatory requirements, and governance. This book offers a comprehensive, practical, domain-driven approach to financial data engineering, featuring real-world use cases, industry practices, and hands-on projects. You'll learn: The data engineering landscape in the financial sector Specific problems encountered in financial data engineering The structure, players, and particularities of the financial data domain Approaches to designing financial data identification and entity systems Financial data governance frameworks, concepts, and best practices The financial data engineering lifecycle from ingestion to production The varieties and main characteristics of financial data workflows How to build financial data pipelines using open source tools and APIs Tamer Khraisha, PhD, is a senior data engineer and scientific author with more than a decade of experience in the financial sector.
  cloud data lakes engineering services: The Self-Service Data Roadmap Sandeep Uttamchandani, 2020-09-10 Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization
  cloud data lakes engineering services: The Cloud Data Lake Rukmani Gopalan, 2022-12-12 More organizations than ever understand the importance of data lake architectures for deriving value from their data. Building a robust, scalable, and performant data lake remains a complex proposition, however, with a buffet of tools and options that need to work together to provide a seamless end-to-end pipeline from data to insights. This book provides a concise yet comprehensive overview on the setup, management, and governance of a cloud data lake. Author Rukmani Gopalan, a product management leader and data enthusiast, guides data architects and engineers through the major aspects of working with a cloud data lake, from design considerations and best practices to data format optimizations, performance optimization, cost management, and governance. Learn the benefits of a cloud-based big data strategy for your organization Get guidance and best practices for designing performant and scalable data lakes Examine architecture and design choices, and data governance principles and strategies Build a data strategy that scales as your organizational and business needs increase Implement a scalable data lake in the cloud Use cloud-based advanced analytics to gain more value from your data
  cloud data lakes engineering services: Data Engineering with AWS Gareth Eagar, 2023-10-31 Looking to revolutionize your data transformation game with AWS? Look no further! From strong foundations to hands-on building of data engineering pipelines, our expert-led manual has got you covered. Key Features Delve into robust AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines Stay up to date with a comprehensive revised chapter on Data Governance Build modern data platforms with a new section covering transactional data lakes and data mesh Book DescriptionThis book, authored by a seasoned Senior Data Architect with 25 years of experience, aims to help you achieve proficiency in using the AWS ecosystem for data engineering. This revised edition provides updates in every chapter to cover the latest AWS services and features, takes a refreshed look at data governance, and includes a brand-new section on building modern data platforms which covers; implementing a data mesh approach, open-table formats (such as Apache Iceberg), and using DataOps for automation and observability. You'll begin by reviewing the key concepts and essential AWS tools in a data engineer's toolkit and getting acquainted with modern data management approaches. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how that transformed data is used by various data consumers. You’ll learn how to ensure strong data governance, and about populating data marts and data warehouses along with how a data lakehouse fits into the picture. After that, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. Then, you'll explore how the power of machine learning and artificial intelligence can be used to draw new insights from data. In the final chapters, you'll discover transactional data lakes, data meshes, and how to build a cutting-edge data platform on AWS. By the end of this AWS book, you'll be able to execute data engineering tasks and implement a data pipeline on AWS like a pro!What you will learn Seamlessly ingest streaming data with Amazon Kinesis Data Firehose Optimize, denormalize, and join datasets with AWS Glue Studio Use Amazon S3 events to trigger a Lambda process to transform a file Load data into a Redshift data warehouse and run queries with ease Visualize and explore data using Amazon QuickSight Extract sentiment data from a dataset using Amazon Comprehend Build transactional data lakes using Apache Iceberg with Amazon Athena Learn how a data mesh approach can be implemented on AWS Who this book is forThis book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts, while gaining practical experience with common data engineering services on AWS, will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book, but it’s not a prerequisite. Familiarity with the AWS console and core services will also help you follow along.
  cloud data lakes engineering services: The Enterprise Big Data Lake Alex Gorelik, 2019-02-21 The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries
  cloud data lakes engineering services: Google Cloud Professional Data Engineer , 2024-10-26 Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
  cloud data lakes engineering services: Data Engineering with Google Cloud Platform Adi Wijaya, 2024-04-30 Become a successful data engineer by building and deploying your own data pipelines on Google Cloud, including making key architectural decisions Key Features Get up to speed with data governance on Google Cloud Learn how to use various Google Cloud products like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream Boost your confidence by getting Google Cloud data engineering certification guidance from real exam experiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe second edition of Data Engineering with Google Cloud builds upon the success of the first edition by offering enhanced clarity and depth to data professionals navigating the intricate landscape of data engineering. Beyond its foundational lessons, this new edition delves into the essential realm of data governance within Google Cloud, providing you with invaluable insights into managing and optimizing data resources effectively. Written by a Data Strategic Cloud Engineer at Google, this book helps you stay ahead of the curve by guiding you through the latest technological advancements in the Google Cloud ecosystem. You’ll cover essential aspects, from exploring Cloud Composer 2 to the evolution of Airflow 2.5. Additionally, you’ll explore how to work with cutting-edge tools like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream to perform data governance on datasets. By the end of this book, you'll be equipped to navigate the ever-evolving world of data engineering on Google Cloud, from foundational principles to cutting-edge practices.What you will learn Load data into BigQuery and materialize its output Focus on data pipeline orchestration using Cloud Composer Formulate Airflow jobs to orchestrate and automate a data warehouse Establish a Hadoop data lake, generate ephemeral clusters, and execute jobs on the Dataproc cluster Harness Pub/Sub for messaging and ingestion for event-driven systems Apply Dataflow to conduct ETL on streaming data Implement data governance services on Google Cloud Who this book is for Data analysts, IT practitioners, software engineers, or any data enthusiasts looking to have a successful data engineering career will find this book invaluable. Additionally, experienced data professionals who want to start using Google Cloud to build data platforms will get clear insights on how to navigate the path. Whether you're a beginner who wants to explore the fundamentals or a seasoned professional seeking to learn the latest data engineering concepts, this book is for you.
  cloud data lakes engineering services: Modern Data Strategy Mike Fleckenstein, Lorraine Fellows, 2018-02-12 This book contains practical steps business users can take to implement data management in a number of ways, including data governance, data architecture, master data management, business intelligence, and others. It defines data strategy, and covers chapters that illustrate how to align a data strategy with the business strategy, a discussion on valuing data as an asset, the evolution of data management, and who should oversee a data strategy. This provides the user with a good understanding of what a data strategy is and its limits. Critical to a data strategy is the incorporation of one or more data management domains. Chapters on key data management domains—data governance, data architecture, master data management and analytics, offer the user a practical approach to data management execution within a data strategy. The intent is to enable the user to identify how execution on one or more data management domains can help solve business issues. This book is intended for business users who work with data, who need to manage one or more aspects of the organization’s data, and who want to foster an integrated approach for how enterprise data is managed. This book is also an excellent reference for students studying computer science and business management or simply for someone who has been tasked with starting or improving existing data management.
  cloud data lakes engineering services: Building the Data Lakehouse Bill Inmon, Ranjeet Srivastava, Mary Levins, 2021-10 The data lakehouse is the next generation of the data warehouse and data lake, designed to meet today's complex and ever-changing analytics, machine learning, and data science requirements. Learn about the features and architecture of the data lakehouse, along with its powerful analytical infrastructure. Appreciate how the universal common connector blends structured, textual, analog, and IoT data. Maintain the lakehouse for future generations through Data Lakehouse Housekeeping and Data Future-proofing. Know how to incorporate the lakehouse into an existing data governance strategy. Incorporate data catalogs, data lineage tools, and open source software into your architecture to ensure your data scientists, analysts, and end users live happily ever after.
  cloud data lakes engineering services: Designing Cloud Data Platforms Danil Zburivsky, Lynda Partner, 2021-04-20 Centralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is an hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, you''ll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. You''ll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyse it. about the technology Access to affordable, dependable, serverless cloud services has revolutionized the way organizations can approach data management, and companies both big and small are raring to migrate to the cloud. But without a properly designed data platform, data in the cloud can remain just as siloed and inaccessible as it is today for most organizations. Designing Cloud Data Platforms lays out the principles of a well-designed platform that uses the scalable resources of the public cloud to manage all of an organization''s data, and present it as useful business insights. about the book In Designing Cloud Data Platforms, you''ll learn how to integrate data from multiple sources into a single, cloud-based, modern data platform. Drawing on their real-world experiences designing cloud data platforms for dozens of organizations, cloud data experts Danil Zburivsky and Lynda Partner take you through a six-layer approach to creating cloud data platforms that maximizes flexibility and manageability and reduces costs. Starting with foundational principles, you''ll learn how to get data into your platform from different databases, files, and APIs, the essential practices for organizing and processing that raw data, and how to best take advantage of the services offered by major cloud vendors. As you progress past the basics you''ll take a deep dive into advanced topics to get the most out of your data platform, including real-time data management, machine learning analytics, schema management, and more. what''s inside The tools of different public cloud for implementing data platforms Best practices for managing structured and unstructured data sets Machine learning tools that can be used on top of the cloud Cost optimization techniques about the reader For data professionals familiar with the basics of cloud computing and distributed data processing systems like Hadoop and Spark. about the authors Danil Zburivsky has over 10 years experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years.
  cloud data lakes engineering services: Cloud Computing for Science and Engineering Ian Foster, Dennis B. Gannon, 2017-09-29 A guide to cloud computing for students, scientists, and engineers, with advice and many hands-on examples. The emergence of powerful, always-on cloud utilities has transformed how consumers interact with information technology, enabling video streaming, intelligent personal assistants, and the sharing of content. Businesses, too, have benefited from the cloud, outsourcing much of their information technology to cloud services. Science, however, has not fully exploited the advantages of the cloud. Could scientific discovery be accelerated if mundane chores were automated and outsourced to the cloud? Leading computer scientists Ian Foster and Dennis Gannon argue that it can, and in this book offer a guide to cloud computing for students, scientists, and engineers, with advice and many hands-on examples. The book surveys the technology that underpins the cloud, new approaches to technical problems enabled by the cloud, and the concepts required to integrate cloud services into scientific work. It covers managing data in the cloud, and how to program these services; computing in the cloud, from deploying single virtual machines or containers to supporting basic interactive science experiments to gathering clusters of machines to do data analytics; using the cloud as a platform for automating analysis procedures, machine learning, and analyzing streaming data; building your own cloud with open source software; and cloud security. The book is accompanied by a website, Cloud4SciEng.org, that provides a variety of supplementary material, including exercises, lecture slides, and other resources helpful to readers and instructors.
  cloud data lakes engineering services: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail
  cloud data lakes engineering services: Fundamentals of Data Engineering Joe Reis, Matt Housley, 2022-06-22 Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle
  cloud data lakes engineering services: Data Engineering with Google Cloud Platform Adi Wijaya, 2022-03-31 Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.
  cloud data lakes engineering services: Data Lake Development with Big Data Pradeep Pasupuleti, Beulah Salome Purra, 2015-11-26 Explore architectural approaches to building Data Lakes that ingest, index, manage, and analyze massive amounts of data using Big Data technologies About This Book Comprehend the intricacies of architecting a Data Lake and build a data strategy around your current data architecture Efficiently manage vast amounts of data and deliver it to multiple applications and systems with a high degree of performance and scalability Packed with industry best practices and use-case scenarios to get you up-and-running Who This Book Is For This book is for architects and senior managers who are responsible for building a strategy around their current data architecture, helping them identify the need for a Data Lake implementation in an enterprise context. The reader will need a good knowledge of master data management and information lifecycle management, and experience of Big Data technologies. What You Will Learn Identify the need for a Data Lake in your enterprise context and learn to architect a Data Lake Learn to build various tiers of a Data Lake, such as data intake, management, consumption, and governance, with a focus on practical implementation scenarios Find out the key considerations to be taken into account while building each tier of the Data Lake Understand Hadoop-oriented data transfer mechanism to ingest data in batch, micro-batch, and real-time modes Explore various data integration needs and learn how to perform data enrichment and data transformations using Big Data technologies Enable data discovery on the Data Lake to allow users to discover the data Discover how data is packaged and provisioned for consumption Comprehend the importance of including data governance disciplines while building a Data Lake In Detail A Data Lake is a highly scalable platform for storing huge volumes of multistructured data from disparate sources with centralized data management services. This book explores the potential of Data Lakes and explores architectural approaches to building data lakes that ingest, index, manage, and analyze massive amounts of data using batch and real-time processing frameworks. It guides you on how to go about building a Data Lake that is managed by Hadoop and accessed as required by other Big Data applications. This book will guide readers (using best practices) in developing Data Lake's capabilities. It will focus on architect data governance, security, data quality, data lineage tracking, metadata management, and semantic data tagging. By the end of this book, you will have a good understanding of building a Data Lake for Big Data. Style and approach Data Lake Development with Big Data provides architectural approaches to building a Data Lake. It follows a use case-based approach where practical implementation scenarios of each key component are explained. It also helps you understand how these use cases are implemented in a Data Lake. The chapters are organized in a way that mimics the sequential data flow evidenced in a Data Lake.
  cloud data lakes engineering services: Data Engineering with Scala and Spark Eric Tome, Rupam Bhattacharjee, David Radford, 2024-01-31 Take your data engineering skills to the next level by learning how to utilize Scala and functional programming to create continuous and scheduled pipelines that ingest, transform, and aggregate data Key Features Transform data into a clean and trusted source of information for your organization using Scala Build streaming and batch-processing pipelines with step-by-step explanations Implement and orchestrate your pipelines by following CI/CD best practices and test-driven development (TDD) Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount. This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You’ll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You’ll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users. By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.What you will learn Set up your development environment to build pipelines in Scala Get to grips with polymorphic functions, type parameterization, and Scala implicits Use Spark DataFrames, Datasets, and Spark SQL with Scala Read and write data to object stores Profile and clean your data using Deequ Performance tune your data pipelines using Scala Who this book is for This book is for data engineers who have experience in working with data and want to understand how to transform raw data into a clean, trusted, and valuable source of information for their organization using Scala and the latest cloud technologies.
  cloud data lakes engineering services: Data Lake for Enterprises Tomcy John, Pankaj Misra, 2017-05-31 A practical guide to implementing your enterprise data lake using Lambda Architecture as the base About This Book Build a full-fledged data lake for your organization with popular big data technologies using the Lambda architecture as the base Delve into the big data technologies required to meet modern day business strategies A highly practical guide to implementing enterprise data lakes with lots of examples and real-world use-cases Who This Book Is For Java developers and architects who would like to implement a data lake for their enterprise will find this book useful. If you want to get hands-on experience with the Lambda Architecture and big data technologies by implementing a practical solution using these technologies, this book will also help you. What You Will Learn Build an enterprise-level data lake using the relevant big data technologies Understand the core of the Lambda architecture and how to apply it in an enterprise Learn the technical details around Sqoop and its functionalities Integrate Kafka with Hadoop components to acquire enterprise data Use flume with streaming technologies for stream-based processing Understand stream- based processing with reference to Apache Spark Streaming Incorporate Hadoop components and know the advantages they provide for enterprise data lakes Build fast, streaming, and high-performance applications using ElasticSearch Make your data ingestion process consistent across various data formats with configurability Process your data to derive intelligence using machine learning algorithms In Detail The term Data Lake has recently emerged as a prominent term in the big data industry. Data scientists can make use of it in deriving meaningful insights that can be used by businesses to redefine or transform the way they operate. Lambda architecture is also emerging as one of the very eminent patterns in the big data landscape, as it not only helps to derive useful information from historical data but also correlates real-time data to enable business to take critical decisions. This book tries to bring these two important aspects — data lake and lambda architecture—together. This book is divided into three main sections. The first introduces you to the concept of data lakes, the importance of data lakes in enterprises, and getting you up-to-speed with the Lambda architecture. The second section delves into the principal components of building a data lake using the Lambda architecture. It introduces you to popular big data technologies such as Apache Hadoop, Spark, Sqoop, Flume, and ElasticSearch. The third section is a highly practical demonstration of putting it all together, and shows you how an enterprise data lake can be implemented, along with several real-world use-cases. It also shows you how other peripheral components can be added to the lake to make it more efficient. By the end of this book, you will be able to choose the right big data technologies using the lambda architectural patterns to build your enterprise data lake. Style and approach The book takes a pragmatic approach, showing ways to leverage big data technologies and lambda architecture to build an enterprise-level data lake.
  cloud data lakes engineering services: Microsoft Azure Data Solutions - An Introduction Daniel A. Seara, Francesco Milano, Danilo Dominici, 2021-07-14 Discover and apply the Azure platform's most powerful data solutions Cloud technologies are advancing at an accelerating pace, supplanting traditional relational and data warehouse storage solutions with novel, high-value alternatives. Now, three pioneering Azure Data consultants offer an expert introduction to the relational, non-relational, and data warehouse solutions offered by the Azure platform. Drawing on their extensive experience helping organizations get more value from the Microsoft Data Platform, the authors guide you through decision-making, implementation, operations, security, and more. Throughout, step-by-step tutorials and hands-on exercises prepare you to succeed, even if you have no cloud data experience. Three leading experts in Microsoft Azure Data Solutions show how to: Master essential concepts of data storage and processing in cloud environments Handle the changing responsibilities of data engineers moving to the cloud Get started with Azure data storage accounts and other data facilities Walk through implementing relational and non-relational data stores in Azure Secure data using the least-permissions principle, Azure Active Directory, role-based access control, and other methods Develop efficient Azure batch processing and streaming solutions Monitor Azure SQL databases, blob storage, data lakes, Azure Synapse Analytics, and Cosmos DB Optimize Azure data solutions by solving problems with storage, management, and service interactions About This Book For data engineers, systems engineers, IT managers, developers, database administrators, cloud architects, and other IT professionals Requires little or no knowledge about Azure tools and services for data analysis
  cloud data lakes engineering services: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.
  cloud data lakes engineering services: Cracking the Data Engineering Interview Kedeisha Bryan, Taamir Ransome, 2023-11-07 Get to grips with the fundamental concepts of data engineering, and solve mock interview questions while building a strong resume and a personal brand to attract the right employers Key Features Develop your own brand, projects, and portfolio with expert help to stand out in the interview round Get a quick refresher on core data engineering topics, such as Python, SQL, ETL, and data modeling Practice with 50 mock questions on SQL, Python, and more to ace the behavioral and technical rounds Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPreparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey. The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions. By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.What you will learn Create maintainable and scalable code for unit testing Understand the fundamental concepts of core data engineering tasks Prepare with over 100 behavioral and technical interview questions Discover data engineer archetypes and how they can help you prepare for the interview Apply the essential concepts of Python and SQL in data engineering Build your personal brand to noticeably stand out as a candidate Who this book is for If you’re an aspiring data engineer looking for guidance on how to land, prepare for, and excel in data engineering interviews, this book is for you. Familiarity with the fundamentals of data engineering, such as data modeling, cloud warehouses, programming (python and SQL), building data pipelines, scheduling your workflows (Airflow), and APIs, is a prerequisite.
  cloud data lakes engineering services: Data Engineering with AWS Cookbook Trâm Ngọc Phạm, Gonzalo Herreros González, Viquar Khan, Huda Nofal, 2024-11-29 Master AWS data engineering services and techniques for orchestrating pipelines, building layers, and managing migrations Key Features Get up to speed with the different AWS technologies for data engineering Learn the different aspects and considerations of building data lakes, such as security, storage, and operations Get hands on with key AWS services such as Glue, EMR, Redshift, QuickSight, and Athena for practical learning Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPerforming data engineering with Amazon Web Services (AWS) combines AWS's scalable infrastructure with robust data processing tools, enabling efficient data pipelines and analytics workflows. This comprehensive guide to AWS data engineering will teach you all you need to know about data lake management, pipeline orchestration, and serving layer construction. Through clear explanations and hands-on exercises, you’ll master essential AWS services such as Glue, EMR, Redshift, QuickSight, and Athena. Additionally, you’ll explore various data platform topics such as data governance, data quality, DevOps, CI/CD, planning and performing data migration, and creating Infrastructure as Code. As you progress, you will gain insights into how to enrich your platform and use various AWS cloud services such as AWS EventBridge, AWS DataZone, and AWS SCT and DMS to solve data platform challenges. Each recipe in this book is tailored to a daily challenge that a data engineer team faces while building a cloud platform. By the end of this book, you will be well-versed in AWS data engineering and have gained proficiency in key AWS services and data processing techniques. You will develop the necessary skills to tackle large-scale data challenges with confidence.What you will learn Define your centralized data lake solution, and secure and operate it at scale Identify the most suitable AWS solution for your specific needs Build data pipelines using multiple ETL technologies Discover how to handle data orchestration and governance Explore how to build a high-performing data serving layer Delve into DevOps and data quality best practices Migrate your data from on-premises to AWS Who this book is for If you're involved in designing, building, or overseeing data solutions on AWS, this book provides proven strategies for addressing challenges in large-scale data environments. Data engineers as well as big data professionals looking to enhance their understanding of AWS features for optimizing their workflow, even if they're new to the platform, will find value. Basic familiarity with AWS security (users and roles) and command shell is recommended.
  cloud data lakes engineering services: Data Engineering on Azure Vlad Riscutia, 2021-08-17 Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
  cloud data lakes engineering services: IEEE Technology and Engineering Management Society Body of Knowledge (TEMSBOK) Gustavo Giannattasio, Elif Kongar, Marina Dabić, Celia Desmond, Michael Condry, Sudeendra Koushik, Roberto Saracco, 2023-10-10 IEEE Technology and Engineering Management Society Body of Knowledge (TEMSBOK) IEEE TEMS Board of Directors-approved body of knowledge dedicated to technology and engineering management The IEEE Technology and Engineering Management Society Body of Knowledge (TEMSBOK) establishes a set of common practices for technology and engineering management, acts as a reference for entrepreneurs, establishes a basis for future official certifications, and summarizes the literature on the management field in order to publish reference documentation for new initiatives. The editors have used a template approach with authors that instructed them on how to introduce their manuscript, how to organize the technology and area fundamentals, the managing approach, techniques and benefits, realistic examples that show the application of concepts, recommended best use (focusing on how to identify the most adequate approach to typical cases), with a summary and conclusion of each section, plus a list of references for further study. The book is structured according to the following area knowledge chapters: business analysis, technology adoption, innovation, entrepreneurship, project management, digital disruption, digital transformation of industry, data science and management, and ethics and legal issues. Specific topics covered include: Market requirement analysis, business analysis for governance planning, financial analysis, evaluation and control, and risk analysis of market opportunities Leading and managing working groups, optimizing group creation and evolution, enterprise agile governance, and leading agile organizations and working groups Marketing plans for new products and services, risk analysis and challenges for entrepreneurs, and procurement and collaboration Projects, portfolios and programs, economic constraints and roles, integration management and control of change, and project plan structure The IEEE Technology and Engineering Management Society Body of Knowledge (TEMSBOK) will appeal to engineers, graduates, and professionals who wish to prepare for challenges in initiatives using new technologies, as well as managers who are responsible for conducting business involving technology and engineering.
  cloud data lakes engineering services: Data Engineering and Data Science Kukatlapalli Pradeep Kumar, Aynur Unal, Vinay Jha Pillai, Hari Murthy, M. Niranjanamurthy, 2023-10-03 DATA ENGINEERING and DATA SCIENCE Written and edited by one of the most prolific and well-known experts in the field and his team, this exciting new volume is the “one-stop shop” for the concepts and applications of data science and engineering for data scientists across many industries. The field of data science is incredibly broad, encompassing everything from cleaning data to deploying predictive models. However, it is rare for any single data scientist to be working across the spectrum day to day. Data scientists usually focus on a few areas and are complemented by a team of other scientists and analysts. Data engineering is also a broad field, but any individual data engineer doesn’t need to know the whole spectrum of skills. Data engineering is the aspect of data science that focuses on practical applications of data collection and analysis. For all the work that data scientists do to answer questions using large sets of information, there have to be mechanisms for collecting and validating that information. In this exciting new volume, the team of editors and contributors sketch the broad outlines of data engineering, then walk through more specific descriptions that illustrate specific data engineering roles. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This book brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Whether for the veteran engineer or scientist working in the field or laboratory, or the student or academic, this is a must-have for any library.
  cloud data lakes engineering services: Handbook of Big Data Research Methods Shahriar Akter, Samuel Fosso Wamba, 2023-06-01 This state-of-the-art Handbook provides an overview of the role of big data analytics in various areas of business and commerce, including accounting, finance, marketing, human resources, operations management, fashion retailing, information systems, and social media. It provides innovative ways of overcoming the challenges of big data research and proposes new directions for further research using descriptive, diagnostic, predictive, and prescriptive analytics.
  cloud data lakes engineering services: Business Intelligence with Databricks SQL Vihag Gupta, 2022-09-16 Master critical skills needed to deploy and use Databricks SQL and elevate your BI from the warehouse to the lakehouse with confidence Key FeaturesLearn about business intelligence on the lakehouse with features and functions of Databricks SQLMake the most of Databricks SQL by getting to grips with the enablers of its data warehousing capabilitiesA unique approach to teaching concepts and techniques with follow-along scenarios on real datasetsBook Description In this new era of data platform system design, data lakes and data warehouses are giving way to the lakehouse – a new type of data platform system that aims to unify all data analytics into a single platform. Databricks, with its Databricks SQL product suite, is the hottest lakehouse platform out there, harnessing the power of Apache Spark™, Delta Lake, and other innovations to enable data warehousing capabilities on the lakehouse with data lake economics. This book is a comprehensive hands-on guide that helps you explore all the advanced features, use cases, and technology components of Databricks SQL. You'll start with the lakehouse architecture fundamentals and understand how Databricks SQL fits into it. The book then shows you how to use the platform, from exploring data, executing queries, building reports, and using dashboards through to learning the administrative aspects of the lakehouse – data security, governance, and management of the computational power of the lakehouse. You'll also delve into the core technology enablers of Databricks SQL – Delta Lake and Photon. Finally, you'll get hands-on with advanced SQL commands for ingesting data and maintaining the lakehouse. By the end of this book, you'll have mastered Databricks SQL and be able to deploy and deliver fast, scalable business intelligence on the lakehouse. What you will learnUnderstand how Databricks SQL fits into the Databricks Lakehouse PlatformPerform everyday analytics with Databricks SQL Workbench and business intelligence toolsOrganize and catalog your data assetsProgram the data security model to protect and govern your dataTune SQL warehouses (computing clusters) for optimal query experienceTune the Delta Lake storage format for maximum query performanceDeliver extreme performance with the Photon query execution engineImplement advanced data ingestion patterns with Databricks SQLWho this book is for This book is for business intelligence practitioners, data warehouse administrators, and data engineers who are new to Databrick SQL and want to learn how to deliver high-quality insights unhindered by the scale of data or infrastructure. This book is also for anyone looking to study the advanced technologies that power Databricks SQL. Basic knowledge of data warehouses, SQL-based analytics, and ETL processes is recommended to effectively learn the concepts introduced in this book and appreciate the innovation behind the platform.
  cloud data lakes engineering services: Learning Microsoft Azure Jonah Carrio Andersson, 2023-11-20 If your organization plans to modernize services and move to the cloud from legacy software or a private cloud on premises, this book is for you. Software developers, solution architects, cloud engineers, and anybody interested in cloud technologies will learn fundamental concepts for cloud computing, migration, transformation, and development using Microsoft Azure. Author and Microsoft MVP Jonah Carrio Andersson guides you through cloud computing concepts and deployment models, the wide range of modern cloud technologies, application development with Azure, team collaboration services, security services, and cloud migration options in Microsoft Azure. You'll gain insight into the Microsoft Azure cloud services that you can apply in different business use cases, software development projects, and modern solutions in the cloud. You'll also become fluent with Azure cloud migration services, serverless computing technologies that help your development team work productively, Azure IoT, and Azure cognitive services that make your application smarter. This book also provides real-world advice and best practices based on the author's own Azure migration experience. Gain insight into which Azure cloud service best suits your company's particular needs Understand how to use Azure for different use cases and specific technical requirements Start developing cloud services, applications, and solutions in the Azure environment Learn how to migrate existing legacy applications to Microsoft Azure
  cloud data lakes engineering services: Combating Threats and Attacks Targeting The AI Ecosystem Aditya Sood, 2024-12-04 This book explores in detail the AI-driven cyber threat landscape, including inherent AI threats and risks that exist in Large Language Models (LLMs), Generative AI applications, and the AI infrastructure. The book highlights hands-on technical approaches to detect security flaws in AI systems and applications utilizing the intelligence gathered from real-world case studies. Lastly, the book presents a very detailed discussion of the defense mechanisms and practical solutions to secure LLMs, GenAI applications, and the AI infrastructure. The chapters are structured with a granular framework, starting with AI concepts, followed by practical assessment techniques based on real-world intelligence, and concluding with required security defenses. Artificial Intelligence (AI) and cybersecurity are deeply intertwined and increasingly essential to modern digital defense strategies. The book is a comprehensive resource for IT professionals, business leaders, and cybersecurity experts for understanding and defending against AI-driven cyberattacks.
  cloud data lakes engineering services: Data Engineering Phil Gilberts, Welcome to the world of data engineering, where the raw material of the digital age—data—is transformed into actionable insights that drive decisions, innovations, and advancements across industries. This book is your gateway into understanding and mastering the essential principles, practices, and technologies that underpin the field of data engineering. In today's data-driven economy, organizations increasingly rely on robust data infrastructures and efficient data pipelines to harness the power of information. Data engineering is the backbone of this infrastructure, encompassing the design, implementation, and maintenance of systems that enable the collection, storage, and processing of vast amounts of data. This book is designed as a comprehensive guide for anyone seeking to embark on a journey into data engineering or looking to deepen their understanding of its intricacies. Whether you are a seasoned data professional, a software engineer transitioning into data roles, or a student eager to explore the forefront of technological innovation, this book will equip you with the knowledge and skills necessary to navigate the complexities of modern data ecosystems. Each chapter is crafted to provide a blend of theoretical foundations, practical insights, and hands-on examples to help you on your way. So, let’s get started!
  cloud data lakes engineering services: Azure Modern Data Architecture Anouar BEN ZAHRA, Key Features Discover the key drivers of successful Azure architecture Practical guidance Focus on scalability and performance Expert authorship Book Description This book presents a guide to design and implement scalable, secure, and efficient data solutions in the Azure cloud environment. It provides Data Architects, developers, and IT professionals who are responsible for designing and implementing data solutions in the Azure cloud environment with the knowledge and tools needed to design and implement data solutions using the latest Azure data services. It covers a wide range of topics, including data storage, data processing, data analysis, and data integration. In this book, you will learn how to select the appropriate Azure data services, design a data processing pipeline, implement real-time data processing, and implement advanced analytics using Azure Databricks and Azure Synapse Analytics. You will also learn how to implement data security and compliance, including data encryption, access control, and auditing. Whether you are building a new data architecture from scratch or migrating an existing on premises solution to Azure, the Azure Data Architecture Guidelines are an essential resource for any organization looking to harness the power of data in the cloud. With these guidelines, you will gain a deep understanding of the principles and best practices of Azure data architecture and be equipped to build data solutions that are highly scalable, secure, and cost effective. What You Need to Use this Book? To use this book, it is recommended that readers have a basic understanding of data architecture concepts and data management principles. Some familiarity with cloud computing and Azure services is also helpful. The book is designed for data architects, data engineers, data analysts, and anyone involved in designing, implementing, and managing data solutions on the Azure cloud platform. It is also suitable for students and professionals who want to learn about Azure data architecture and its best practices.
  cloud data lakes engineering services: Mastering Data Engineering and Analytics with Databricks Manoj Kumar, 2024-09-30 TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index
  cloud data lakes engineering services: Fundamentals of Analytics Engineering Dumky De Wilde, Fanny Kassapian, Jovan Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Taís Laurindo Pereira, 2024-03-29 Gain a holistic understanding of the analytics engineering lifecycle by integrating principles from both data analysis and engineering Key Features Discover how analytics engineering aligns with your organization's data strategy Access insights shared by a team of seven industry experts Tackle common analytics engineering problems faced by modern businesses Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWritten by a team of 7 industry experts, Fundamentals of Analytics Engineering will introduce you to everything from foundational concepts to advanced skills to get started as an analytics engineer. After conquering data ingestion and techniques for data quality and scalability, you’ll learn about techniques such as data cleaning transformation, data modeling, SQL query optimization and reuse, and serving data across different platforms. Armed with this knowledge, you will implement a simple data platform from ingestion to visualization, using tools like Airbyte Cloud, Google BigQuery, dbt, and Tableau. You’ll also get to grips with strategies for data integrity with a focus on data quality and observability, along with collaborative coding practices like version control with Git. You’ll learn about advanced principles like CI/CD, automating workflows, gathering, scoping, and documenting business requirements, as well as data governance. By the end of this book, you’ll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.What you will learn Design and implement data pipelines from ingestion to serving data Explore best practices for data modeling and schema design Scale data processing with cloud based analytics platforms and tools Understand the principles of data quality management and data governance Streamline code base with best practices like collaborative coding, version control, reviews and standards Automate and orchestrate data pipelines Drive business adoption with effective scoping and prioritization of analytics use cases Who this book is for This book is for data engineers and data analysts considering pivoting their careers into analytics engineering. Analytics engineers who want to upskill and search for gaps in their knowledge will also find this book helpful, as will other data professionals who want to understand the value of analytics engineering in their organization's journey toward data maturity. To get the most out of this book, you should have a basic understanding of data analysis and engineering concepts such as data cleaning, visualization, ETL and data warehousing.
  cloud data lakes engineering services: Solutions Architect's Handbook Saurabh Shrivastava, Neelanjali Srivastav, 2022-01-17 Third edition out now with coverage on Generative AI, clean architecture, edge computing, and more Key Features Turn business needs into end-to-end technical architectures with this practical guide Assess and overcome various challenges while updating or modernizing legacy applications Future-proof your architecture with IoT, machine learning, and quantum computing Book DescriptionBecoming a solutions architect requires a hands-on approach, and this edition of the Solutions Architect's Handbook brings exactly that. This handbook will teach you how to create robust, scalable, and fault-tolerant solutions and next-generation architecture designs in a cloud environment. It will also help you build effective product strategies for your business and implement them from start to finish. This new edition features additional chapters on disruptive technologies, such as Internet of Things (IoT), quantum computing, data engineering, and machine learning. It also includes updated discussions on cloud-native architecture, blockchain data storage, and mainframe modernization with public cloud. The Solutions Architect's Handbook provides an understanding of solution architecture and how it fits into an agile enterprise environment. It will take you through the journey of solution architecture design by providing detailed knowledge of design pillars, advanced design patterns, anti-patterns, and the cloud-native aspects of modern software design. By the end of this handbook, you'll have learned the techniques needed to create efficient architecture designs that meet your business requirements.What you will learn Explore the various roles of a solutions architect in the enterprise landscape Implement key design principles and patterns to build high-performance cost-effective solutions Choose the best strategies to secure your architectures and increase their availability Modernize legacy applications with the help of cloud integration Understand how big data processing, machine learning, and IoT fit into modern architecture Integrate a DevOps mindset to promote collaboration, increase operational efficiency, and streamline production Who this book is for This book is for software developers, system engineers, DevOps engineers, architects, and team leaders who already work in the IT industry and aspire to become solutions architect professionals. Existing solutions architects who want to expand their skillset or get a better understanding of new technologies will also learn valuable new skills. To get started, you'll need a good understanding of the real-world software development process and general programming experience in any language.
  cloud data lakes engineering services: Microsoft Certified Exam guide - Azure Data Engineer Associate (DP-203) Cybellium Ltd, Unlock the Power of Data with Azure Data Engineering! Are you ready to become a Microsoft Azure Data Engineer Associate and harness the transformative potential of data in the cloud? Look no further than the Microsoft Certified Exam Guide - Azure Data Engineer Associate (DP-203). This comprehensive book is your ultimate companion on the journey to mastering Azure data engineering and acing the DP-203 exam. In today's data-driven world, organizations depend on the efficient management, processing, and analysis of data to make critical decisions and drive innovation. Microsoft Azure provides a cutting-edge platform for data engineers to design and implement data solutions, and the demand for skilled professionals in this field is soaring. Whether you're an experienced data engineer or just starting your journey, this book equips you with the knowledge and skills needed to excel in Azure data engineering. Inside this book, you will discover: ✔ Comprehensive Coverage: A deep dive into all the key concepts, tools, and best practices required for designing, building, and maintaining data solutions on Azure. ✔ Real-World Scenarios: Practical examples and case studies that illustrate how Azure is used to solve complex data challenges, making learning engaging and relevant. ✔ Exam-Ready Preparation: Thorough coverage of DP-203 exam objectives, complete with practice questions and expert tips to ensure you're well-prepared for exam day. ✔ Proven Expertise: Authored by Azure data engineering professionals who hold the certification and have hands-on experience in developing data solutions, offering you invaluable insights and practical guidance. Whether you aspire to advance your career, validate your expertise, or simply become a proficient Azure Data Engineer, Microsoft Certified Exam Guide - Azure Data Engineer Associate (DP-203) is your trusted companion on this journey. Don't miss this opportunity to become a sought-after data engineering expert in a competitive job market. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
  cloud data lakes engineering services: Cloud Data Science: Harnessing Azure Machine Learning with Python Peter Jones, 2024-10-15 Unlock the full potential of your data with Cloud Data Science: Harnessing Azure Machine Learning with Python. This comprehensive guide equips you with the knowledge and skills to leverage the power of Azure Machine Learning and the versatility of Python to innovate and streamline your machine learning workflows. From setting up your Azure Machine Learning workspace to deploying sophisticated models, this book covers essential techniques and advanced methodologies in a clear, practical format. Dive into core topics such as data management, automated machine learning workflows, model optimization, and real-time monitoring to ensure your projects are scalable, efficient, and effective. Whether you're a data scientist, machine learning engineer, or a professional seeking to enhance your understanding of cloud-based machine learning, this book offers invaluable insights and hands-on examples to help you transform vast amounts of data into actionable insights. Explore real-world case studies across various industries, learn to overcome common challenges, and discover best practices for implementing machine learning projects successfully. Cloud Data Science: Harnessing Azure Machine Learning with Python is your gateway to mastering data science in the cloud and advancing your professional capabilities in the future of technology.
Cloud Computing Services | Google Cloud
Meet your business challenges head on with cloud computing services from Google, including data management, hybrid & multi-cloud, and AI & ML.

Cloud Storage | Google Cloud
Cloud Storage | Google Cloud

Google Cloud Platform
Google Cloud Platform lets you build, deploy, and scale applications, websites, and services on the same infrastructure as Google.

Cloud-Computing-Dienste - Google Cloud
Meistern Sie geschäftliche Herausforderungen mit Cloud-Computing-Diensten von Google wie Datenverwaltung, Hybrid- und Multi-Cloud sowie KI und ML.

Servizi di cloud computing | Google Cloud
Affronta le tue sfide aziendali con i servizi di cloud computing di Google, inclusi gestione dei dati, ambienti ibridi e multi-cloud, AI e machine learning.

Products and Services | Google Cloud
Google Cloud offers a range of cloud computing services, including data management, AI, and hybrid cloud solutions.

云计算服务 | Google Cloud
借助 Google 的云计算服务,包括数据管理、混合云、多云以及 AI 和机器学习方面的服务,着力应对业务挑战。

Services de cloud computing | GoogleCloud | Google Cloud
Relevez vos défis métier grâce aux services de cloud computing proposés par Google : gestion des données, environnements hybrides et multicloud, IA et ML, et bien plus.

Sign in - Google Accounts
Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode

Documentation spotlight - Google Cloud
4 days ago · Comprehensive documentation, guides, and resources for Google Cloud products and services.

Cloud Computing Services | Google Cloud
Meet your business challenges head on with cloud computing services from Google, including data management, …

Cloud Storage | Google Cloud
Cloud Storage | Google Cloud

Google Cloud Platform
Google Cloud Platform lets you build, deploy, and scale applications, websites, and services on the same …

Cloud-Computing-Dienste - Google Cloud
Meistern Sie geschäftliche Herausforderungen mit Cloud-Computing-Diensten von Google wie …

Servizi di cloud computing | Google Cloud
Affronta le tue sfide aziendali con i servizi di cloud computing di Google, inclusi gestione dei dati, ambienti …