Advertisement
columbia university data science bootcamp: Practical Python Data Wrangling and Data Quality Susan E. McGregor, 2021-12-03 There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them. Whether you already work with data or just want to understand its possibilities, the techniques and advice in this practical book will help you learn how to better clean, evaluate, and analyze data to generate meaningful insights and compelling visualizations. Through foundational concepts and worked examples, author Susan McGregor provides the concepts and tools you need to evaluate and analyze all kinds of data and communicate your findings effectively. This book provides a methodical, jargon-free way for practitioners of all levels to harness the power of data. Use Python 3.8+ to read, write, and transform data from a variety of sources Understand and use programming basics in Python to wrangle data at scale Organize, document, and structure your code using best practices Complete exercises either on your own machine or on the web Collect data from structured data files, web pages, and APIs Perform basic statistical analysis to make meaning from data sets Visualize and present data in clear and compelling ways. |
columbia university data science bootcamp: The Exposome Gary W. Miller, 2013-11-16 The Exposome: A Primer is the first book dedicated to exposomics, detailing the purpose and scope of this emerging field of study, its practical applications and how it complements a broad range of disciplines. Genetic causes account for up to a third of all complex diseases. (As genomic approaches improve, this is likely to rise.) Environmental factors also influence human disease but, unlike with genetics, there is no standard or systematic way to measure the influence of environmental exposures. The exposome is an emerging concept that hopes to address this, measuring the effects of life-long environmental exposures on health and how these exposures can influence disease. This systematic introduction considers topics of managing and integrating exposome data (including maps, models, computation, and systems biology), -omics-based technologies, and more. Both students and scientists in disciplines including toxicology, environmental health, epidemiology, and public health will benefit from this rigorous yet readable overview. |
columbia university data science bootcamp: AI in Entertainment: Revolutionizing Content, Gaming, and Special Effects DIZZY DAVIDSON, 2024-07-30 Struggling to fully grasp how AI is transforming the entertainment industry? Wondering how smart technologies are revolutionizing content, gaming, and special effects? Look no further! “AI in Entertainment: Revolutionizing Content, Gaming, and Special Effects” is your ultimate guide to understanding the profound impact of AI on the entertainment world. This book breaks down complex AI concepts into easy-to-understand insights and practical applications that can elevate your creative projects. Benefits of Reading This Book: Unlock AI’s Potential: Learn how AI can enhance content recommendations, improve game design, and create stunning special effects. Stay Ahead in the Industry: Understand the latest AI trends and technologies shaping the future of entertainment. Practical Applications: Discover real-world examples and case studies that illustrate AI’s transformative power. This book is essential for anyone looking to harness AI’s capabilities in the entertainment sector. Whether you’re a content creator, game developer, or media professional, you’ll find valuable insights and actionable strategies to implement AI effectively. Why This Book is Essential: Comprehensive Coverage: From AI basics to advanced applications, this book covers it all. Expert Insights: Written by industry experts, it provides authoritative knowledge and practical advice. Engaging Content: Easy-to-understand language and engaging examples make complex concepts accessible. Bullet Points Transform Your Content: Learn how AI can revolutionize content recommendations and creation. Enhance Gaming: Discover AI strategies that improve game design and player experience. Create Stunning Effects: See how AI is used to create breathtaking special effects in movies and TV shows. Stay Competitive: Keep up with the latest AI trends and technologies in entertainment. Expert Advice: Gain insights from industry leaders and AI experts. Call to Action: Don’t miss out on the opportunity to revolutionize your creative projects with AI. Get your copy of “AI in Entertainment: Revolutionizing Content, Gaming, and Special Effects” today and become an AI-savvy professional! |
columbia university data science bootcamp: The Winners Ed. 50 Innsbruck Editora, 2022-12-20 Ela inovou o setor varejista alimentício na Bahia. |
columbia university data science bootcamp: Environmental Epigenetics L. Joseph Su, Tung-chin Chiang, 2015-05-18 This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. |
columbia university data science bootcamp: Informatics Education in Healthcare Eta S. Berner, 2020-10-19 This heavily revised second edition defines the current state of the art for informatics education in medicine and healthcare. This field has continued to undergo considerable changes as the field of informatics continues to evolve. The book features extensively revised chapters addressing the latest developments in areas including relevant informatics concepts for those who work in health information technology and those teaching informatics courses in clinical settings, techniques for teaching informatics with limited resources, and the use of online modalities in bioinformatics research education. New topics covered include how to get appropriate accreditation for an informatics program, data science and bioinformatics education, and undergraduate health informatics education. Informatics Education in Healthcare: Lessons Learned addresses the broad range of informatics education programs and available techniques for teaching informatics. It therefore provides a valuable reference for all involved in informatics education. |
columbia university data science bootcamp: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder |
columbia university data science bootcamp: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
columbia university data science bootcamp: Engineering Software as a Service Armando Fox, David A. Patterson, 2016 (NOTE: this Beta Edition may contain errors. See http://saasbook.info for details.) A one-semester college course in software engineering focusing on cloud computing, software as a service (SaaS), and Agile development using Extreme Programming (XP). This book is neither a step-by-step tutorial nor a reference book. Instead, our goal is to bring a diverse set of software engineering topics together into a single narrative, help readers understand the most important ideas through concrete examples and a learn-by-doing approach, and teach readers enough about each topic to get them started in the field. Courseware for doing the work in the book is available as a virtual machine image that can be downloaded or deployed in the cloud. A free MOOC (massively open online course) at saas-class.org follows the book's content and adds programming assignments and quizzes. See http://saasbook.info for details.(NOTE: this Beta Edition may contain errors. See http://saasbook.info for details.) A one-semester college course in software engineering focusing on cloud computing, software as a service (SaaS), and Agile development using Extreme Programming (XP). This book is neither a step-by-step tutorial nor a reference book. Instead, our goal is to bring a diverse set of software engineering topics together into a single narrative, help readers understand the most important ideas through concrete examples and a learn-by-doing approach, and teach readers enough about each topic to get them started in the field. Courseware for doing the work in the book is available as a virtual machine image that can be downloaded or deployed in the cloud. A free MOOC (massively open online course) at saas-class.org follows the book's content and adds programming assignments and quizzes. See http://saasbook.info for details. |
columbia university data science bootcamp: Follow the Feeling Kai D. Wright, 2019-08-06 Elevate your brand, create a compelling brand story, and build brand loyalty In Follow the Feeling, strategy advisor Kai D. Wright answers a critical question plaguing entrepreneurs, brand strategists, marketers, and leaders: how do you grow your brand in a noisy world? Analyzing 1,500 fast-growing companies from Alibaba to Zara, the Columbia University lecturer and Ogilvy global consulting partner unpacks five branding secrets. Starting with behavioral economic principles and ending with a new systems-based approach to brand building, Wright offers readers one constant that trumps the hundreds of factors entangling brand value—feelings. Follow the Feeling will show you how to best build and position your brand so you can stand out from competitors, build a tribe, and engineer a positive feeling across five important branding territories—lexicon, audio cues, visual stimuli, experience, and culture. Sharing real-world lessons and practical advice he has gained helping everyone from Sean Diddy Combs and Meghan Trainor to Bank of America and HP, Wright can help you develop and implement shareable, culturally-infectious branding strategies. Through storytelling, global research, and practical tips, this valuable book will help you and your organization: Efficiently create and deploy a comprehensive brand strategy across the organization Quickly launch new brands or reboot existing brands for growth Build tribes from audiences, consumers, clients, and partners Lean into the convergence of communication, culture, digital, and technology Regardless of industry or sector, branding is essential for companies, nonprofits, and even individuals. Follow the Feeling: Brand Building in a Noisy World is a must-have resource for anyone from C-Suite executives to aspiring entrepreneurs seeking to unleash the full potential of their brand. And in this world of ever-increasing metrics paired with waning attentiveness, it’s not just what your brand does, it’s how your brand makes your customers feel. |
columbia university data science bootcamp: Numbersense: How to Use Big Data to Your Advantage Kaiser Fung, 2013-07-12 How to make simple sense of complex statistics--from the author of Numbers Rule Your World We live in a world of Big Data--and it's getting bigger every day. Virtually every choice we make hinges on how someone generates data . . . and how someone else interprets it--whether we realize it or not. Where do you send your child for the best education? Big Data. Which airline should you choose to ensure a timely arrival? Big Data. Who will you vote for in the next election? Big Data. The problem is, the more data we have, the more difficult it is to interpret it. From world leaders to average citizens, everyone is prone to making critical decisions based on poor data interpretations. In Numbersense, expert statistician Kaiser Fung explains when you should accept the conclusions of the Big Data experts--and when you should say, Wait . . . what? He delves deeply into a wide range of topics, offering the answers to important questions, such as: How does the college ranking system really work? Can an obesity measure solve America's biggest healthcare crisis? Should you trust current unemployment data issued by the government? How do you improve your fantasy sports team? Should you worry about businesses that track your data? Don't take for granted statements made in the media, by our leaders, or even by your best friend. We're on information overload today, and there's a lot of bad information out there. Numbersense gives you the insight into how Big Data interpretation works--and how it too often doesn't work. You won't come away with the skills of a professional statistician. But you will have a keen understanding of the data traps even the best statisticians can fall into, and you'll trust the mental alarm that goes off in your head when something just doesn't seem to add up. Praise for Numbersense Numbersense correctly puts the emphasis not on the size of big data, but on the analysis of it. Lots of fun stories, plenty of lessons learned—in short, a great way to acquire your own sense of numbers! Thomas H. Davenport, coauthor of Competing on Analytics and President’s Distinguished Professor of IT and Management, Babson College Kaiser’s accessible business book will blow your mind like no other. You’ll be smarter, and you won’t even realize it. Buy. It. Now. Avinash Kaushik, Digital Marketing Evangelist, Google, and author, Web Analytics 2.0 Each story in Numbersense goes deep into what you have to think about before you trust the numbers. Kaiser Fung ably demonstrates that it takes skill and resourcefulness to make the numbers confess their meaning. John Sall, Executive Vice President, SAS Institute Kaiser Fung breaks the bad news—a ton more data is no panacea—but then has got your back, revealing the pitfalls of analysis with stimulating stories from the front lines of business, politics, health care, government, and education. The remedy isn’t an advanced degree, nor is it common sense. You need Numbersense. Eric Siegel, founder, Predictive Analytics World, and author, Predictive Analytics I laughed my way through this superb-useful-fun book and learned and relearned a lot. Highly recommended! Tom Peters, author of In Search of Excellence |
columbia university data science bootcamp: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course. |
columbia university data science bootcamp: Head First C# Andrew Stellman, Jennifer Greene, 2020-12-04 What will you learn from this book? Dive into C# and create apps, user interfaces, games, and more using this fun and highly visual introduction to C#, .NET Core, and Visual Studio. With this completely updated guide, which covers C# 8.0 and Visual Studio 2019, beginning programmers like you will build a fully functional game in the opening chapter. Then you'll learn how to use classes and object-oriented programming, create 3D games in Unity, and query data with LINQ. And you'll do it all by solving puzzles, doing hands-on exercises, and building real-world applications. By the time you're done, you'll be a solid C# programmer--and you'll have a great time along the way! What's so special about this book? Based on the latest research in cognitive science and learning theory, Head First C# uses a visually rich format to engage your mind rather than a text-heavy approach that puts you to sleep. Why waste your time struggling with new concepts? This multisensory learning experience is designed for the way your brain really works. |
columbia university data science bootcamp: JavaScript & jQuery Jon Duckett, 2014-07-21 Jon Duckett’s best-selling, full-color introduction to JavaScript—filled with techniques to make websites more interactive and engaging Learn JavaScript and jQuery from the author who has inspired hundreds of thousands of beginner-to-intermediate coders. Build upon your HTML and CSS foundation and take the next step in your programming journey with JavaScript. The world runs on JavaScript and the most influential tech companies are looking for new and experienced programmers alike to bring their websites to life. Finding the right resources online can be overwhelming. Take a confident step in the right direction by choosing the simplicity of JavaScript & jQuery: Interactive Front-End Web Development by veteran web developer and programmer Jon Duckett. Widely regarded for setting a new standard for those looking to learn and master web development, Jon Duckett has inspired web developers through his inventive teaching format pioneered in his bestselling HTML & CSS: Design and Build Websites. He also has helped global brands like Philips, Nike, and Xerox create innovative digital solutions, designing and delivering web and mobile projects with impact and the customer at the forefront. In JavaScript & jQuery, Duckett shares his real-world insights in his unique and highly visual style: Provides an efficient and user-friendly structure that allows readers to progress through the chapters in a self-paced format Combines full-color design graphics and engaging photography to explain the topics in an in-depth yet straightforward manner Recreates techniques seen on other websites such as sliders, content filters, form validation, Ajax content updates, and much more Is perfect for anyone looking to create web applications and games, design mobile apps, or redesign a website using popular web development tools JavaScript & jQuery is clear and actionable, providing organized instruction in ways that other online courses, tutorials, and books have yet to replicate. For readers seeking a personable yet professional guide to using JavaScript in the real world, this one-of-a-kind guide is for you. JavaScript & jQuery is also available as part of two hardcover and paperback sets depending on your web design and development needs: Web Design with HTML, CSS, JavaScript, and jQuery Set Paperback: 9781118907443 Hardcover: 9781119038634 Front-End Back-End Development with HTML, CSS, JavaScript, jQuery, PHP, and MySQL Set Paperback: 9781119813095 Hardcover: 9781119813088 |
columbia university data science bootcamp: Deep Learning Illustrated Jon Krohn, Grant Beyleveld, Aglaé Bassens, 2019-08-05 The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come. – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. |
columbia university data science bootcamp: ICCWS 2020 15th International Conference on Cyber Warfare and Security Prof. Brian K. Payne , Prof. Hongyi Wu, 2020-03-12 |
columbia university data science bootcamp: Foundations of Machine Learning, second edition Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, 2018-12-25 A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition. |
columbia university data science bootcamp: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
columbia university data science bootcamp: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
columbia university data science bootcamp: The History of Statistics Stephen M. Stigler, 1990-03-01 This magnificent book is the first comprehensive history of statistics from its beginnings around 1700 to its emergence as a distinct and mature discipline around 1900. Stephen M. Stigler shows how statistics arose from the interplay of mathematical concepts and the needs of several applied sciences including astronomy, geodesy, experimental psychology, genetics, and sociology. He addresses many intriguing questions: How did scientists learn to combine measurements made under different conditions? And how were they led to use probability theory to measure the accuracy of the result? Why were statistical methods used successfully in astronomy long before they began to play a significant role in the social sciences? How could the introduction of least squares predate the discovery of regression by more than eighty years? On what grounds can the major works of men such as Bernoulli, De Moivre, Bayes, Quetelet, and Lexis be considered partial failures, while those of Laplace, Galton, Edgeworth, Pearson, and Yule are counted as successes? How did Galton’s probability machine (the quincunx) provide him with the key to the major advance of the last half of the nineteenth century? Stigler’s emphasis is upon how, when, and where the methods of probability theory were developed for measuring uncertainty in experimental and observational science, for reducing uncertainty, and as a conceptual framework for quantitative studies in the social sciences. He describes with care the scientific context in which the different methods evolved and identifies the problems (conceptual or mathematical) that retarded the growth of mathematical statistics and the conceptual developments that permitted major breakthroughs. Statisticians, historians of science, and social and behavioral scientists will gain from this book a deeper understanding of the use of statistical methods and a better grasp of the promise and limitations of such techniques. The product of ten years of research, The History of Statistics will appeal to all who are interested in the humanistic study of science. |
columbia university data science bootcamp: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
columbia university data science bootcamp: Data Mining and Predictive Analytics Daniel T. Larose, 2015-03-16 Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives. |
columbia university data science bootcamp: Breakup Bootcamp Amy Chan, 2020-12-03 'The literary equivalent of a hug from a wordly big sister when you are at your lowest ebb' - Sunday Times 'A new kind of relationship guide for women' - Arianna Huffington A self-affirming, holistic guide to transforming heartbreak into healing Amy Chan hit rock bottom when she discovered that her boyfriend cheated on her. Although she was angry and broken-hearted, Chan soon came to realize that the breakup was the shakeup she needed to redirect her life. Instead of descending into darkness, she used the pain of the breakup as a bridge to self-actualization. She devoted herself to learning various healing modalities from the ancient to the scientific, and dived into the psychology of love. It worked. Fast forward years later, Amy completely transformed her life, her relationships and founded a breakup bootcamp helping countless of women heal their hurt. In Breakup Bootcamp, Amy Chan directs her experience into a practical, thoughtful guide to turning broken hearts into an opportunity to break out of complacency and destructive habits. Dubbed 'the Chief Heart Hacker,' Amy Chan grounds her practical advice and tried and tested methods rooted in cutting-edge psychology and research, helping readers heal and reclaim their self-love. Relatable, life-changing, and backed by sound scientific research, Breakup Bootcamp can help anyone turn their greatest heartbreak into a powerful tool for growth |
columbia university data science bootcamp: A First Course in Machine Learning Simon Rogers, Mark Girolami, 2016-10-14 Introduces the main algorithms and ideas that underpin machine learning techniques and applications Keeps mathematical prerequisites to a minimum, providing mathematical explanations in comment boxes and highlighting important equations Covers modern machine learning research and techniques Includes three new chapters on Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models Offers Python, R, and MATLAB code on accompanying website: http://www.dcs.gla.ac.uk/~srogers/firstcourseml/ |
columbia university data science bootcamp: Practical Programming Paul Gries, Jennifer Campbell, Jason Montojo, 2013 Previous edition: published as by Jennifer Campbell ... [et al]. 2009. |
columbia university data science bootcamp: Artificial Intelligence and the Future of Defense Stephan De Spiegeleire, Matthijs Maas, Tim Sweijs, 2017-05-17 Artificial intelligence (AI) is on everybody’s minds these days. Most of the world’s leading companies are making massive investments in it. Governments are scrambling to catch up. Every single one of us who uses Google Search or any of the new digital assistants on our smartphones has witnessed first-hand how quickly these developments now go. Many analysts foresee truly disruptive changes in education, employment, health, knowledge generation, mobility, etc. But what will AI mean for defense and security? In a new study HCSS offers a unique perspective on this question. Most studies to date quickly jump from AI to autonomous (mostly weapon) systems. They anticipate future armed forces that mostly resemble today’s armed forces, engaging in fairly similar types of activities with a still primarily industrial-kinetic capability bundle that would increasingly be AI-augmented. The authors of this study argue that AI may have a far more transformational impact on defense and security whereby new incarnations of ‘armed force’ start doing different things in novel ways. The report sketches a much broader option space within which defense and security organizations (DSOs) may wish to invest in successive generations of AI technologies. It suggests that some of the most promising investment opportunities to start generating the sustainable security effects that our polities, societies and economies expect may lie in in the realms of prevention and resilience. Also in those areas any large-scale application of AI will have to result from a preliminary open-minded (on all sides) public debate on its legal, ethical and privacy implications. The authors submit, however, that such a debate would be more fruitful than the current heated discussions about ‘killer drones’ or robots. Finally, the study suggests that the advent of artificial super-intelligence (i.e. AI that is superior across the board to human intelligence), which many experts now put firmly within the longer-term planning horizons of our DSOs, presents us with unprecedented risks but also opportunities that we have to start to explore. The report contains an overview of the role that ‘intelligence’ - the computational part of the ability to achieve goals in the world - has played in defense and security throughout human history; a primer on AI (what it is, where it comes from and where it stands today - in both civilian and military contexts); a discussion of the broad option space for DSOs it opens up; 12 illustrative use cases across that option space; and a set of recommendations for - especially - small- and medium sized defense and security organizations. |
columbia university data science bootcamp: Learning SQL Alan Beaulieu, 2009-04-11 Updated for the latest database management systems -- including MySQL 6.0, Oracle 11g, and Microsoft's SQL Server 2008 -- this introductory guide will get you up and running with SQL quickly. Whether you need to write database applications, perform administrative tasks, or generate reports, Learning SQL, Second Edition, will help you easily master all the SQL fundamentals. Each chapter presents a self-contained lesson on a key SQL concept or technique, with numerous illustrations and annotated examples. Exercises at the end of each chapter let you practice the skills you learn. With this book, you will: Move quickly through SQL basics and learn several advanced features Use SQL data statements to generate, manipulate, and retrieve data Create database objects, such as tables, indexes, and constraints, using SQL schema statements Learn how data sets interact with queries, and understand the importance of subqueries Convert and manipulate data with SQL's built-in functions, and use conditional logic in data statements Knowledge of SQL is a must for interacting with data. With Learning SQL, you'll quickly learn how to put the power and flexibility of this language to work. |
columbia university data science bootcamp: Ways of Knowing Cities Laura Kurgan, Dare Brawley, 2019 Ways of Knowing Cities considers the role of technology in generating, materializing, and contesting urban epistemologies--from ubiquitous sites of smart urbanism to discrete struggles over infrastructural governance to forgotten histories of segregation now naturalized in urban algorithms to exceptional territories of border policing. |
columbia university data science bootcamp: Science & Engineering Indicators , 2000 |
columbia university data science bootcamp: An Epidemic of Absence Moises Velasquez-Manoff, 2013-09-17 A controversial, revisionist approach to autoimmune and allergic disorders considers the perspective that the human immune system has been disabled by twentieth-century hygiene and medical practices. |
columbia university data science bootcamp: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace. |
columbia university data science bootcamp: Quantitative Corporate Finance John B. Guerard, Jr., Eli Schwartz, 2007-11-19 The book addresses several problems in contemporary corporate finance: optimal capital structure, both in the US and in the G7 economies; the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Model (APT) and the implications for the cost of capital; dividend policy; sales forecasting and pro forma statement analysis; leverage and bankruptcy; and mergers and acquisitions. It is designed to be used as an advanced graduate corporate financial management textbook. |
columbia university data science bootcamp: Learning Deep Learning Magnus Ekman, 2021-07-19 NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals. -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us. -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. |
columbia university data science bootcamp: Learn Ruby the Hard Way Zed A. Shaw, 2014-12-01 You Will Learn Ruby! Zed Shaw has perfected the world’s best system for learning Ruby. Follow it and you will succeed—just like the hundreds of thousands of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Ruby the Hard Way, Third Edition, you’ll learn Ruby by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how software works; what good programs look like; how to read, write, and think about code; and how to find and fix your mistakes using tricks professional programmers use. Most importantly, you’ll learn the following, which you need to start writing excellent Ruby software of your own: • Installing your Ruby environment • Organizing and writing code • Ruby symbols and keywords • Basic mathematics • Variables and printing • Strings and text • Interacting with users • Working with files • Using and creating functions • Looping and logic • Arrays and elements • Hashmaps • Program design • Object-oriented programming • Inheritance and composition • Modules, classes, and objects • Project “skeleton” directories • Debugging and automated testing • Advanced user input • Text processing • Basic game development • Basic web development It’ll Be Hard At First. But Soon, You’ll Just Get It—And That Will Feel Great! This tutorial will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Ruby programmer. |
columbia university data science bootcamp: Child Data Citizen Veronica Barassi, 2020-12-22 An examination of the datafication of family life--in particular, the construction of our children into data subjects. Our families are being turned into data, as the digital traces we leave are shared, sold, and commodified. Children are datafied even before birth, with pregnancy apps and social media postings, and then tracked through babyhood with learning apps, smart home devices, and medical records. If we want to understand the emergence of the datafied citizen, Veronica Barassi argues, we should look at the first generation of datafied natives: our children. In Child Data Citizen, she examines the construction of children into data subjects, describing how their personal information is collected, archived, sold, and aggregated into unique profiles that can follow them across a lifetime. |
columbia university data science bootcamp: Score Higher on the UCAT Kaplan Test Prep, 2020-04-07 The Expert Guide from Kaplan for 2021 entry One test stands between you and a place at the medical school of your dreams: the UCAT. With 1,500 questions, test-like practice exams, a question bank, and online test updates, Kaplan’s Score Higher on the UCAT, sixth edition, will help build your confidence and make sure you achieve a high score. We know it's crucial that you go into your UCAT exam equipped with the most up-to-date information available. Score Higher on the UCAT comes with access to additional online resources, including any recent exam changes, hundreds of questions, an online question bank, and a mock online test with full worked answers to ensure that there are no surprises waiting for you on test day. The Most Practice 1,500 questions in the book and online—more than any other UCAT book Three full-length tests: one mock online test to help you practise for speed and accuracy in a test-like interface, and two tests with worked answers in the book Online question bank to fine-tune and master your performance on specific question types Expert Guidance The authors of Score Higher on the UCAT have helped thousands of students prepare for the exam. They offer invaluable tips and strategies for every section of the test, helping you to avoid the common pitfalls that trip up other UCAT students. We invented test preparation—Kaplan (www.kaptest.co.uk) has been helping students for 80 years. Our proven strategies have helped legions of students achieve their dreams. |
columbia university data science bootcamp: Data Jujitsu D. J. Patil, 2012 |
columbia university data science bootcamp: Applied Machine Learning David Forsyth, 2019-07-12 Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas. This book is written for people who want to adopt and use the main tools of machine learning, but aren’t necessarily going to want to be machine learning researchers. Intended for students in final year undergraduate or first year graduate computer science programs in machine learning, this textbook is a machine learning toolkit. Applied Machine Learning covers many topics for people who want to use machine learning processes to get things done, with a strong emphasis on using existing tools and packages, rather than writing one’s own code. A companion to the author's Probability and Statistics for Computer Science, this book picks up where the earlier book left off (but also supplies a summary of probability that the reader can use). Emphasizing the usefulness of standard machinery from applied statistics, this textbook gives an overview of the major applied areas in learning, including coverage of:• classification using standard machinery (naive bayes; nearest neighbor; SVM)• clustering and vector quantization (largely as in PSCS)• PCA (largely as in PSCS)• variants of PCA (NIPALS; latent semantic analysis; canonical correlation analysis)• linear regression (largely as in PSCS)• generalized linear models including logistic regression• model selection with Lasso, elasticnet• robustness and m-estimators• Markov chains and HMM’s (largely as in PSCS)• EM in fairly gory detail; long experience teaching this suggests one detailed example is required, which students hate; but once they’ve been through that, the next one is easy• simple graphical models (in the variational inference section)• classification with neural networks, with a particular emphasis onimage classification• autoencoding with neural networks• structure learning |
columbia university data science bootcamp: Time Series Forecasting in Python Marco Peixeiro, 2022-11-15 Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You’ll explore interesting real-world datasets like Google’s daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. About the technology You can predict the future—with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before. About the book Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts. What's inside Create models for seasonal effects and external variables Multivariate forecasting models to predict multiple time series Deep learning for large datasets Automate the forecasting process About the reader For data scientists familiar with Python and TensorFlow. About the author Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada’s largest banks. Table of Contents PART 1 TIME WAITS FOR NO ONE 1 Understanding time series forecasting 2 A naive prediction of the future 3 Going on a random walk PART 2 FORECASTING WITH STATISTICAL MODELS 4 Modeling a moving average process 5 Modeling an autoregressive process 6 Modeling complex time series 7 Forecasting non-stationary time series 8 Accounting for seasonality 9 Adding external variables to our model 10 Forecasting multiple time series 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING 12 Introducing deep learning for time series forecasting 13 Data windowing and creating baselines for deep learning 14 Baby steps with deep learning 15 Remembering the past with LSTM 16 Filtering a time series with CNN 17 Using predictions to make more predictions 18 Capstone: Forecasting the electric power consumption of a household PART 4 AUTOMATING FORECASTING AT SCALE 19 Automating time series forecasting with Prophet 20 Capstone: Forecasting the monthly average retail price of steak in Canada 21 Going above and beyond |
columbia university data science bootcamp: Building Machine Learning Pipelines Hannes Hapke, Catherine Nelson, 2020-07-13 Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques |
Outdoor Clothing, Outerwear & Accessories | Columbia Sportswear
Columbia makes innovative clothing & footwear for all your outdoor adventures. Get Lost Anywhere: 25-40% off almost everything.
New Arrivals - Outdoor Clothing - Columbia Sportswear
Find the latest arrivals in Columbia Sportswear's line of rugged outerwear, footwear & outdoor accessories. 25-40% off almost everything.
Sale - Columbia Sportswear
Great deals on Columbia jackets, shirts, pants and more. Take advantage of marked down prices while they last. 25-40% off almost everything.
Women's Clothing - Columbia Sportswear
Columbia Greater Rewards Ambassadors Lunar Landing Search. Quicklinks 25-40% Off Almost Everything Father's Day Summer New Arrivals Sun Protection Shorts Tamiami Login. Mini …
Columbia Factory Store at Outlets at Orange - Columbia Sportswear
Our Columbia factory store is located in Orange, California at the Outlets at Orange. We carry innovative outerwear, sportswear, footwear, and accessories for outdoor enthusiasts of all …
Men's Clothing - Hiking Clothing & Accessories - Columbia …
Columbia Greater Rewards Ambassadors Lunar Landing Search. Quicklinks 25-40% Off Almost Everything Father's Day Summer New Arrivals Sun Protection Shorts Tamiami Login. Mini …
Columbia Sportswear | Locations
Find a Columbia Sportswear location near you. spacer. Shop. Columbia 166 stores in United States. Find a Location. All stores; Alabama (1) Arizona (3) California (22) Colorado (6) …
Shop Women's Clothing - Columbia Sportswear
Shop Columbia's full selection of women's clothing and accessories, including jackets, shirts, pants, shoes, and more. 25-40% off almost everything.
Web Deals - Online Deals - Columbia Sportswear
Shop online through the official Columbia Sportswear website. Find men's jackets, shoes, men's boots, pants, fleece sweaters and shirts.
Columbia Sportswear | Miami, Florida
Columbia 1 store in Miami. Find a Location. All stores; Florida; Miami; Columbia Factory Store. Open Now closes at 9:00 PM. 11401 Northwest 12th Street. Ste 336. Miami, FL 33172. US …
Outdoor Clothing, Outerwear & Accessories | Columbia Sport…
Columbia makes innovative clothing & footwear for all your outdoor adventures. Get Lost Anywhere: 25-40% off almost everything.
New Arrivals - Outdoor Clothing - Columbia Sportswear
Find the latest arrivals in Columbia Sportswear's line of rugged outerwear, footwear & outdoor accessories. 25 …
Sale - Columbia Sportswear
Great deals on Columbia jackets, shirts, pants and more. Take advantage of marked down prices while they last. 25-40% off almost everything.
Women's Clothing - Columbia Sportswear
Columbia Greater Rewards Ambassadors Lunar Landing Search. Quicklinks 25-40% Off Almost Everything Father's Day Summer …
Columbia Factory Store at Outlets at Orange - Columbia …
Our Columbia factory store is located in Orange, California at the Outlets at Orange. We carry innovative outerwear, sportswear, footwear, and …