Advertisement
bulk rna seq analysis: RNA-seq Data Analysis Eija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong, 2014-09-19 The State of the Art in Transcriptome AnalysisRNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript le |
bulk rna seq analysis: RNA-Seq Analysis: Methods, Applications and Challenges Filippo Geraci, Indrajit Saha, Monica Bianchini, 2020-06-08 |
bulk rna seq analysis: Computational Genomics with R Altuna Akalin, 2020-12-16 Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015. |
bulk rna seq analysis: Data Analysis for the Life Sciences with R Rafael A. Irizarry, Michael I. Love, 2016-10-04 This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained. |
bulk rna seq analysis: Data Integration in the Life Sciences Sarah Cohen-Boulakia, 2008-06-11 This book constitutes the refereed proceedings of the 5th International Workshop on Data Integration in the Life Sciences, DILS 2008, held in Evry, France in June 2008. The 18 revised full papers presented together with 3 keynote talks and a tutorial paper were carefully reviewed and selected from 54 submissions. The papers adress all current issues in data integration and data management from the life science point of view and are organized in topical sections on Semantic Web for the life sciences, designing and evaluating architectures to integrate biological data, new architectures and experience on using systems, systems using technologies from the Semantic Web for the life sciences, mining integrated biological data, and new features of major resources for biomolecular data. |
bulk rna seq analysis: Interactive Web-Based Data Visualization with R, plotly, and shiny Carson Sievert, 2020-01-30 The richly illustrated Interactive Web-Based Data Visualization with R, plotly, and shiny focuses on the process of programming interactive web graphics for multidimensional data analysis. It is written for the data analyst who wants to leverage the capabilities of interactive web graphics without having to learn web programming. Through many R code examples, you will learn how to tap the extensive functionality of these tools to enhance the presentation and exploration of data. By mastering these concepts and tools, you will impress your colleagues with your ability to quickly generate more informative, engaging, and reproducible interactive graphics using free and open source software that you can share over email, export to pdf, and more. Key Features: Convert static ggplot2 graphics to an interactive web-based form Link, animate, and arrange multiple plots in standalone HTML from R Embed, modify, and respond to plotly graphics in a shiny app Learn best practices for visualizing continuous, discrete, and multivariate data Learn numerous ways to visualize geo-spatial data This book makes heavy use of plotly for graphical rendering, but you will also learn about other R packages that support different phases of a data science workflow, such as tidyr, dplyr, and tidyverse. Along the way, you will gain insight into best practices for visualization of high-dimensional data, statistical graphics, and graphical perception. The printed book is complemented by an interactive website where readers can view movies demonstrating the examples and interact with graphics. |
bulk rna seq analysis: Transcriptome Analysis Miroslav Blumenberg, 2019-11-20 Transcriptome analysis is the study of the transcriptome, of the complete set of RNA transcripts that are produced under specific circumstances, using high-throughput methods. Transcription profiling, which follows total changes in the behavior of a cell, is used throughout diverse areas of biomedical research, including diagnosis of disease, biomarker discovery, risk assessment of new drugs or environmental chemicals, etc. Transcriptome analysis is most commonly used to compare specific pairs of samples, for example, tumor tissue versus its healthy counterpart. In this volume, Dr. Pyo Hong discusses the role of long RNA sequences in transcriptome analysis, Dr. Shinichi describes the next-generation single-cell sequencing technology developed by his team, Dr. Prasanta presents transcriptome analysis applied to rice under various environmental factors, Dr. Xiangyuan addresses the reproductive systems of flowering plants and Dr. Sadovsky compares codon usage in conifers. |
bulk rna seq analysis: Introduction to Meta-Analysis Michael Borenstein, Larry V. Hedges, Julian P. T. Higgins, Hannah R. Rothstein, 2011-08-24 This book provides a clear and thorough introduction to meta-analysis, the process of synthesizing data from a series of separate studies. Meta-analysis has become a critically important tool in fields as diverse as medicine, pharmacology, epidemiology, education, psychology, business, and ecology. Introduction to Meta-Analysis: Outlines the role of meta-analysis in the research process Shows how to compute effects sizes and treatment effects Explains the fixed-effect and random-effects models for synthesizing data Demonstrates how to assess and interpret variation in effect size across studies Clarifies concepts using text and figures, followed by formulas and examples Explains how to avoid common mistakes in meta-analysis Discusses controversies in meta-analysis Features a web site with additional material and exercises A superb combination of lucid prose and informative graphics, written by four of the world’s leading experts on all aspects of meta-analysis. Borenstein, Hedges, Higgins, and Rothstein provide a refreshing departure from cookbook approaches with their clear explanations of the what and why of meta-analysis. The book is ideal as a course textbook or for self-study. My students, who used pre-publication versions of some of the chapters, raved about the clarity of the explanations and examples. David Rindskopf, Distinguished Professor of Educational Psychology, City University of New York, Graduate School and University Center, & Editor of the Journal of Educational and Behavioral Statistics. The approach taken by Introduction to Meta-analysis is intended to be primarily conceptual, and it is amazingly successful at achieving that goal. The reader can comfortably skip the formulas and still understand their application and underlying motivation. For the more statistically sophisticated reader, the relevant formulas and worked examples provide a superb practical guide to performing a meta-analysis. The book provides an eclectic mix of examples from education, social science, biomedical studies, and even ecology. For anyone considering leading a course in meta-analysis, or pursuing self-directed study, Introduction to Meta-analysis would be a clear first choice. Jesse A. Berlin, ScD Introduction to Meta-Analysis is an excellent resource for novices and experts alike. The book provides a clear and comprehensive presentation of all basic and most advanced approaches to meta-analysis. This book will be referenced for decades. Michael A. McDaniel, Professor of Human Resources and Organizational Behavior, Virginia Commonwealth University |
bulk rna seq analysis: Applications of RNA-Seq in Biology and Medicine Irina Vlasova-St. Louis, 2021-10-13 This book evaluates and comprehensively summarizes the scientific findings that have been achieved through RNA-sequencing (RNA-Seq) technology. RNA-Seq transcriptome profiling of healthy and diseased tissues allows FOR understanding the alterations in cellular phenotypes through the expression of differentially spliced RNA isoforms. Assessment of gene expression by RNA-Seq provides new insight into host response to pathogens, drugs, allergens, and other environmental triggers. RNA-Seq allows us to accurately capture all subtypes of RNA molecules, in any sequenced organism or single-cell type, under different experimental conditions. Merging genomics and transcriptomic profiling provides novel information underlying causative DNA mutations. Combining RNA-Seq with immunoprecipitation and cross-linking techniques is a clever multi-omics strategy assessing transcriptional, post-transcriptional and post-translational levels of gene expression regulation. |
bulk rna seq analysis: Computational Methods for Single-Cell Data Analysis Guo-Cheng Yuan, 2019-02-14 This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis. |
bulk rna seq analysis: Molecular Pathology in Cancer Research Sunil R. Lakhani, Stephen B. Fox, 2017-01-20 The aim of the book is to discuss the application of molecular pathology in cancer research, and its contribution in the classification of different tumors and identification of potential molecular targets, as well as how this knowledge may be translated into clinical practice, and the huge impact this field is likely to have in the next 5 to 10 years. |
bulk rna seq analysis: Tumor Immunology and Immunotherapy - Cellular Methods Part B , 2020-01-28 Tumor Immunology and Immunotherapy - Cellular Methods Part B, Volume 632, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics covered include Quantitation of calreticulin exposure associated with immunogenic cell death, Side-by-side comparisons of flow cytometry and immunohistochemistry for detection of calreticulin exposure in the course of immunogenic cell death, Quantitative determination of phagocytosis by bone marrow-derived dendritic cells via imaging flow cytometry, Cytofluorometric assessment of dendritic cell-mediated uptake of cancer cell apoptotic bodies, Methods to assess DC-dependent priming of T cell responses by dying cells, and more. |
bulk rna seq analysis: Gene Expression Analysis Nalini Raghavachari, Natàlia Garcia-Reyero, 2018-05-17 This volume provides experimental and bioinformatics approaches related to different aspects of gene expression analysis. Divided in three sections chapters detail wet-lab protocols, bioinformatics approaches, single-cell gene expression, highly multiplexed amplicon sequencing, multi-omics techniques, and targeted sequencing. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Gene Expression Analysis: Methods and Protocols aims provide useful information to researchers worldwide. |
bulk rna seq analysis: Seurat Hajo Düchting, Georges Seurat, 2000 Georges Seurat died in 1891, aged only 32, and yet in a career that lasted little more than a decade he revolutionized technique in painting, spearheaded a new movement, Neoimpressionism, and bought a degree of scientific rigour to his investigations of colour that would prove profoundly influential well into the 20th century. As a student at the Ecole des Beaux-Arts, Seurat read Chevreul's 1839 book on the theory of colour and this, along with his own analysis of Delacroix' paintings and the aesthetic observations of scientist Charles Henry, led him to formulate the concept of Divisionism. This was a method of painting around colour contrasts in which shade and tone are built up through dots of paint (pointillism) that emphasise the complex inter-relation of light and shadow. |
bulk rna seq analysis: Statistical Genomics Ewy Mathé, Sean Davis, 2016-03-24 This volume expands on statistical analysis of genomic data by discussing cross-cutting groundwork material, public data repositories, common applications, and representative tools for operating on genomic data. Statistical Genomics: Methods and Protocols is divided into four sections. The first section discusses overview material and resources that can be applied across topics mentioned throughout the book. The second section covers prominent public repositories for genomic data. The third section presents several different biological applications of statistical genomics, and the fourth section highlights software tools that can be used to facilitate ad-hoc analysis and data integration. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible analysis protocols, and tips on troubleshooting and avoiding known pitfalls. Through and practical, Statistical Genomics: Methods and Protocols, explores a range of both applications and tools and is ideal for anyone interested in the statistical analysis of genomic data. |
bulk rna seq analysis: A Primer for Computational Biology Shawn T. O'Neil, 2017-12-21 A Primer for Computational Biology aims to provide life scientists and students the skills necessary for research in a data-rich world. The text covers accessing and using remote servers via the command-line, writing programs and pipelines for data analysis, and provides useful vocabulary for interdisciplinary work. The book is broken into three parts: Introduction to Unix/Linux: The command-line is the natural environment of scientific computing, and this part covers a wide range of topics, including logging in, working with files and directories, installing programs and writing scripts, and the powerful pipe operator for file and data manipulation. Programming in Python: Python is both a premier language for learning and a common choice in scientific software development. This part covers the basic concepts in programming (data types, if-statements and loops, functions) via examples of DNA-sequence analysis. This part also covers more complex subjects in software development such as objects and classes, modules, and APIs. Programming in R: The R language specializes in statistical data analysis, and is also quite useful for visualizing large datasets. This third part covers the basics of R as a programming language (data types, if-statements, functions, loops and when to use them) as well as techniques for large-scale, multi-test analyses. Other topics include S3 classes and data visualization with ggplot2. |
bulk rna seq analysis: Transposons and Retrotransposons Jose Luis Garcia Perez, 2016-02-20 This volume covers the latest protocols designed to identify and characterize TEs in genomes, ancient or recently inserted. Additionally, this book includes a series of protocols designed to understand how host genomes act to regulate the activity of TEs, from elegant genetic mobilization assays to key biochemical methods. Finally, this book also includes chapters that describe how TEs can be used for biotechnological applications. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Transposons and Retrotransposons: Methods and Protocols aims to ensure successful results in the further study of this vital field. |
bulk rna seq analysis: Advances in Bioinformatics Vijai Singh, |
bulk rna seq analysis: Bioinformatics for Cancer Immunotherapy Sebastian Boegel, 2020-03-03 This volume focuses on a variety of in silico protocols of the latest bioinformatics tools and computational pipelines developed for neo-antigen identification and immune cell analysis from high-throughput sequencing data for cancer immunotherapy. The chapters in this book cover topics that discuss the two emerging concepts in recognition of tumor cells using endogenous T cells: cancer vaccines against neo-antigens presented on HLA class I and II alleles, and checkpoint inhibitors. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Bioinformatics for Cancer Immunotherapy: Methods and Protocols is a valuable research tool for any scientist and researcher interested in learning more about this exciting and developing field. |
bulk rna seq analysis: RSEM: Accurate Transcript Quantification from RNA-Seq Data with Or Without a Reference Genome Applied Research Applied Research Press, 2015-09-16 RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive. |
bulk rna seq analysis: Modern Statistics for Modern Biology SUSAN. HUBER HOLMES (WOLFGANG.), Wolfgang Huber, 2018 |
bulk rna seq analysis: Bioinformatics and Computational Biology Solutions Using R and Bioconductor Robert Gentleman, Vincent Carey, Wolfgang Huber, Rafael Irizarry, Sandrine Dudoit, 2005-12-29 Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers. |
bulk rna seq analysis: Translational Bioinformatics for Therapeutic Development Joseph Markowitz, 2021-09-29 This volume introduces Translational Bioinformatics as it relates to therapeutic development, and addresses the techniques needed to effectively translate large data sets to relevant biological networks. Chapters detail clinical informatics infrastructure, and leverage pathology, immunology, pharmacology, genomic, proteomic, and metabolomic informatics approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Translational Bioinformatics for Therapeutic Development: Methods and Protocols aims to ensure success in the study of Translational Bioinformatics. |
bulk rna seq analysis: Single Cell Methods Valentina Proserpio, 2019 This volume provides a comprehensive overview for investigating biology at the level of individual cells. Chapters are organized into eight parts detailing a single-cell lab, single cell DNA-seq, RNA-seq, single cell proteomic and epigenetic, single cell multi-omics, single cell screening, and single cell live imaging. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Single Cell Methods: Sequencing and Proteomics aims to make each experiment easily reproducible in every lab. |
bulk rna seq analysis: Data Analysis Using Regression and Multilevel/Hierarchical Models Andrew Gelman, Jennifer Hill, 2007 This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models. |
bulk rna seq analysis: Introduction to Genetic Algorithms S.N. Sivanandam, S. N. Deepa, 2007-10-24 This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields. |
bulk rna seq analysis: Applied Bioinformatics Paul Maria Selzer, Richard Marhöfer, Andreas Rohwer, 2008-01-18 At last, here is a baseline book for anyone who is confused by cryptic computer programs, algorithms and formulae, but wants to learn about applied bioinformatics. Now, anyone who can operate a PC, standard software and the internet can also learn to understand the biological basis of bioinformatics, of the existence as well as the source and availability of bioinformatics software, and how to apply these tools and interpret results with confidence. This process is aided by chapters that introduce important aspects of bioinformatics, detailed bioinformatics exercises (including solutions), and to cap it all, a glossary of definitions and terminology relating to bioinformatics. |
bulk rna seq analysis: Proceedings of the First International Conference on Genetic Algorithms and their Applications John J. Grefenstette, 2014-01-02 Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence. |
bulk rna seq analysis: Regression Analysis of Count Data Adrian Colin Cameron, Pravin K. Trivedi, 2013-05-27 This book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events. |
bulk rna seq analysis: Integrated Omics Approaches to Infectious Diseases Saif Hameed, Zeeshan Fatima, 2021 This book examines applications of multi-omics approaches for understanding disease etiology, pathogenesis, host-pathogen interactions. It also analyzes the genetics, immunological and metabolic mechanisms underlying the infections. The book also explores genomics, transcriptomics, translational-omics, and metabolomics approaches to understand the pathogenesis and identify potential drug targets. It reviews the role of epigenetic reprogramming in shaping the host-pathogen interactions and presents bioinformatics application in the identification of drug targets. Further, it examines the potential applications of RNA sequencing and non-coding RNA profiling to identify the pathogenesis. Lastly, it offers the current challenges, technological advances, and prospects of using multi-omics technologies in infectious biology. |
bulk rna seq analysis: Advanced Medical Statistics (2nd Edition) Ying Lu, Ji-qian Fang, Lu Tian, Hua Jin, 2015-06-29 The book aims to provide both comprehensive reviews of the classical methods and an introduction to new developments in medical statistics. The topics range from meta analysis, clinical trial design, causal inference, personalized medicine to machine learning and next generation sequence analysis. Since the publication of the first edition, there have been tremendous advances in biostatistics and bioinformatics. The new edition tries to cover as many important emerging areas and reflect as much progress as possible. Many distinguished scholars, who greatly advanced their research areas in statistical methodology as well as practical applications, also have revised several chapters with relevant updates and written new ones from scratch.The new edition has been divided into four sections, including, Statistical Methods in Medicine and Epidemiology, Statistical Methods in Clinical Trials, Statistical Genetics, and General Methods. To reflect the rise of modern statistical genetics as one of the most fertile research areas since the publication of the first edition, the brand new section on Statistical Genetics includes entirely new chapters reflecting the state of the art in the field.Although tightly related, all the book chapters are self-contained and can be read independently. The book chapters intend to provide a convenient launch pad for readers interested in learning a specific topic, applying the related statistical methods in their scientific research and seeking the newest references for in-depth research. |
bulk rna seq analysis: Cancer Biomarkers Gagan Deep, 2023-02-03 This detailed volume explores numerous methods used in basic science laboratories to characterize cancer-related biomarkers, vital for better managing cancer burden, including cancer risk assessment, cancer diagnosis, determining cancer progression, and therapeutic response. From a radiography method to an examination of single-cell RNA-seq and computational analysis tools in cancer research, this book delves into many techniques that could provide valuable molecular information about the tumor and its microenvironment components. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cancer Biomarkers: Methods and Protocols offers researchers multiple helpful ways to study cancer-associated molecular biomarkers. |
bulk rna seq analysis: Statistical Analysis of Next Generation Sequencing Data Somnath Datta, Dan Nettleton, 2016-09-17 Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics. |
bulk rna seq analysis: Data Mining for Systems Biology Hiroshi Mamitsuka, 2019-08-04 This fully updated book collects numerous data mining techniques, reflecting the acceleration and diversity of the development of data-driven approaches to the life sciences. The first half of the volume examines genomics, particularly metagenomics and epigenomics, which promise to deepen our knowledge of genes and genomes, while the second half of the book emphasizes metabolism and the metabolome as well as relevant medicine-oriented subjects. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that is useful for getting optimal results. Authoritative and practical, Data Mining for Systems Biology: Methods and Protocols, Second Edition serves as an ideal resource for researchers of biology and relevant fields, such as medical, pharmaceutical, and agricultural sciences, as well as for the scientists and engineers who are working on developing data-driven techniques, such as databases, data sciences, data mining, visualization systems, and machine learning or artificial intelligence that now are central to the paradigm-altering discoveries being made with a higher frequency. |
bulk rna seq analysis: Applied Bioinformatics David Hendrix, 2019-10-03 |
bulk rna seq analysis: Gene Expression Studies Using Affymetrix Microarrays Hinrich Gohlmann, Willem Talloen, 2009-07-15 The Affymetrix GeneChip® system is one of the most widely adapted microarray platforms. However, due to the overwhelming amount of information available, many Affymetrix users tend to stick to the default analysis settings and may end up drawing sub-optimal conclusions. Written by a molecular biologist and a biostatistician with a combined decade of experience in practical expression profiling experiments and data analyses, Gene Expression Studies Using Affymetrix Microarrays tears down the omnipresent language barriers among molecular biology, bioinformatics, and biostatistics by explaining the entire process of a gene expression study from conception to conclusion. Truly Multidisciplinary: Merges Molecular Biology, Bioinformatics, and Biostatistics This authoritative resource covers important technical and statistical pitfalls and problems, helping not only to explain concepts outside the domain of researchers, but to provide additional guidance in their field of expertise. The book also describes technical and statistical methods conceptually with illustrative, full-color examples, enabling those inexperienced with gene expression studies to grasp the basic principles. Gene Expression Studies Using Affymetrix Microarrays provides novices with a detailed, yet focused introductory course and practical user guide. Specialized experts will also find it useful as a translation dictionary to understand other involved disciplines or to get a broader picture of microarray gene expression studies in general. Although focusing on Affymetrix gene expression, this globally relevant guide covers topics that are equally useful for other microarray platforms and other Affymetrix applications. |
bulk rna seq analysis: Bioinformatics David Edwards, Jason Stajich, David Hansen, 2010-04-29 Bioinformatics is a relatively new field of research. It evolved from the requirement to process, characterize, and apply the information being produced by DNA sequencing technology. The production of DNA sequence data continues to grow exponentially. At the same time, improved bioinformatics such as faster DNA sequence search methods have been combined with increasingly powerful computer systems to process this information. Methods are being developed for the ever more detailed quantification of gene expression, providing an insight into the function of the newly discovered genes, while molecular genetic tools provide a link between these genes and heritable traits. Genetic tests are now available to determine the likelihood of suffering specific ailments and can predict how plant cultivars may respond to the environment. The steps in the translation of the genetic blueprint to the observed phenotype is being increasingly understood through proteome, metabolome and phenome analysis, all underpinned by advances in bioinformatics. Bioinformatics is becoming increasingly central to the study of biology, and a day at a computer can often save a year or more in the laboratory. The volume is intended for graduate-level biology students as well as researchers who wish to gain a better understanding of applied bioinformatics and who wish to use bioinformatics technologies to assist in their research. The volume would also be of value to bioinformatics developers, particularly those from a computing background, who would like to understand the application of computational tools for biological research. Each chapter would include a comprehensive introduction giving an overview of the fundamentals, aimed at introducing graduate students and researchers from diverse backgrounds to the field and bring them up-to-date on the current state of knowledge. To accommodate the broad range of topics in applied bioinformatics, chapters have been grouped into themes: gene and genome analysis, molecular genetic analysis, gene expression analysis, protein and proteome analysis, metabolome analysis, phenome data analysis, literature mining and bioinformatics tool development. Each chapter and theme provides an introduction to the biology behind the data describes the requirements for data processing and details some of the methods applied to the data to enhance biological understanding. |
bulk rna seq analysis: Webvision Helga Kolb, Eduardo Fernandez, Ralph Nelson, 2007 |
bulk rna seq analysis: Machine learning-based methods for RNA data analysis, volume II Lihong Peng, Jialiang Yang, Liqian Zhou, Minxian Wallace Wang, 2023-01-02 |
bulk rna seq analysis: Integrative analysis of single-cell and/or bulk multi-omics sequencing data Geng Chen, Xingdong Chen, Rongshan Yu, Zhichao Liu, 2023-03-13 |
Bulk Freight Conference 2024 - BulkLoads.com
Feb 26, 2024 · We're just two months away from our highly anticipated 2nd annual Bulk Freight Conference. Get ready for an engaging lineup of speakers, panels, and vendors, all geared …
2025 Bulk Freight Conference brings bulk trucking industry together
Nearly 600 carriers, brokers, shippers and owner-operators gathered at the Branson Convention Center April 16-18 for the 2025 Bulk Freight Conference. The conference, hosted by …
BOX BROKERS IN BULK
Apr 30, 2025 · Is anyone else as sick of van/reefer brokers who have no idea how the bulk freight world works pushing their way in? So many new brokers that have no idea what co-brokering …
Bulk Trucking Forum & Discussion Board
Explore the Bulk Trucking Forum & Discussion Board for discussions on freight rates, bulk loads, and industry trends. Connect with other trucking professionals today! 1-800-518-9240
Dry Bulk Loads | Hopper Loads & Trucks
Our Load Board features Hopper Loads, Grain Loads and other Dry Bulk Loads to keep your Hopper moving!
2025 Bulk Freight Conference: Seats are Filling up Quick!
Mar 14, 2025 · 2025 Bulk Freight Conference: Seats are Filling up Quick! ×. Mar 14, 2025 at 02:40 PM CST
Grain, Feed Ingredients & Fertilizer Loads in North Dakota
Listing of Available Hopper Freight, Dry Bulk Freight, Grain Loads
5 Listings (11 Loads) Going to North Dakota - BulkLoads.com
Listing of Available Hopper Freight, Dry Bulk Freight, Grain Loads Grain, Feed Ingredients & Fertilizer Loads Going to North Dakota | BulkLoads.com Sales & Support:
Grain, Feed Ingredients & Fertilizer Loads in Florida
100 lds - 5/15 to 6/14, End Dump,End Dump - Aluminum,End Dump - Steel Body
Grain, Feed Ingredients & Fertilizer Loads Going to Montana
Listing of Available Hopper Freight, Dry Bulk Freight, Grain Loads
Bulk Freight Conference 2024 - BulkLoads.com
Feb 26, 2024 · We're just two months away from our highly anticipated 2nd annual Bulk Freight Conference. Get ready for an engaging lineup of speakers, panels, and vendors, all geared …
2025 Bulk Freight Conference brings bulk trucking industry together
Nearly 600 carriers, brokers, shippers and owner-operators gathered at the Branson Convention Center April 16-18 for the 2025 Bulk Freight Conference. The conference, hosted by …
BOX BROKERS IN BULK
Apr 30, 2025 · Is anyone else as sick of van/reefer brokers who have no idea how the bulk freight world works pushing their way in? So many new brokers that have no idea what co-brokering …
Bulk Trucking Forum & Discussion Board
Explore the Bulk Trucking Forum & Discussion Board for discussions on freight rates, bulk loads, and industry trends. Connect with other trucking professionals today! 1-800-518-9240
Dry Bulk Loads | Hopper Loads & Trucks
Our Load Board features Hopper Loads, Grain Loads and other Dry Bulk Loads to keep your Hopper moving!
2025 Bulk Freight Conference: Seats are Filling up Quick!
Mar 14, 2025 · 2025 Bulk Freight Conference: Seats are Filling up Quick! ×. Mar 14, 2025 at 02:40 PM CST
Grain, Feed Ingredients & Fertilizer Loads in North Dakota
Listing of Available Hopper Freight, Dry Bulk Freight, Grain Loads
5 Listings (11 Loads) Going to North Dakota - BulkLoads.com
Listing of Available Hopper Freight, Dry Bulk Freight, Grain Loads Grain, Feed Ingredients & Fertilizer Loads Going to North Dakota | BulkLoads.com Sales & Support:
Grain, Feed Ingredients & Fertilizer Loads in Florida
100 lds - 5/15 to 6/14, End Dump,End Dump - Aluminum,End Dump - Steel Body
Grain, Feed Ingredients & Fertilizer Loads Going to Montana
Listing of Available Hopper Freight, Dry Bulk Freight, Grain Loads