business analytics in accounting: Data Analytics for Accounting Vernon J. Richardson, Ryan Teeter, Katie L. Terrell, 2018-05-23 |
business analytics in accounting: Analytics and Big Data for Accountants Jim Lindell, 2020-10-29 Why is big data analytics one of the hottest business topics today? This book will help accountants and financial managers better understand big data and analytics, including its history and current trends. It dives into the platforms and operating tools that will help you measure program impacts and ROI, visualize data and business processes, and uncover the relationship between key performance indicators. Key topics covered include: Evidence-based techniques for finding or generating data, selecting key performance indicators, isolating program effects Relating data to return on investment, financial values, and executive decision making Data sources including surveys, interviews, customer satisfaction, engagement, and operational data Visualizing and presenting complex results |
business analytics in accounting: Predictive Business Analytics Lawrence Maisel, Gary Cokins, 2013-09-26 Discover the breakthrough tool your company can use to make winning decisions This forward-thinking book addresses the emergence of predictive business analytics, how it can help redefine the way your organization operates, and many of the misconceptions that impede the adoption of this new management capability. Filled with case examples, Predictive Business Analytics defines ways in which specific industries have applied these techniques and tools and how predictive business analytics can complement other financial applications such as budgeting, forecasting, and performance reporting. Examines how predictive business analytics can help your organization understand its various drivers of performance, their relationship to future outcomes, and improve managerial decision-making Looks at how to develop new insights and understand business performance based on extensive use of data, statistical and quantitative analysis, and explanatory and predictive modeling Written for senior financial professionals, as well as general and divisional senior management Visionary and effective, Predictive Business Analytics reveals how you can use your business's skills, technologies, tools, and processes for continuous analysis of past business performance to gain forward-looking insight and drive business decisions and actions. |
business analytics in accounting: Financial Data Analytics Sinem Derindere Köseoğlu, 2022-04-25 This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics. |
business analytics in accounting: Data Mining For Dummies Meta S. Brown, 2014-09-04 Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining. |
business analytics in accounting: Customer Accounting Massimiliano Bonacchi, Paolo Perego, 2018-11-04 This book is designed to meet the needs of CFOs, accounting and financial professionals interested in leveraging the power of data-driven customer insights in management accounting and financial reporting systems. While academic research in Marketing has developed increasingly sophisticated analytical tools, the role of customer analytics as a source of value creation from an Accounting and Finance perspective has received limited attention. The authors aim to fill this gap by blending interdisciplinary academic rigor with practical insights from real-world applications. Readers will find thorough coverage of advanced customer accounting concepts and techniques, including the calculation of customer lifetime value and customer equity for internal decision-making and for external financial reporting and valuation. Beyond a professional audience, the book will serve as ideal companion reading for students enrolled in undergraduate, graduate, or MBA courses. |
business analytics in accounting: Forensic Analytics Mark J. Nigrini, 2011-05-12 Discover how to detect fraud, biases, or errors in your data using Access or Excel With over 300 images, Forensic Analytics reviews and shows how twenty substantive and rigorous tests can be used to detect fraud, errors, estimates, or biases in your data. For each test, the original data is shown with the steps needed to get to the final result. The tests range from high-level data overviews to assess the reasonableness of data, to highly focused tests that give small samples of highly suspicious transactions. These tests are relevant to your organization, whether small or large, for profit, nonprofit, or government-related. Demonstrates how to use Access, Excel, and PowerPoint in a forensic setting Explores use of statistical techniques such as Benford's Law, descriptive statistics, correlation, and time-series analysis to detect fraud and errors Discusses the detection of financial statement fraud using various statistical approaches Explains how to score locations, agents, customers, or employees for fraud risk Shows you how to become the data analytics expert in your organization Forensic Analytics shows how you can use Microsoft Access and Excel as your primary data interrogation tools to find exceptional, irregular, and anomalous records. |
business analytics in accounting: Guide to Audit Data Analytics AICPA, 2018-02-21 Designed to facilitate the use of audit data analytics (ADAs) in the financial statement audit, this title was developed by leading experts across the profession and academia. The guide defines audit data analytics as “the science and art of discovering and analyzing patterns, identifying anomalies, and extracting other useful information in data underlying or related to the subject matter of an audit through analysis, modeling, and visualization for planning or performing the audit.” Simply put, ADAs can be used to perform a variety of procedures to gather audit evidence. Each chapter focuses on an audit area and includes step-by-step guidance illustrating how ADAs can be used throughout the financial statement audit. Suggested considerations for assessing the reliability of data are also included in a separate appendix. |
business analytics in accounting: Accounting Information Systems Arline A. Savage, Danielle Brannock, Alicja Foksinska, 2024-01-08 |
business analytics in accounting: Introduction to Business Analytics Using Simulation Jonathan P. Pinder, 2022-02-06 Introduction to Business Analytics Using Simulation, Second Edition employs an innovative strategy to teach business analytics. The book uses simulation modeling and analysis as mechanisms to introduce and link predictive and prescriptive modeling. Because managers can't fully assess what will happen in the future, but must still make decisions, the book treats uncertainty as an essential element in decision-making. Its use of simulation gives readers a superior way of analyzing past data, understanding an uncertain future, and optimizing results to select the best decision. With its focus on uncertainty and variability, this book provides a comprehensive foundation for business analytics. Students will gain a better understanding of fundamental statistical concepts that are essential to marketing research, Six-Sigma, financial analysis, and business analytics. - Teaches managers how they can use business analytics to formulate and solve business problems to enhance managerial decision-making - Explains the processes needed to develop, report and analyze business data - Describes how to use and apply business analytics software - Offers expanded coverage on the value and application of prescriptive analytics - Includes a wealth of illustrative exercises that are newly organized by difficulty level - Winner of the 2017 Textbook and Academic Authors Association's (TAA) Most Promising New Textbook Award in the prior edition |
business analytics in accounting: Quantitative Data Analysis Willem Mertens, Amedeo Pugliese, Jan Recker, 2016-09-29 This book offers postgraduate and early career researchers in accounting and information systems a guide to choosing, executing and reporting appropriate data analysis methods to answer their research questions. It provides readers with a basic understanding of the steps that each method involves, and of the facets of the analysis that require special attention. Rather than presenting an exhaustive overview of the methods or explaining them in detail, the book serves as a starting point for developing data analysis skills: it provides hands-on guidelines for conducting the most common analyses and reporting results, and includes pointers to more extensive resources. Comprehensive yet succinct, the book is brief and written in a language that everyone can understand - from students to those employed by organizations wanting to study the context in which they work. It also serves as a refresher for researchers who have learned data analysis techniques previously but who need a reminder for the specific study they are involved in. |
business analytics in accounting: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates |
business analytics in accounting: Handbook of Big Data and Analytics in Accounting and Auditing Tarek Rana, Jan Svanberg, Peter Öhman, Alan Lowe, 2023-02-03 This handbook collects the most up-to-date scholarship, knowledge, and new developments of big data and data analytics by bringing together many strands of contextual and disciplinary research. In recent times, while there has been considerable research in exploring the role of big data, data analytics, and textual analytics in accounting, and auditing, we still lack evidence on what kinds of best practices academics, practitioners, and organizations can implement and use. To achieve this aim, the handbook focuses on both conventional and contemporary issues facing by academics, practitioners, and organizations particularly when technology and business environments are changing faster than ever. All the chapters in this handbook provide both retrospective and contemporary views and commentaries by leading and knowledgeable scholars in the field, who offer unique insights on the changing role of accounting and auditing in today’s data and analytics driven environment. Aimed at academics, practitioners, students, and consultants in the areas of accounting, auditing, and other business disciplines, the handbook provides high-level insight into the design, implementation, and working of big data and data analytics practices for all types of organizations worldwide. The leading scholars in the field provide critical evaluations and guidance on big data and data analytics by illustrating issues related to various sectors such as public, private, not-for-profit, and social enterprises. The handbook’s content will be highly desirable and accessible to accounting and non-accounting audiences across the globe. |
business analytics in accounting: Fourth Industrial Revolution and Business Dynamics Nasser Rashad Al Mawali, Anis Moosa Al Lawati, Ananda S, 2021-10-07 The book explains strategic issues, trends, challenges, and future scenario of global economy in the light of Fourth Industrial Revolution. It consists of insightful scientific essays authored by scholars and practitioners from business, technology, and economics area. The book contributes to business education by means of research, critical and theoretical reviews of issues in Fourth Industrial Revolution. |
business analytics in accounting: Introduction to Business Lawrence J. Gitman, Carl McDaniel, Amit Shah, Monique Reece, Linda Koffel, Bethann Talsma, James C. Hyatt, 2024-09-16 Introduction to Business covers the scope and sequence of most introductory business courses. The book provides detailed explanations in the context of core themes such as customer satisfaction, ethics, entrepreneurship, global business, and managing change. Introduction to Business includes hundreds of current business examples from a range of industries and geographic locations, which feature a variety of individuals. The outcome is a balanced approach to the theory and application of business concepts, with attention to the knowledge and skills necessary for student success in this course and beyond. This is an adaptation of Introduction to Business by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
business analytics in accounting: Predictive Business Analytics Lawrence Maisel, Gary Cokins, 2013-10-07 Discover the breakthrough tool your company can use to make winning decisions This forward-thinking book addresses the emergence of predictive business analytics, how it can help redefine the way your organization operates, and many of the misconceptions that impede the adoption of this new management capability. Filled with case examples, Predictive Business Analytics defines ways in which specific industries have applied these techniques and tools and how predictive business analytics can complement other financial applications such as budgeting, forecasting, and performance reporting. Examines how predictive business analytics can help your organization understand its various drivers of performance, their relationship to future outcomes, and improve managerial decision-making Looks at how to develop new insights and understand business performance based on extensive use of data, statistical and quantitative analysis, and explanatory and predictive modeling Written for senior financial professionals, as well as general and divisional senior management Visionary and effective, Predictive Business Analytics reveals how you can use your business's skills, technologies, tools, and processes for continuous analysis of past business performance to gain forward-looking insight and drive business decisions and actions. |
business analytics in accounting: Forensic Analytics Mark J. Nigrini, 2020-04-20 Become the forensic analytics expert in your organization using effective and efficient data analysis tests to find anomalies, biases, and potential fraud—the updated new edition Forensic Analytics reviews the methods and techniques that forensic accountants can use to detect intentional and unintentional errors, fraud, and biases. This updated second edition shows accountants and auditors how analyzing their corporate or public sector data can highlight transactions, balances, or subsets of transactions or balances in need of attention. These tests are made up of a set of initial high-level overview tests followed by a series of more focused tests. These focused tests use a variety of quantitative methods including Benford’s Law, outlier detection, the detection of duplicates, a comparison to benchmarks, time-series methods, risk-scoring, and sometimes simply statistical logic. The tests in the new edition include the newly developed vector variation score that quantifies the change in an array of data from one period to the next. The goals of the tests are to either produce a small sample of suspicious transactions, a small set of transaction groups, or a risk score related to individual transactions or a group of items. The new edition includes over two hundred figures. Each chapter, where applicable, includes one or more cases showing how the tests under discussion could have detected the fraud or anomalies. The new edition also includes two chapters each describing multi-million-dollar fraud schemes and the insights that can be learned from those examples. These interesting real-world examples help to make the text accessible and understandable for accounting professionals and accounting students without rigorous backgrounds in mathematics and statistics. Emphasizing practical applications, the new edition shows how to use either Excel or Access to run these analytics tests. The book also has some coverage on using Minitab, IDEA, R, and Tableau to run forensic-focused tests. The use of SAS and Power BI rounds out the software coverage. The software screenshots use the latest versions of the software available at the time of writing. This authoritative book: Describes the use of statistically-based techniques including Benford’s Law, descriptive statistics, and the vector variation score to detect errors and anomalies Shows how to run most of the tests in Access and Excel, and other data analysis software packages for a small sample of the tests Applies the tests under review in each chapter to the same purchasing card data from a government entity Includes interesting cases studies throughout that are linked to the tests being reviewed. Includes two comprehensive case studies where data analytics could have detected the frauds before they reached multi-million-dollar levels Includes a continually-updated companion website with the data sets used in the chapters, the queries used in the chapters, extra coverage of some topics or cases, end of chapter questions, and end of chapter cases. Written by a prominent educator and researcher in forensic accounting and auditing, the new edition of Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations is an essential resource for forensic accountants, auditors, comptrollers, fraud investigators, and graduate students. |
business analytics in accounting: Advancement in Business Analytics Tools for Higher Financial Performance Gharoie Ahangar, Reza, Napier, Mark, 2023-08-08 The relentless growth of data in financial markets has boosted the demand for more advanced analytical tools to facilitate and improve financial planning. The ability to constructively use this data is limited for managers and investors without the proper theoretical support. Within this context, there is an unmet demand for combining analytical finance methods with business analytics topics to inform better investment decisions. Advancement in Business Analytics Tools for Higher Financial Performance explores the financial applications of business analytics tools that can help financial managers and investors to better understand financial theory and improve institutional investment practices. This book explores the value extraction process using more accurate financial data via business analytical tools to help investors and portfolio managers develop more modern financial planning processes. Covering topics such as financial markets, investment analysis, and statistical tools, this book is ideal for accountants, data analysts, researchers, students, business professionals, academicians, and more. |
business analytics in accounting: Data Quality Jack E. Olson, 2003-01-09 Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality.* Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets. |
business analytics in accounting: Analytics Across the Enterprise Brenda L. Dietrich, Emily C. Plachy, Maureen F. Norton, 2014-05-15 How to Transform Your Organization with Analytics: Insider Lessons from IBM’s Pioneering Experience Analytics is not just a technology: It is a better way to do business. Using analytics, you can systematically inform human judgment with data-driven insight. This doesn’t just improve decision-making: It also enables greater innovation and creativity in support of strategy. Your transformation won’t happen overnight; however, it is absolutely achievable, and the rewards are immense. This book demystifies your analytics journey by showing you how IBM has successfully leveraged analytics across the enterprise, worldwide. Three of IBM’s pioneering analytics practitioners share invaluable real-world perspectives on what does and doesn’t work and how you can start or accelerate your own transformation. This book provides an essential framework for becoming a smarter enterprise and shows through 31 case studies how IBM has derived value from analytics throughout its business. Coverage Includes Creating a smarter workforce through big data and analytics More effectively optimizing supply chain processes Systematically improving financial forecasting Managing financial risk, increasing operational efficiency, and creating business value Reaching more B2B or B2C customers and deepening their engagement Optimizing manufacturing and product management processes Deploying your sales organization to increase revenue and effectiveness Achieving new levels of excellence in services delivery and reducing risk Transforming IT to enable wider use of analytics “Measuring the immeasurable” and filling gaps in imperfect data Whatever your industry or role, whether a current or future leader, analytics can make you smarter and more competitive. Analytics Across the Enterprise shows how IBM did it--and how you can, too. Learn more about IBM Analytics |
business analytics in accounting: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration. |
business analytics in accounting: Financial Accounting Paul D. Kimmel, Paul D Kimmel, PhD, CPA, Jerry J Weygandt, Ph.D., CPA, Donald E Kieso, Ph.D., CPA, Jerry J. Weygandt, Donald E. Kieso, 2009-08-17 |
business analytics in accounting: Introduction to Business Analytics, Second Edition Majid Nabavi, David L. Olson, Wesley S. Boyce, 2020-12-14 This book presents key concepts related to quantitative analysis in business. It is targeted at business students (both undergraduate and graduate) taking an introductory core course. Business analytics has grown to be a key topic in business curricula, and there is a need for stronger quantitative skills and understanding of fundamental concepts. This second edition adds material on Tableau, a very useful software for business analytics. This supplements the tools from Excel covered in the first edition, to include Data Analysis Toolpak and SOLVER. |
business analytics in accounting: Using Excel for Business Analysis Danielle Stein Fairhurst, 2015-05-18 This is a guide to building financial models for business proposals, to evaluate opportunities, or to craft financial reports. It covers the principles and best practices of financial modelling, including the Excel tools, formulas, and functions to master, and the techniques and strategies necessary to eliminate errors. |
business analytics in accounting: Business Analytics Sanjiv Jaggia, Alison Kelly (Professor of economics), Kevin Lertwachara, Leida Chen, 2023 We wrote Business Analytics: Communicating with Numbers from the ground up to prepare students to understand, manage, and visualize the data; apply the appropriate analysis tools; and communicate the findings and their relevance. The text seamlessly threads the topics of data wrangling, descriptive analytics, predictive analytics, and prescriptive analytics into a cohesive whole. In the second edition of Business Analytics, we have made substantial revisions that meet the current needs of the instructors teaching the course and the companies that require the relevant skillset. These revisions are based on the feedback of reviewers and users of our first edition. The greatly expanded coverage of the text gives instructors the flexibility to select the topics that best align with their course objectives-- |
business analytics in accounting: Management Accounting in Support of Strategy Graham S. Pitcher, 2018-05-16 Management Accounting in Support of Strategy explores how management accounting can support the strategic management process of analysis, formulation, implementation, evaluation, monitoring, and control. If the management accountant is to add value to the business they need to understand how the business works. The toolbox available to the management accountant does not just contain the accounting techniques, but also includes the strategy models and frameworks described in this book. Armed with this array of tools the management accountant is well placed to add significant value to the business. The reader will gain an understanding of the strategic management framework, strategic models and tools, and how management accounting can support the strategic management process. It will be beneficial for undergraduate and postgraduate course students studying strategy or management accounting. The book will also enable practicing accountants to understand how they can make a significant contribution to the success of their organization by demonstrating how management accounting can be used in support of strategy. |
business analytics in accounting: Loose Leaf for Data Analytics for Accounting Vernon Richardson, Ryan A. Teeter, Katie L. Terrell, 2022-01-25 Data Analytics is changing the business world--data simply surrounds us, which means all accountants must develop data analytic skills to address the needs of the profession in the future. Data Analytics for Accounting 3e is designed to prepare your students with the necessary tools and skills they need to successfully perform data analytics through a conceptual framework and hands-on practice with real-world data. Using the IMPACT Cycle, the authors provide a conceptual framework to help students think through the steps needed to provide data-driven insights and recommendations. Once students understand the foundation of providing data-driven insights, they are then provided hands-on practice with real-world data sets and various data analysis tools which students will use throughout the rest of their career. The data analysis tools are structured around two tracks--the Microsoft track (Excel, Power Pivot, and Power BI) and a Tableau track (Tableau Prep and Tableau Desktop). Using multiple tools allows students to learn which tool is best suited for the necessary data analysis, data visualization, and communication of the insights gained. Data Analytics for Accounting 3e is a full-course data analytics solution guaranteed to prepare your students for their future careers as accountants. |
business analytics in accounting: Business Analytics Arul Mishra, Himanshu Mishra, 2024-02-27 Business Analytics: Solving Business Problems with R offers a practical, hands-on introduction to analytical methods, including machine learning in real-world business scenarios. Connecting business decisions and analytical methods across multiple fields, this book guides readers through a wide range of business problems and their fitting analytical solutions, offering examples and implementation using R. |
business analytics in accounting: Business Analytics and Decision Making in Practice Ali Emrouznejad, |
business analytics in accounting: Encyclopedia of Business Analytics and Optimization Wang, John, 2014-02-28 As the age of Big Data emerges, it becomes necessary to take the five dimensions of Big Data- volume, variety, velocity, volatility, and veracity- and focus these dimensions towards one critical emphasis - value. The Encyclopedia of Business Analytics and Optimization confronts the challenges of information retrieval in the age of Big Data by exploring recent advances in the areas of knowledge management, data visualization, interdisciplinary communication, and others. Through its critical approach and practical application, this book will be a must-have reference for any professional, leader, analyst, or manager interested in making the most of the knowledge resources at their disposal. |
business analytics in accounting: Business Analysis and Valuation Sue Joy Wright, Michael Bradbury, Philip Lee, Krishna G. Palepu, Paul M. Healy, 2014 Business Analysis and Valuation has been developed specifically for students undertaking accounting Valuation subjects. With a significant number of case studies exploring various issues in this field, including a running chapter example, it offers a practical and in-depth approach. This second edition of the Palepu text has been revitalised with all new Australian content in parts 1-3, making this edition predominantly local, while still retaining a selection of the much admired and rigorous Harvard case studies in part 4. Retaining the same author team, this new edition presents the field of valuation accounting in the Australian context in a clear, logical and thorough manner. |
business analytics in accounting: Business Analytics, Global Edition James R. Evans, 2016-01-29 A balanced and holistic approach to business analytics 'Business Analytics', teaches the fundamental concepts of the emerging field of business analytics and provides vital tools in understanding how data analysis works in today's organizations. Students will learn to apply basic business analytics principles, communicate with analytics professionals, and effectively use and interpret analytic models to make better business decisions. |
business analytics in accounting: Artificial Intelligence in Accounting and Auditing Mariarita Pierotti, |
business analytics in accounting: Encyclopedia of Organizational Knowledge, Administration, and Technology Khosrow-Pour D.B.A., Mehdi, 2020-09-29 For any organization to be successful, it must operate in such a manner that knowledge and information, human resources, and technology are continually taken into consideration and managed effectively. Business concepts are always present regardless of the field or industry – in education, government, healthcare, not-for-profit, engineering, hospitality/tourism, among others. Maintaining organizational awareness and a strategic frame of mind is critical to meeting goals, gaining competitive advantage, and ultimately ensuring sustainability. The Encyclopedia of Organizational Knowledge, Administration, and Technology is an inaugural five-volume publication that offers 193 completely new and previously unpublished articles authored by leading experts on the latest concepts, issues, challenges, innovations, and opportunities covering all aspects of modern organizations. Moreover, it is comprised of content that highlights major breakthroughs, discoveries, and authoritative research results as they pertain to all aspects of organizational growth and development including methodologies that can help companies thrive and analytical tools that assess an organization’s internal health and performance. Insights are offered in key topics such as organizational structure, strategic leadership, information technology management, and business analytics, among others. The knowledge compiled in this publication is designed for entrepreneurs, managers, executives, investors, economic analysts, computer engineers, software programmers, human resource departments, and other industry professionals seeking to understand the latest tools to emerge from this field and who are looking to incorporate them in their practice. Additionally, academicians, researchers, and students in fields that include but are not limited to business, management science, organizational development, entrepreneurship, sociology, corporate psychology, computer science, and information technology will benefit from the research compiled within this publication. |
business analytics in accounting: Business Intelligence Techniques Murugan Anandarajan, Asokan Anandarajan, Cadambi A. Srinivasan, 2012-11-02 Modern businesses generate huge volumes of accounting data on a daily basis. The recent advancements in information technology have given organizations the ability to capture and store data in an efficient and effective manner. However, there is a widening gap between this data storage and usage of the data. Business intelligence techniques can help an organization obtain and process relevant accounting data quickly and cost efficiently. Such techniques include: query and reporting tools, online analytical processing (OLAP), statistical analysis, text mining, data mining, and visualization. Business Intelligence Techniques is a compilation of chapters written by experts in the various areas. While these chapters stand on their own, taken together they provide a comprehensive overview of how to exploit accounting data in the business environment. |
business analytics in accounting: Big data and analytics in accounting - e-Book AGOSTINI MARISA, ARKHIPOVA DARIA, 2023-04-28 Digital technologies such as big data analytics (BDA) are being increasingly used by businesses to create economic and societal value (Ferraris et al., 2019; Constantiou and Kallinikos, 2015; Günther et al., 2017; Rana et al., 2023). As a consequence, academic literature has emphasised their “disruptive potential” for enhancing corporate sustainability performance (Etzion and Aragon-Correa, 2015), creating more equal and inclusive society (Secundo et al., 2017), fostering optimal reallocation of underutilized resources (Etter et al., 2019) and enabling more participatory and democratic forms of governance (Neu et al., 2019; Ojala et al., 2019; Uldam, 2018). Conversely, the advocates of the critical approach have raised concerns about digital technologies related to privacy and security threats (La Torre et al., 2018), limitations of autonomy and freedom (Andrew and Baker, 2019), labour exploitation (Fuchs, 2010), lack of algorithmic accountability (Martin, 2019), pervasive worker control (Chai and Scully, 2019), and ecological footprint (Corbett, 2018; Lucivero, 2020). Hence, the magnitude and pervasiveness of ethical, social and environmental risks that emerge as a consequence of user data collection, storage and algorithmic processing are imposing additional responsibility upon data processing companies. To this end, the extant literature offers three main reasons for why large technology companies still lack accountability for these consequences. First, the problem resides in the inherent power asymmetries between the companies and individual users that pre-empt the latter from holding the former accountable for their wrongdoings (Rosenblat and Stark, 2016; West, 2019). Such quasi-monopolistic concentration of power in the hands of internet corporations is exerted not only vis-a-vis individual consumers but also other organisations (i.e., suppliers, competitors) whose business survival depends on the services of the large companies (Flyverbom et al., 2019). Second, regulatory efforts in the data economy often take place post hoc (Nunan and Di Domenico, 2017) and do not adequately address the contemporary issues of digitalization (Royakkers et al., 2018). Until recently, a self-regulatory regime prevailed in technology regulation based on “soft” voluntary standards and principles which the large companies developed for themselves. Finally, wrongful practices become pervasive to the extent that the other actors take them for granted and stop questioning them (Ananny and Crawford, 2018). As a result, companies find themselves in a “dual” position in which they simultaneously need to harness the potential of BDA to generate economic and societal value on the one hand, while at the same time are required establish an effective mechanism for ensuring accountability for the negative consequences of data utilization on the other. Hence, from the accounting perspective, this raises three important questions as to (1) whether accounting scholars can explain the emergent issues with BDA using established accounting theories, (2) whether and, if so, how the processing of BD results in calls for wider organisational accountability and greater regulatory oversight and (3) how the value of BDA can be assessed from a financial accounting standpoint. The present manuscript aims to address these questions. Chapter 1 “Emerging technologies in accounting” reviews technologies that underlie the use of BDA in accounting, provide definitions, discuss their interdependencies and explain differences between different technologies, illustrating their current and potential applications. In particular, new sources of big data and their characteristics will be discussed; different analytical approaches will be reviewed. The principal goal of this chapter is to establish a clear terminology and introduce key concepts that are fundamental for understanding the role of BDA in accounting. Chapter 2 “Peculiar and established theories framing studies of BDA in accounting” examines whether and how accounting literature has rooted BDA issues inside theoretical frameworks in order to formulate new concepts and models, to support the adoption of further methods and approaches, to explain and root the solutions used in practice. Chapter 3 “Data Regulations in the European Union” provides the most recent overview of the legal frameworks and regulatory developments in the European Union with regards to the data collection, use, storage, processing and sharing. Starting with the General Data Protection Regulation (GDPR) implementation in 2018, the European Union is taking a pioneer role in data-related regulations globally, imposes greater obligations, stricter rules and accountability frameworks. The chapter provides business and competitive context to explains the nature of the problem each regulatory initiative seeks to address, provides a general overview of the legal provisions in the context of the theoretical research in law, information systems and accounting and concludes by critical assessment of the effectiveness of the regulation – enforced or proposed – in reaching its goals and formulates a series of recommendations for potential improvement. Chapter 4 “Assessing the Value of Big Data and Analytics: Issues, Opportunities and Challenges” assesses the value of data that derives, rather than from inherent conditions, from the possibility of generating insights and the actual use of the same (Ferraris et al., 2019; Günther et al., 2017). “Conclusion” summarizes key research findings useful to provide answers to the above listed three research questions. |
business analytics in accounting: Applications of Big Data and Business Analytics in Management Sneha Kumari, K. K. Tripathy, Vidya Kumbhar, 2020-12-04 Applications of Big Data and Business Analytics in Management uses advanced analytic tools to explore the solutions to problems in society, environment and industry. The chapters within bring together researchers, engineers and practitioners, encompassing a wide and diverse set of topics in almost every field. |
business analytics in accounting: Business Intelligence and Analytics in Small and Medium Enterprises Pedro Novo Melo, Carolina Machado, 2019-11-26 Technological developments in recent years have been tremendous. This evolution is visible in companies through technological equipment, computerized procedures, and management practices associated with technologies. One of the management practices that is visible is related to business intelligence and analytics (BI&A). Concepts such as data warehousing, key performance indicators (KPIs), data mining, and dashboards are changing the business arena. This book aims to promote research related to these new trends that open up a new field of research in the small and medium enterprises (SMEs) area. Features Focuses on the more recent research findings occurring in the fields of BI&A Conveys how companies in the developed world are facing today's technological challenges Shares knowledge and insights on an international scale Provides different options and strategies to manage competitive organizations Addresses several dimensions of BI&A in favor of SMEs |
business analytics in accounting: Essays on Financial Analytics Pascal Alphonse, |
business analytics in accounting: Recent Advancements in Computational Finance and Business Analytics Rangan Gupta, |
BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys …
VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….
ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, …
INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the …
AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned …
BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys and….
VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….
ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, especially one that….
INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the person who has or….
AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned before it happens: 2. made….
LEVERAGE | English meaning - Cambridge Dictionary
LEVERAGE definition: 1. the action or advantage of using a lever: 2. power to influence people and get the results you….
ENTREPRENEUR | English meaning - Cambridge Dictionary
ENTREPRENEUR definition: 1. someone who starts their own business, especially when this involves seeing a new opportunity….
CULTIVATE | English meaning - Cambridge Dictionary
CULTIVATE definition: 1. to prepare land and grow crops on it, or to grow a particular crop: 2. to try to develop and….
EQUITY | English meaning - Cambridge Dictionary
EQUITY definition: 1. the value of a company, divided into many equal parts owned by the shareholders, or one of the….
LIAISE | English meaning - Cambridge Dictionary
LIAISE definition: 1. to speak to people in other organizations, etc. in order to work with them or exchange….