Business Intelligence And Data Analytics



  business intelligence and data analytics: Business Intelligence Strategy and Big Data Analytics Steve Williams, 2016-04-08 Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like big data and big data analytics have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. - Provides ideas for improving the business performance of one's company or business functions - Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies - Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans
  business intelligence and data analytics: Business Intelligence Ramesh Sharda, Dursun Delen, Efraim Turban, 2017-01-13 For courses on Business Intelligence or Decision Support Systems. A managerial approach to understanding business intelligence systems. To help future managers use and understand analytics, Business Intelligence provides students with a solid foundation of BI that is reinforced with hands-on practice.
  business intelligence and data analytics: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration.
  business intelligence and data analytics: Big Data, Big Analytics Michael Minelli, Michele Chambers, Ambiga Dhiraj, 2013-01-22 Unique prospective on the big data analytics phenomenon for both business and IT professionals The availability of Big Data, low-cost commodity hardware and new information management and analytics software has produced a unique moment in the history of business. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. These capabilities are neither theoretical nor trivial. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue and profitability. The Age of Big Data is here, and these are truly revolutionary times. This timely book looks at cutting-edge companies supporting an exciting new generation of business analytics. Learn more about the trends in big data and how they are impacting the business world (Risk, Marketing, Healthcare, Financial Services, etc.) Explains this new technology and how companies can use them effectively to gather the data that they need and glean critical insights Explores relevant topics such as data privacy, data visualization, unstructured data, crowd sourcing data scientists, cloud computing for big data, and much more.
  business intelligence and data analytics: Business Intelligence Carlo Vercellis, 2011-08-10 Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
  business intelligence and data analytics: Agile Analytics Ken Collier, 2012 Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve back-end data management, front-end business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.
  business intelligence and data analytics: Business Intelligence and Data Mining Anil Maheshwari, 2014-12-31 “This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.
  business intelligence and data analytics: Integration Challenges for Analytics, Business Intelligence, and Data Mining Azevedo, Ana, Santos, Manuel Filipe, 2020-12-11 As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.
  business intelligence and data analytics: E-Business Robert M.X. Wu, Marinela Mircea, 2021-05-19 This book provides the latest viewpoints of scientific research in the field of e-business. It is organized into three sections: “Higher Education and Digital Economy Development”, “Artificial Intelligence in E-Business”, and “Business Intelligence Applications”. Chapters focus on China’s higher education in e-commerce, digital economy development, natural language processing applications in business, Information Technology Governance, Risk and Compliance (IT GRC), business intelligence, and more.
  business intelligence and data analytics: Business Intelligence and Analytics Ramesh Sharda, Efraim Turban, Dursun Delen, 2014-02-28 Decision Support and Business Intelligence Systems provides the only comprehensive, up-to-date guide to today's revolutionary management support system technologies, and showcases how they can be used for better decision-making. The 10th edition focuses on Business Intelligence (BI) and analytics for enterprise decision support in a more streamlined book.
  business intelligence and data analytics: Business Intelligence Guidebook Rick Sherman, 2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.
  business intelligence and data analytics: Business Intelligence David Loshin, 2012-11-27 Business Intelligence: The Savvy Managers Guide, Second Edition, discusses the objectives and practices for designing and deploying a business intelligence (BI) program. It looks at the basics of a BI program, from the value of information and the mechanics of planning for success to data model infrastructure, data preparation, data analysis, integration, knowledge discovery, and the actual use of discovered knowledge. Organized into 21 chapters, this book begins with an overview of the kind of knowledge that can be exposed and exploited through the use of BI. It then proceeds with a discussion of information use in the context of how value is created within an organization, how BI can improve the ways of doing business, and organizational preparedness for exploiting the results of a BI program. It also looks at some of the critical factors to be taken into account in the planning and execution of a successful BI program. In addition, the reader is introduced to considerations for developing the BI roadmap, the platforms for analysis such as data warehouses, and the concepts of business metadata. Other chapters focus on data preparation and data discovery, the business rules approach, and data mining techniques and predictive analytics. Finally, emerging technologies such as text analytics and sentiment analysis are considered. This book will be valuable to data management and BI professionals, including senior and middle-level managers, Chief Information Officers and Chief Data Officers, senior business executives and business staff members, database or software engineers, and business analysts. - Guides managers through developing, administering, or simply understanding business intelligence technology - Keeps pace with the changes in best practices, tools, methods and processes used to transform an organization's data into actionable knowledge - Contains a handy, quick-reference to technologies and terminology
  business intelligence and data analytics: Business Intelligence, Analytics, and Data Science Ramesh Sharda, Dursun Delen, Efraim Turban, 2019 This book is for courses on Business Intelligence or Decision Support Systems. It provides a managerial approach to understanding business intelligence systems. It is meant to help future managers use and understand analytics, Business Intelligence provides students with a solid foundation of BI that is reinforced with hands-on practice. -- Provided by publisher.
  business intelligence and data analytics: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
  business intelligence and data analytics: Business Intelligence and Analytics in Small and Medium Enterprises Pedro Novo Melo, Carolina Machado, 2019-11-26 Technological developments in recent years have been tremendous. This evolution is visible in companies through technological equipment, computerized procedures, and management practices associated with technologies. One of the management practices that is visible is related to business intelligence and analytics (BI&A). Concepts such as data warehousing, key performance indicators (KPIs), data mining, and dashboards are changing the business arena. This book aims to promote research related to these new trends that open up a new field of research in the small and medium enterprises (SMEs) area. Features Focuses on the more recent research findings occurring in the fields of BI&A Conveys how companies in the developed world are facing today's technological challenges Shares knowledge and insights on an international scale Provides different options and strategies to manage competitive organizations Addresses several dimensions of BI&A in favor of SMEs
  business intelligence and data analytics: Big Data and Business Analytics Jay Liebowitz, 2016-04-19 The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions todo this, avoid that.'-From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growing barrage of big data, it becomes vitally important for organizations to mak
  business intelligence and data analytics: Theory and Practice of Business Intelligence in Healthcare Khuntia, Jiban, Ning, Xue, Tanniru, Mohan, 2019-12-27 Business intelligence supports managers in enterprises to make informed business decisions in various levels and domains such as in healthcare. These technologies can handle large structured and unstructured data (big data) in the healthcare industry. Because of the complex nature of healthcare data and the significant impact of healthcare data analysis, it is important to understand both the theories and practices of business intelligence in healthcare. Theory and Practice of Business Intelligence in Healthcare is a collection of innovative research that introduces data mining, modeling, and analytic techniques to health and healthcare data; articulates the value of big volumes of data to health and healthcare; evaluates business intelligence tools; and explores business intelligence use and applications in healthcare. While highlighting topics including digital health, operations intelligence, and patient empowerment, this book is ideally designed for healthcare professionals, IT consultants, hospital directors, data management staff, data analysts, hospital administrators, executives, managers, academicians, students, and researchers seeking current research on the digitization of health records and health systems integration.
  business intelligence and data analytics: Business Analytics, Volume I Amar Sahay, 2018-08-23 Business Analytics: A Data-Driven Decision Making Approach for Business-Part I,/i> provides an overview of business analytics (BA), business intelligence (BI), and the role and importance of these in the modern business decision-making. The book discusses all these areas along with three main analytics categories: (1) descriptive, (2) predictive, and (3) prescriptive analytics with their tools and applications in business. This volume focuses on descriptive analytics that involves the use of descriptive and visual or graphical methods, numerical methods, as well as data analysis tools, big data applications, and the use of data dashboards to understand business performance. The highlights of this volume are: Business analytics at a glance; Business intelligence (BI), data analytics; Data, data types, descriptive analytics; Data visualization tools; Data visualization with big data; Descriptive analytics-numerical methods; Case analysis with computer applications.
  business intelligence and data analytics: Business Intelligence Efraim Turban, Ramesh Sharda, Dursun Delen, David King, Janine E. Aronson, 2010-07-11 We are experiencing a major growth in the use of computer-based decision support. Major companies such as IBM, Oracle, and Microsoft are creating new organizational units focused on analytics to help businesses get more effectiveness and efficiency out of their operations. As more and more decision makers become computer and Web literate, they are using more computerized tools to support their work. At the same time, consumers and organizations are generating unprecedented quantities of data through their interactions with each other. These data stores can be used to develop and promote appropriate products, services, and promotion to customers, and to optimize operations within an organization. The purpose of this book is to introduce the reader to technologies called business intelligence. In some circles, business intelligence (BI) is also referred to as business analytics. [The authors] use these terms interchangeably. This book presents the fundamentals of the techniques and the manner in which these systems are constructed and used. Most of the improvements made in this second edition concentrate on three areas: data mining, text and Web mining, and implementation and emerging technologies.--Preface.
  business intelligence and data analytics: Business Intelligence For Dummies Swain Scheps, 2011-02-04 You're intelligent, right? So you've already figured out that Business Intelligence can be pretty valuable in making the right decisions about your business. But you’ve heard at least a dozen definitions of what it is, and heard of at least that many BI tools. Where do you start? Business Intelligence For Dummies makes BI understandable! It takes you step by step through the technologies and the alphabet soup, so you can choose the right technology and implement a successful BI environment. You'll see how the applications and technologies work together to access, analyze, and present data that you can use to make better decisions about your products, customers, competitors, and more. You’ll find out how to: Understand the principles and practical elements of BI Determine what your business needs Compare different approaches to BI Build a solid BI architecture and roadmap Design, develop, and deploy your BI plan Relate BI to data warehousing, ERP, CRM, and e-commerce Analyze emerging trends and developing BI tools to see what else may be useful Whether you’re the business owner or the person charged with developing and implementing a BI strategy, checking out Business Intelligence For Dummies is a good business decision.
  business intelligence and data analytics: Healthcare Business Intelligence Laura Madsen, 2012 This book will be constructed as a guidebook for healthcare organizations that are attempting BI/DW. It will address the primary functions of a business intelligence capability and how BI can ease the increasing regulatory reporting pressures on all healthcare organizations. Also included will be tables, checklists and a few forms. Tenative chapter contents: Chapter 1: What is Healthcare BI? Chapter 2: The Five Disciplines of Business Intelligence Chapter 3: The Importance of ETL Chapter 4: Starting with Data Governance Chapter 5: Creating a BI team Chapter 6: Data Modeling for Healthcare Chapter 7: Gaining Support for your BI program Chapter 8: Ensuring good User Adoption Chapter 9: Marketing Your BI Program Chapter 10: Maintaining Your BI Program--
  business intelligence and data analytics: Big Data, Big Analytics Michael Minelli, Michele Chambers, Ambiga Dhiraj, 2012-12-27 Unique prospective on the big data analytics phenomenon for both business and IT professionals The availability of Big Data, low-cost commodity hardware and new information management and analytics software has produced a unique moment in the history of business. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. These capabilities are neither theoretical nor trivial. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue and profitability. The Age of Big Data is here, and these are truly revolutionary times. This timely book looks at cutting-edge companies supporting an exciting new generation of business analytics. Learn more about the trends in big data and how they are impacting the business world (Risk, Marketing, Healthcare, Financial Services, etc.) Explains this new technology and how companies can use them effectively to gather the data that they need and glean critical insights Explores relevant topics such as data privacy, data visualization, unstructured data, crowd sourcing data scientists, cloud computing for big data, and much more.
  business intelligence and data analytics: Social Data Analytics Krish Krishnan, Shawn P. Rogers, 2014-11-10 Social Data Analytics is the first practical guide for professionals who want to employ social data for analytics and business intelligence (BI). This book provides a comprehensive overview of the technologies and platforms and shows you how to access and analyze the data. You'll explore the five major types of social data and learn from cases and platform examples to help you make the most of sentiment, behavioral, social graph, location, and rich media data. A four-step approach to the social BI process will help you access, evaluate, collaborate, and share social data with ease. You'll learn everything you need to know to monitor social media and get an overview of the leading vendors in a crowded space of BI applications. By the end of this book, you will be well prepared for your organization's next social data analytics project. - Provides foundational understanding of new and emerging technologies—social data, collaboration, big data, advanced analytics - Includes case studies and practical examples of success and failures - Will prepare you to lead projects and advance initiatives that will benefit you and your organization
  business intelligence and data analytics: Business Analytics for Managers Gert Laursen, Jesper Thorlund, 2010-07-13 While business analytics sounds like a complex subject, this book provides a clear and non-intimidating overview of the topic. Following its advice will ensure that your organization knows the analytics it needs to succeed, and uses them in the service of key strategies and business processes. You too can go beyond reporting!—Thomas H. Davenport, President's Distinguished Professor of IT and Management, Babson College; coauthor, Analytics at Work: Smarter Decisions, Better Results Deliver the right decision support to the right people at the right time Filled with examples and forward-thinking guidance from renowned BA leaders Gert Laursen and Jesper Thorlund, Business Analytics for Managers offers powerful techniques for making increasingly advanced use of information in order to survive any market conditions. Take a look inside and find: Proven guidance on developing an information strategy Tips for supporting your company's ability to innovate in the future by using analytics Practical insights for planning and implementing BA How to use information as a strategic asset Why BA is the next stepping-stone for companies in the information age today Discussion on BA's ever-increasing role Improve your business's decision making. Align your business processes with your business's objectives. Drive your company into a prosperous future. Taking BA from buzzword to enormous value-maker, Business Analytics for Managers helps you do it all with workable solutions that will add tremendous value to your business.
  business intelligence and data analytics: Decision Support, Analytics, and Business Intelligence, Third Edition Daniel J. Power, Ciara Heavin, 2017-06-08 Rapid technology change is impacting organizations large and small. Mobile and Cloud computing, the Internet of Things (IoT), and “Big Data” are driving forces in organizational digital transformation. Decision support and analytics are available to many people in a business or organization. Business professionals need to learn about and understand computerized decision support for organizations to succeed. This text is targeted to busy managers and students who need to grasp the basics of computerized decision support, including: What is analytics? What is a decision support system? What is “Big Data”? What are “Big Data” business use cases? Overall, it addresses 61 fundamental questions. In a short period of time, readers can “get up to speed” on decision support, analytics, and business intelligence. The book then provides a quick reference to important recurring questions.
  business intelligence and data analytics: Deep Natural Language Processing and AI Applications for Industry 5.0 Tanwar, Poonam, Saxena, Arti, Priya, C., 2021-06-25 To sustain and stay at the top of the market and give absolute comfort to the consumers, industries are using different strategies and technologies. Natural language processing (NLP) is a technology widely penetrating the market, irrespective of the industry and domains. It is extensively applied in businesses today, and it is the buzzword in every engineer’s life. NLP can be implemented in all those areas where artificial intelligence is applicable either by simplifying the communication process or by refining and analyzing information. Neural machine translation has improved the imitation of professional translations over the years. When applied in neural machine translation, NLP helps educate neural machine networks. This can be used by industries to translate low-impact content including emails, regulatory texts, etc. Such machine translation tools speed up communication with partners while enriching other business interactions. Deep Natural Language Processing and AI Applications for Industry 5.0 provides innovative research on the latest findings, ideas, and applications in fields of interest that fall under the scope of NLP including computational linguistics, deep NLP, web analysis, sentiments analysis for business, and industry perspective. This book covers a wide range of topics such as deep learning, deepfakes, text mining, blockchain technology, and more, making it a crucial text for anyone interested in NLP and artificial intelligence, including academicians, researchers, professionals, industry experts, business analysts, data scientists, data analysts, healthcare system designers, intelligent system designers, practitioners, and students.
  business intelligence and data analytics: Encyclopedia of Organizational Knowledge, Administration, and Technology Khosrow-Pour D.B.A., Mehdi, 2020-09-29 For any organization to be successful, it must operate in such a manner that knowledge and information, human resources, and technology are continually taken into consideration and managed effectively. Business concepts are always present regardless of the field or industry – in education, government, healthcare, not-for-profit, engineering, hospitality/tourism, among others. Maintaining organizational awareness and a strategic frame of mind is critical to meeting goals, gaining competitive advantage, and ultimately ensuring sustainability. The Encyclopedia of Organizational Knowledge, Administration, and Technology is an inaugural five-volume publication that offers 193 completely new and previously unpublished articles authored by leading experts on the latest concepts, issues, challenges, innovations, and opportunities covering all aspects of modern organizations. Moreover, it is comprised of content that highlights major breakthroughs, discoveries, and authoritative research results as they pertain to all aspects of organizational growth and development including methodologies that can help companies thrive and analytical tools that assess an organization’s internal health and performance. Insights are offered in key topics such as organizational structure, strategic leadership, information technology management, and business analytics, among others. The knowledge compiled in this publication is designed for entrepreneurs, managers, executives, investors, economic analysts, computer engineers, software programmers, human resource departments, and other industry professionals seeking to understand the latest tools to emerge from this field and who are looking to incorporate them in their practice. Additionally, academicians, researchers, and students in fields that include but are not limited to business, management science, organizational development, entrepreneurship, sociology, corporate psychology, computer science, and information technology will benefit from the research compiled within this publication.
  business intelligence and data analytics: Business Intelligence Ramesh Sharda, Dursun Delen, Efraim Turban, 2014 Includes bibliographical references and index
  business intelligence and data analytics: Achieving Organizational Agility, Intelligence, and Resilience Through Information Systems Rahman, Hakikur, 2021-09-10 As technology continues to be a ubiquitous force that propels businesses to success, it is imperative that updated studies are continuously undertaken to ensure that the most efficient tools and techniques are being utilized. In the current business environment, organizations that can improve their agility and business intelligence are able to become much more resilient and viable competitors in the global economy. Achieving Organizational Agility, Intelligence, and Resilience Through Information Systems is a critical reference book that provides the latest empirical studies, conceptual research, and methodologies that enable organizations to enhance and improve their agility, competitiveness, and sustainability in order to position them for paramount success in today’s economy. Covering topics that include knowledge management, human development, and sustainable development, this book is ideal for managers, executives, entrepreneurs, IT specialists and consultants, academicians, researchers, and students.
  business intelligence and data analytics: Computational Intelligence Applications in Business Intelligence and Big Data Analytics Vijayan Sugumaran, Arun Kumar Sangaiah, Arunkumar Thangavelu, 2017-06-26 There are a number of books on computational intelligence (CI), but they tend to cover a broad range of CI paradigms and algorithms rather than provide an in-depth exploration in learning and adaptive mechanisms. This book sets its focus on CI based architectures, modeling, case studies and applications in big data analytics, and business intelligence. The intended audiences of this book are scientists, professionals, researchers, and academicians who deal with the new challenges and advances in the specific areas mentioned above. Designers and developers of applications in these areas can learn from other experts and colleagues through this book.
  business intelligence and data analytics: Video Analytics for Business Intelligence Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, 2012-04-07 Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the shop; and what are the frequent paths), and to measure operational efficiency for improving customer experience. Video analytics has the enormous potential for non-security oriented commercial applications. This book presents the latest developments on video analytics for business intelligence applications. It provides both academic and commercial practitioners an understanding of the state-of-the-art and a resource for potential applications and successful practice.
  business intelligence and data analytics: Big Data in Practice Bernard Marr, 2016-03-22 The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter
  business intelligence and data analytics: Big Data For Dummies Judith S. Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, 2013-04-02 Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.
  business intelligence and data analytics: Business Analytics for Managers Gert H. N. Laursen, Jesper Thorlund, 2010-06-15 World-class guidance for delivering the right decision support to the right people at the right time A vital blueprint for organizations that want to thrive in the competitive fray, Business Analytics for Managers presents a sustainable business analytics (BA) model focusing on the interaction of IT technology, strategy, business processes, and a broad spectrum of human competencies and organizational circumstances. Proven guidance on developing an information strategy Tips for supporting your company's ability to innovate in the future by using analytics An understanding of BA as a holistic information discipline with links to your business's strategy Practical insights for planning and implementing BA How to use information as a strategic asset Why BA is the next stepping-stone for companies in the information age today Discussion on BA's ever-increasing role Filled with examples and forward-thinking guidance from renowned BA leaders Gert Laursen and Jesper Thorlund, Business Analytics for Managers offers powerful techniques for making increasingly advanced use of information in order to survive any market conditions.
  business intelligence and data analytics: The Support of Decision Processes with Business Intelligence and Analytics Martin Kowalczyk, 2017-08-22 In his research, Martin Kowalczyk empirically investigates the challenges of designing and establishing successful decision support with Business Intelligence and Analytics (BI&A). The results from his work elucidate organizational and individual perspectives of BI&A support in decision processes. The organizational perspective considers the processual aspects of decision making and addresses process phases, roles and their interactions. The individual perspective reflects upon decision making of human individuals including their cognition and behaviors involved in decision making. The support of managerial decision making with BI&A gains increasing priority for many businesses in their desire to achieve better decision outcomes and improved organizational performance.
  business intelligence and data analytics: Data Analysis with Microsoft Power BI Brian Larson, 2020-01-03 Explore, create, and manage highly interactive data visualizations using Microsoft Power BI Extract meaningful business insights from your disparate enterprise data using the detailed information contained in this practical guide. Written by a recognized BI expert and bestselling author, Data Analysis with Microsoft Power BI teaches you the skills you need to interact with, author, and maintain robust visualizations and custom data models. Hands-on exercises based on real-life business scenarios clearly demonstrate each technique. Publishing your results to the Power BI Service (PowerBI.com) and Power BI Report Server are also fully covered. Inside, you will discover how to: •Understand Business Intelligence and self-service analytics •Explore the tools and features of Microsoft Power BI •Create and format effective data visualizations •Incorporate advanced interactivity and custom graphics •Build and populate accurate data models •Transform data using the Power BI Query Editor •Work with measures, calculated columns, and tabular models •Write powerful DAX language scripts •Share content on the PowerBI Service (PowerBI.com) •Store your visualizations on the Power BI Report Server
  business intelligence and data analytics: Data Strategy Bernard Marr, 2017-04-03 BRONZE RUNNER UP: Axiom Awards 2018 - Business Technology Category Less than 0.5 per cent of all data is currently analyzed and used. However, business leaders and managers cannot afford to be unconcerned or sceptical about data. Data is revolutionizing the way we work and it is the companies that view data as a strategic asset that will survive and thrive. Data Strategy is a must-have guide to creating a robust data strategy. Explaining how to identify your strategic data needs, what methods to use to collect the data and, most importantly, how to translate your data into organizational insights for improved business decision-making and performance, this is essential reading for anyone aiming to leverage the value of their business data and gain competitive advantage. Packed with case studies and real-world examples, advice on how to build data competencies in an organization and crucial coverage of how to ensure your data doesn't become a liability, Data Strategy will equip any organization with the tools and strategies it needs to profit from Big Data, analytics and the Internet of Things (IoT).
  business intelligence and data analytics: Business Intelligence in Plain Language Jeremy M. Kolb, 2013-05-21 One day a man walked into Asgard Inc. and changed the company forever. Unlike anyone who came before, he remembered and understood data as naturally as a fish swims in water. The CEO was shocked at how well the man knew the company. He started posing questions to this man. Who are my best customers? Why is this product struggling? Where is my greatest growth happening? The man answered these and more. Using his understanding of data, he identified key new markets, he discovered the best places to invest capital, and he even predicted the future. Overnight Asgard Inc. changed. Where before the CEO relied on limited information and gut feelings, now true knowledge guided his actions. The CEO took the man's hand in gratitude and asked, Who are you? and he replied, I am Business Intelligence. Business Intelligence(BI) is shrouded in mystery for a lot of us but it doesn't need to stay that way. Business Intelligence in Plain Language is a systematic exploration of this complicated tool. I'll teach you about what it does, how it works, and most importantly how you can benefit from it. In this book you will learn about: Business Intelligence Data Mining Data Warehousing Data Discovery Big Data Outlier Detection Pattern Recognition Predictive Modeling Data Transformation and much more This book is your practical guide to understanding and implementing Business Intelligence.
  business intelligence and data analytics: Internet of Things in Business Transformation Parul Gandhi, Surbhi Bhatia, Abhishek Kumar, Mohammad Ali Alojail, Pramod Singh Rathore, 2021-02-03 The objective of this book is to teach what IoT is, how it works, and how it can be successfully utilized in business. This book helps to develop and implement a powerful IoT strategy for business transformation as well as project execution. Digital change, business creation/change and upgrades in the ways and manners in which we work, live, and engage with our clients and customers, are all enveloped by the Internet of Things which is now named Industry 5.0 or Industrial Internet of Things. The sheer number of IoT(a billion+), demonstrates the advent of an advanced business society led by sustainable robotics and business intelligence. This book will be an indispensable asset in helping businesses to understand the new technology and thrive.
  business intelligence and data analytics: Mastering Microsoft Power BI Brett Powell, 2018-03-29 Design, create and manage robust Power BI solutions to gain meaningful business insights Key Features Master all the dashboarding and reporting features of Microsoft Power BI Combine data from multiple sources, create stunning visualizations and publish your reports across multiple platforms A comprehensive guide with real-world use cases and examples demonstrating how you can get the best out of Microsoft Power BI Book DescriptionThis book is intended for business intelligence professionals responsible for the design and development of Power BI content as well as managers, architects and administrators who oversee Power BI projects and deployments. The chapters flow from the planning of a Power BI project through the development and distribution of content to the administration of Power BI for an organization. BI developers will learn how to create sustainable and impactful Power BI datasets, reports, and dashboards. This includes connecting to data sources, shaping and enhancing source data, and developing an analytical data model. Additionally, top report and dashboard design practices are described using features such as Bookmarks and the Power KPI visual. BI managers will learn how Power BI’s tools work together such as with the On-premises data gateway and how content can be staged and securely distributed via Apps. Additionally, both the Power BI Report Server and Power BI Premium are reviewed. By the end of this book, you will be confident in creating effective charts, tables, reports or dashboards for any kind of data using the tools and techniques in Microsoft Power BI.What you will learn Build efficient data retrieval and transformation processes with the Power Query M Language Design scalable, user-friendly DirectQuery and Import Data Models Develop visually rich, immersive, and interactive reports and dashboards Maintain version control and stage deployments across development, test, and production environments Manage and monitor the Power BI Service and the On-premises data gateway Develop a fully on-premise solution with the Power BI Report Server Scale up a Power BI solution via Power BI Premium capacity and migration to Azure Analysis Services or SQL Server Analysis Services Who this book is for Business Intelligence professionals and existing Power BI users looking to master Power BI for all their data visualization and dashboarding needs will find this book to be useful. While understanding of the basic BI concepts is required, some exposure to Microsoft Power BI will be helpful.
Business Intelligence vs. Data Analytics: The Ultimate Guide
Sep 5, 2023 · In this post, we introduce the concepts of business intelligence and data analytics before diving into their differences. We’ll start with a quick definition of each and then explore …

Difference Between Business Intelligence and Data analytics
Aug 13, 2024 · Business Intelligence is focused on analyzing historical and current data to provide insights into business operations and performance, while Data Analytics is focused on …

BI vs. business analytics: What's the difference? | Tableau
Business intelligence (BI) and its subsets— business analytics and data analytics —are all data management solutions used to understand historical and contemporary data and create …

Business Intelligence vs Data Analytics: A Complete Guide
Business Intelligence (BI) and Data Analytics (DA) are two sides of the same coin, each offering distinct advantage in the pursuit of data-driven decision-making. Understanding these …

Business Intelligence vs. Data Analytics: Explaining The Difference
Dec 16, 2022 · Business intelligence and data analytics are both important ways to harness the power of data, but they differ in focus and approach. Business intelligence (BI) is a set of tools …

Business intelligence vs data analytics: 10 key differences
Jun 1, 2023 · In this blog, we'll explore business intelligence and data analytics, and their unique characteristics, purposes, and applications. Understanding the distinctions between these two …

Business Intelligence vs Business Analytics: What’s the Difference?
4 days ago · Business Intelligence (BI) and Data Analytics (DA) differ in both purpose and primary focus. BI focuses on descriptive analytics, helping enterprises gain insights into what has …

BI vs data analytics: Understanding the differences - ThoughtSpot
Feb 12, 2024 · Business intelligence (BI) refers to the technologies, processes, and tools that organizations use to collect, analyze, and present business data. The primary goal of business …

Business Intelligence vs Data Analytics: Detailed Comparison
Feb 16, 2025 · Data from corporate activities can be collected, stored, and analyzed with the aid of business intelligence infrastructure. In order to facilitate improved decision-making, BI offers …

Business intelligence vs data analytics - lumenalta.com
While both business intelligence and data analytics offer transformative value, their roles are distinct yet interconnected. Business intelligence helps organizations interpret data to measure …

Business Intelligence vs. Data Analytics: The Ultimate Guide
Sep 5, 2023 · In this post, we introduce the concepts of business intelligence and data analytics before diving into their differences. We’ll start with a quick definition of each and then explore …

Difference Between Business Intelligence and Data analytics
Aug 13, 2024 · Business Intelligence is focused on analyzing historical and current data to provide insights into business operations and performance, while Data Analytics is focused on …

BI vs. business analytics: What's the difference? | Tableau
Business intelligence (BI) and its subsets— business analytics and data analytics —are all data management solutions used to understand historical and contemporary data and create …

Business Intelligence vs Data Analytics: A Complete Guide
Business Intelligence (BI) and Data Analytics (DA) are two sides of the same coin, each offering distinct advantage in the pursuit of data-driven decision-making. Understanding these …

Business Intelligence vs. Data Analytics: Explaining The Difference
Dec 16, 2022 · Business intelligence and data analytics are both important ways to harness the power of data, but they differ in focus and approach. Business intelligence (BI) is a set of tools …

Business intelligence vs data analytics: 10 key differences
Jun 1, 2023 · In this blog, we'll explore business intelligence and data analytics, and their unique characteristics, purposes, and applications. Understanding the distinctions between these two …

Business Intelligence vs Business Analytics: What’s the Difference?
4 days ago · Business Intelligence (BI) and Data Analytics (DA) differ in both purpose and primary focus. BI focuses on descriptive analytics, helping enterprises gain insights into what has …

BI vs data analytics: Understanding the differences - ThoughtSpot
Feb 12, 2024 · Business intelligence (BI) refers to the technologies, processes, and tools that organizations use to collect, analyze, and present business data. The primary goal of business …

Business Intelligence vs Data Analytics: Detailed Comparison
Feb 16, 2025 · Data from corporate activities can be collected, stored, and analyzed with the aid of business intelligence infrastructure. In order to facilitate improved decision-making, BI offers …

Business intelligence vs data analytics - lumenalta.com
While both business intelligence and data analytics offer transformative value, their roles are distinct yet interconnected. Business intelligence helps organizations interpret data to measure …