Business Intelligence Data Engineer

Advertisement



  business intelligence data engineer: The Biml Book Andy Leonard, Scott Currie, Jacob Alley, Martin Andersson, Peter Avenant, Bill Fellows, Simon Peck, Reeves Smith, Raymond Sondak, Benjamin Weissman, Cathrine Wilhelmsen, 2017-10-30 Learn Business Intelligence Markup Language (Biml) for automating much of the repetitive, manual labor involved in data integration. We teach you how to build frameworks and use advanced Biml features to get more out of SQL Server Integration Services (SSIS), Transact-SQL (T-SQL), and SQL Server Analysis Services (SSAS) than you ever thought possible. The first part of the book starts with the basics—getting your development environment configured, Biml syntax, and scripting essentials. Whether a beginner or a seasoned Biml expert, the next part of the book guides you through the process of using Biml to build a framework that captures both your design patterns and execution management. Design patterns are reusable code blocks that standardize the approach you use to perform certain types of data integration, logging, and other key data functions. Design patterns solve common problems encountered when developing data integration solutions. Because you do not have to build the code from scratch each time, design patterns improve your efficiency as a Biml developer. In addition to leveraging design patterns in your framework, you will learn how to build a robust metadata store and how to package your framework into Biml bundles for deployment within your enterprise. In the last part of the book, we teach you more advanced Biml features and capabilities, such as SSAS development, T-SQL recipes, documentation autogeneration, and Biml troubleshooting. The Biml Book: Provides practical and applicable examples Teaches you how to use Biml to reduce development time while improving quality Takes you through solutions to common data integration and BI challenges What You'll Learn Master the basics of Business Intelligence Markup Language (Biml) Study patterns for automating SSIS package generation Build a Biml Framework Import and transform database schemas Automate generation of scripts and projects Who This Book Is For BI developers wishing to quickly locate previously tested solutions, Microsoft BI specialists, those seeking more information about solution automation and code generation, and practitioners of Data Integration Lifecycle Management (DILM) in the DevOps enterprise
  business intelligence data engineer: Business Intelligence Demystified Anoop Kumar V K, 2021-09-25 Clear your doubts about Business Intelligence and start your new journey KEY FEATURES ● Includes successful methods and innovative ideas to achieve success with BI. ● Vendor-neutral, unbiased, and based on experience. ● Highlights practical challenges in BI journeys. ● Covers financial aspects along with technical aspects. ● Showcases multiple BI organization models and the structure of BI teams. DESCRIPTION The book demystifies misconceptions and misinformation about BI. It provides clarity to almost everything related to BI in a simplified and unbiased way. It covers topics right from the definition of BI, terms used in the BI definition, coinage of BI, details of the different main uses of BI, processes that support the main uses, side benefits, and the level of importance of BI, various types of BI based on various parameters, main phases in the BI journey and the challenges faced in each of the phases in the BI journey. It clarifies myths about self-service BI and real-time BI. The book covers the structure of a typical internal BI team, BI organizational models, and the main roles in BI. It also clarifies the doubts around roles in BI. It explores the different components that add to the cost of BI and explains how to calculate the total cost of the ownership of BI and ROI for BI. It covers several ideas, including unconventional ideas to achieve BI success and also learn about IBI. It explains the different types of BI architectures, commonly used technologies, tools, and concepts in BI and provides clarity about the boundary of BI w.r.t technologies, tools, and concepts. The book helps you lay a very strong foundation and provides the right perspective about BI. It enables you to start or restart your journey with BI. WHAT YOU WILL LEARN ● Builds a strong conceptual foundation in BI. ● Gives the right perspective and clarity on BI uses, challenges, and architectures. ● Enables you to make the right decisions on the BI structure, organization model, and budget. ● Explains which type of BI solution is required for your business. ● Applies successful BI ideas. WHO THIS BOOK IS FOR This book is a must-read for business managers, BI aspirants, CxOs, and all those who want to drive the business value with data-driven insights. TABLE OF CONTENTS 1. What is Business Intelligence? 2. Why do Businesses need BI? 3. Types of Business Intelligence 4. Challenges in Business Intelligence 5. Roles in Business Intelligence 6. Financials of Business Intelligence 7. Ideas for Success with BI 8. Introduction to IBI 9. BI Architectures 10. Demystify Tech, Tools, and Concepts in BI
  business intelligence data engineer: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting
  business intelligence data engineer: Business Intelligence Guidebook Rick Sherman, 2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.
  business intelligence data engineer: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution.
  business intelligence data engineer: Business Intelligence Career Master Plan Eduardo Chavez, Danny Moncada, 2023-08-31 Learn the foundations of business intelligence, sector trade-offs, organizational structures, and technology stacks while mastering coursework, certifications, and interview success strategies Purchase of the print or Kindle book includes a free PDF eBook Key Features Identify promising job opportunities and ideal entry point into BI Build, design, implement, and maintain BI systems successfully Ace your BI interview with author's expert guidance on certifications, trainings, and courses Book DescriptionNavigating the challenging path of a business intelligence career requires you to consider your expertise, interests, and skills. Business Intelligence Career Master Plan explores key skills like stacks, coursework, certifications, and interview advice, enabling you to make informed decisions about your BI journey. You’ll start by assessing the different roles in BI and matching your skills and career with the tech stack. You’ll then learn to build taxonomy and a data story using visualization types. Additionally, you’ll explore the fundamentals of programming, frontend development, backend development, software development lifecycle, and project management, giving you a broad view of the end-to-end BI process. With the help of the author’s expert advice, you’ll be able to identify what subjects and areas of study are crucial and would add significant value to your skill set. By the end of this book, you’ll be well-equipped to make an informed decision on which of the myriad paths to choose in your business intelligence journey based on your skill set and interests.What you will learn Understand BI roles, roadmap, and technology stack Accelerate your career and land your first job in the BI industry Build the taxonomy of various data sources for your organization Use the AdventureWorks database and PowerBI to build a robust data model Create compelling data stories using data visualization Automate, templatize, standardize, and monitor systems for productivity Who this book is for This book is for BI developers and business analysts who are passionate about data and are looking to advance their proficiency and career in business intelligence. While foundational knowledge of tools like Microsoft Excel is required, having a working knowledge of SQL, Python, Tableau, and major cloud providers such as AWS or GCP will be beneficial.
  business intelligence data engineer: Business Intelligence And Analytics Prof. (Dr.) Sugandha Singh, 2023-12-27 In the fast changing world of modern business, the book Business Intelligence and Analytics serves as a complete guide, unraveling the complexities of strategically using data. As data becomes a critical asset for organizations, this book will become a must-have resource for professionals, executives, and students navigating the intricate interaction of information, technology, and decision-making. Beginning with the foundations of data collection and storage and progressing to advanced subjects such as predictive modelling, machine learning, and artificial intelligence, the book provides a full investigation of business intelligence and analytics. Readers acquire a comprehensive overview of the tools and processes defining the data-driven decision-making environment by covering the whole range. The book incorporates real-world examples and case studies to demonstrate essential topics and is rich in practical insights. The incorporation of theoretical ideas into concrete situations bridges the gap between theory and application, providing readers with a better knowledge of how to implement business intelligence techniques in a variety of organizational contexts. The book is aimed at a wide range of readers, including corporate leaders, data analysts, and students. Whether you are a seasoned business leader looking for a strategic data advantage, an analyst looking for relevant insights, or a student laying the groundwork, this book is a flexible and approachable resource for all levels of experience.
  business intelligence data engineer: Business Intelligence and Agile Methodologies for Knowledge-Based Organizations: Cross-Disciplinary Applications Rahman El Sheikh, Asim Abdel, 2011-09-30 Business intelligence applications are of vital importance as they help organizations manage, develop, and communicate intangible assets such as information and knowledge. Organizations that have undertaken business intelligence initiatives have benefited from increases in revenue, as well as significant cost savings.Business Intelligence and Agile Methodologies for Knowledge-Based Organizations: Cross-Disciplinary Applications highlights the marriage between business intelligence and knowledge management through the use of agile methodologies. Through its fifteen chapters, this book offers perspectives on the integration between process modeling, agile methodologies, business intelligence, knowledge management, and strategic management.
  business intelligence data engineer: Business Intelligence Tools for Small Companies Albert Nogués, Juan Valladares, 2017-05-25 Learn how to transition from Excel-based business intelligence (BI) analysis to enterprise stacks of open-source BI tools. Select and implement the best free and freemium open-source BI tools for your company’s needs and design, implement, and integrate BI automation across the full stack using agile methodologies. Business Intelligence Tools for Small Companies provides hands-on demonstrations of open-source tools suitable for the BI requirements of small businesses. The authors draw on their deep experience as BI consultants, developers, and administrators to guide you through the extract-transform-load/data warehousing (ETL/DWH) sequence of extracting data from an enterprise resource planning (ERP) database freely available on the Internet, transforming the data, manipulating them, and loading them into a relational database. The authors demonstrate how to extract, report, and dashboard key performance indicators (KPIs) in a visually appealing format from the relational database management system (RDBMS). They model the selection and implementation of free and freemium tools such as Pentaho Data Integrator and Talend for ELT, Oracle XE and MySQL/MariaDB for RDBMS, and Qliksense, Power BI, and MicroStrategy Desktop for reporting. This richly illustrated guide models the deployment of a small company BI stack on an inexpensive cloud platform such as AWS. What You'll Learn You will learn how to manage, integrate, and automate the processes of BI by selecting and implementing tools to: Implement and manage the business intelligence/data warehousing (BI/DWH) infrastructure Extract data from any enterprise resource planning (ERP) tool Process and integrate BI data using open-source extract-transform-load (ETL) tools Query, report, and analyze BI data using open-source visualization and dashboard tools Use a MOLAP tool to define next year's budget, integrating real data with target scenarios Deploy BI solutions and big data experiments inexpensively on cloud platforms Who This Book Is For Engineers, DBAs, analysts, consultants, and managers at small companies with limited resources but whose BI requirements have outgrown the limitations of Excel spreadsheets; personnel in mid-sized companies with established BI systems who are exploring technological updates and more cost-efficient solutions
  business intelligence data engineer: Simplifying Data Engineering and Analytics with Delta Anindita Mahapatra, Doug May, 2022-07-29 Explore how Delta brings reliability, performance, and governance to your data lake and all the AI and BI use cases built on top of it Key Features • Learn Delta’s core concepts and features as well as what makes it a perfect match for data engineering and analysis • Solve business challenges of different industry verticals using a scenario-based approach • Make optimal choices by understanding the various tradeoffs provided by Delta Book Description Delta helps you generate reliable insights at scale and simplifies architecture around data pipelines, allowing you to focus primarily on refining the use cases being worked on. This is especially important when you consider that existing architecture is frequently reused for new use cases. In this book, you'll learn about the principles of distributed computing, data modeling techniques, and big data design patterns and templates that help solve end-to-end data flow problems for common scenarios and are reusable across use cases and industry verticals. You'll also learn how to recover from errors and the best practices around handling structured, semi-structured, and unstructured data using Delta. After that, you'll get to grips with features such as ACID transactions on big data, disciplined schema evolution, time travel to help rewind a dataset to a different time or version, and unified batch and streaming capabilities that will help you build agile and robust data products. By the end of this Delta book, you'll be able to use Delta as the foundational block for creating analytics-ready data that fuels all AI/BI use cases. What you will learn • Explore the key challenges of traditional data lakes • Appreciate the unique features of Delta that come out of the box • Address reliability, performance, and governance concerns using Delta • Analyze the open data format for an extensible and pluggable architecture • Handle multiple use cases to support BI, AI, streaming, and data discovery • Discover how common data and machine learning design patterns are executed on Delta • Build and deploy data and machine learning pipelines at scale using Delta Who this book is for Data engineers, data scientists, ML practitioners, BI analysts, or anyone in the data domain working with big data will be able to put their knowledge to work with this practical guide to executing pipelines and supporting diverse use cases using the Delta protocol. Basic knowledge of SQL, Python programming, and Spark is required to get the most out of this book.
  business intelligence data engineer: Data Engineering with AWS Gareth Eagar, 2021-12-29 The missing expert-led manual for the AWS ecosystem — go from foundations to building data engineering pipelines effortlessly Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Learn about common data architectures and modern approaches to generating value from big data Explore AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines Learn how to architect and implement data lakes and data lakehouses for big data analytics from a data lakes expert Book DescriptionWritten by a Senior Data Architect with over twenty-five years of experience in the business, Data Engineering for AWS is a book whose sole aim is to make you proficient in using the AWS ecosystem. Using a thorough and hands-on approach to data, this book will give aspiring and new data engineers a solid theoretical and practical foundation to succeed with AWS. As you progress, you’ll be taken through the services and the skills you need to architect and implement data pipelines on AWS. You'll begin by reviewing important data engineering concepts and some of the core AWS services that form a part of the data engineer's toolkit. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how the transformed data is used by various data consumers. You’ll also learn about populating data marts and data warehouses along with how a data lakehouse fits into the picture. Later, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. In the final chapters, you'll understand how the power of machine learning and artificial intelligence can be used to draw new insights from data. By the end of this AWS book, you'll be able to carry out data engineering tasks and implement a data pipeline on AWS independently.What you will learn Understand data engineering concepts and emerging technologies Ingest streaming data with Amazon Kinesis Data Firehose Optimize, denormalize, and join datasets with AWS Glue Studio Use Amazon S3 events to trigger a Lambda process to transform a file Run complex SQL queries on data lake data using Amazon Athena Load data into a Redshift data warehouse and run queries Create a visualization of your data using Amazon QuickSight Extract sentiment data from a dataset using Amazon Comprehend Who this book is for This book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts while gaining practical experience with common data engineering services on AWS will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book but it’s not a prerequisite. Familiarity with the AWS console and core services will also help you follow along.
  business intelligence data engineer: Data Engineering with Apache Spark, Delta Lake, and Lakehouse Manoj Kukreja, Danil Zburivsky, 2021-10-22 Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
  business intelligence data engineer: Agile Data Warehouse Design Lawrence Corr, Jim Stagnitto, 2011-11 Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.
  business intelligence data engineer: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2013-07-01 Updated new edition of Ralph Kimball's groundbreaking book on dimensional modeling for data warehousing and business intelligence! The first edition of Ralph Kimball's The Data Warehouse Toolkit introduced the industry to dimensional modeling, and now his books are considered the most authoritative guides in this space. This new third edition is a complete library of updated dimensional modeling techniques, the most comprehensive collection ever. It covers new and enhanced star schema dimensional modeling patterns, adds two new chapters on ETL techniques, includes new and expanded business matrices for 12 case studies, and more. Authored by Ralph Kimball and Margy Ross, known worldwide as educators, consultants, and influential thought leaders in data warehousing and business intelligence Begins with fundamental design recommendations and progresses through increasingly complex scenarios Presents unique modeling techniques for business applications such as inventory management, procurement, invoicing, accounting, customer relationship management, big data analytics, and more Draws real-world case studies from a variety of industries, including retail sales, financial services, telecommunications, education, health care, insurance, e-commerce, and more Design dimensional databases that are easy to understand and provide fast query response with The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.
  business intelligence data engineer: Data Engineering with dbt Roberto Zagni, 2023-06-30 Use easy-to-apply patterns in SQL and Python to adopt modern analytics engineering to build agile platforms with dbt that are well-tested and simple to extend and run Purchase of the print or Kindle book includes a free PDF eBook Key Features Build a solid dbt base and learn data modeling and the modern data stack to become an analytics engineer Build automated and reliable pipelines to deploy, test, run, and monitor ELTs with dbt Cloud Guided dbt + Snowflake project to build a pattern-based architecture that delivers reliable datasets Book Descriptiondbt Cloud helps professional analytics engineers automate the application of powerful and proven patterns to transform data from ingestion to delivery, enabling real DataOps. This book begins by introducing you to dbt and its role in the data stack, along with how it uses simple SQL to build your data platform, helping you and your team work better together. You’ll find out how to leverage data modeling, data quality, master data management, and more to build a simple-to-understand and future-proof solution. As you advance, you’ll explore the modern data stack, understand how data-related careers are changing, and see how dbt enables this transition into the emerging role of an analytics engineer. The chapters help you build a sample project using the free version of dbt Cloud, Snowflake, and GitHub to create a professional DevOps setup with continuous integration, automated deployment, ELT run, scheduling, and monitoring, solving practical cases you encounter in your daily work. By the end of this dbt book, you’ll be able to build an end-to-end pragmatic data platform by ingesting data exported from your source systems, coding the needed transformations, including master data and the desired business rules, and building well-formed dimensional models or wide tables that’ll enable you to build reports with the BI tool of your choice.What you will learn Create a dbt Cloud account and understand the ELT workflow Combine Snowflake and dbt for building modern data engineering pipelines Use SQL to transform raw data into usable data, and test its accuracy Write dbt macros and use Jinja to apply software engineering principles Test data and transformations to ensure reliability and data quality Build a lightweight pragmatic data platform using proven patterns Write easy-to-maintain idempotent code using dbt materialization Who this book is for This book is for data engineers, analytics engineers, BI professionals, and data analysts who want to learn how to build simple, futureproof, and maintainable data platforms in an agile way. Project managers, data team managers, and decision makers looking to understand the importance of building a data platform and foster a culture of high-performing data teams will also find this book useful. Basic knowledge of SQL and data modeling will help you get the most out of the many layers of this book. The book also includes primers on many data-related subjects to help juniors get started.
  business intelligence data engineer: Google Certification Guide - Google Professional Data Engineer Cybellium Ltd, Google Certification Guide - Google Professional Data Engineer Navigate the Data Landscape with Google Cloud Expertise Embark on a journey to become a Google Professional Data Engineer with this comprehensive guide. Tailored for data professionals seeking to leverage Google Cloud's powerful data solutions, this book provides a deep dive into the core concepts, practices, and tools necessary to excel in the field of data engineering. Inside, You'll Explore: Fundamentals to Advanced Data Concepts: Understand the full spectrum of Google Cloud data services, from BigQuery and Dataflow to AI and machine learning integrations. Practical Data Engineering Scenarios: Learn through hands-on examples and real-life case studies that demonstrate how to effectively implement data solutions on Google Cloud. Focused Exam Strategy: Prepare for the certification exam with detailed insights into the exam format, including key topics, study strategies, and practice questions. Current Trends and Best Practices: Stay abreast of the latest advancements in Google Cloud data technologies, ensuring your skills are up-to-date and industry-relevant. Authored by a Data Engineering Expert Written by an experienced data engineer, this guide bridges practical application with theoretical knowledge, offering a comprehensive and practical learning experience. Your Comprehensive Guide to Data Engineering Certification Whether you're an aspiring data engineer or an experienced professional looking to validate your Google Cloud skills, this book is an invaluable resource, guiding you through the nuances of data engineering on Google Cloud and preparing you for the Professional Data Engineer exam. Elevate Your Data Engineering Skills This guide is more than a certification prep book; it's a deep dive into the art of data engineering in the Google Cloud ecosystem, designed to equip you with advanced skills and knowledge for a successful career in data engineering. Begin Your Data Engineering Journey Step into the world of Google Cloud data engineering with confidence. This guide is your first step towards mastering the concepts and practices of data engineering and achieving certification as a Google Professional Data Engineer. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
  business intelligence data engineer: BUSINESS INTELLIGENCE NARAYAN CHANGDER, 2024-01-10 THE BUSINESS INTELLIGENCE MCQ (MULTIPLE CHOICE QUESTIONS) SERVES AS A VALUABLE RESOURCE FOR INDIVIDUALS AIMING TO DEEPEN THEIR UNDERSTANDING OF VARIOUS COMPETITIVE EXAMS, CLASS TESTS, QUIZ COMPETITIONS, AND SIMILAR ASSESSMENTS. WITH ITS EXTENSIVE COLLECTION OF MCQS, THIS BOOK EMPOWERS YOU TO ASSESS YOUR GRASP OF THE SUBJECT MATTER AND YOUR PROFICIENCY LEVEL. BY ENGAGING WITH THESE MULTIPLE-CHOICE QUESTIONS, YOU CAN IMPROVE YOUR KNOWLEDGE OF THE SUBJECT, IDENTIFY AREAS FOR IMPROVEMENT, AND LAY A SOLID FOUNDATION. DIVE INTO THE BUSINESS INTELLIGENCE MCQ TO EXPAND YOUR BUSINESS INTELLIGENCE KNOWLEDGE AND EXCEL IN QUIZ COMPETITIONS, ACADEMIC STUDIES, OR PROFESSIONAL ENDEAVORS. THE ANSWERS TO THE QUESTIONS ARE PROVIDED AT THE END OF EACH PAGE, MAKING IT EASY FOR PARTICIPANTS TO VERIFY THEIR ANSWERS AND PREPARE EFFECTIVELY.
  business intelligence data engineer: Business Intelligence: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2015-12-29 Data analysis is an important part of modern business administration, as efficient compilation of information allows managers and business leaders to make the best decisions for the financial solvency of their organizations. Understanding the use of analytics, reporting, and data mining in everyday business environments is imperative to the success of modern businesses. Business Intelligence: Concepts, Methodologies, Tools, and Applications presents a comprehensive examination of business data analytics along with case studies and practical applications for businesses in a variety of fields and corporate arenas. Focusing on topics and issues such as critical success factors, technology adaptation, agile development approaches, fuzzy logic tools, and best practices in business process management, this multivolume reference is of particular use to business analysts, investors, corporate managers, and entrepreneurs in a variety of prominent industries.
  business intelligence data engineer: Cracking the Data Engineering Interview Kedeisha Bryan, Taamir Ransome, 2023-11-07 Get to grips with the fundamental concepts of data engineering, and solve mock interview questions while building a strong resume and a personal brand to attract the right employers Key Features Develop your own brand, projects, and portfolio with expert help to stand out in the interview round Get a quick refresher on core data engineering topics, such as Python, SQL, ETL, and data modeling Practice with 50 mock questions on SQL, Python, and more to ace the behavioral and technical rounds Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPreparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey. The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions. By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.What you will learn Create maintainable and scalable code for unit testing Understand the fundamental concepts of core data engineering tasks Prepare with over 100 behavioral and technical interview questions Discover data engineer archetypes and how they can help you prepare for the interview Apply the essential concepts of Python and SQL in data engineering Build your personal brand to noticeably stand out as a candidate Who this book is for If you’re an aspiring data engineer looking for guidance on how to land, prepare for, and excel in data engineering interviews, this book is for you. Familiarity with the fundamentals of data engineering, such as data modeling, cloud warehouses, programming (python and SQL), building data pipelines, scheduling your workflows (Airflow), and APIs, is a prerequisite.
  business intelligence data engineer: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail
  business intelligence data engineer: Data Science and Big Data Analytics EMC Education Services, 2014-12-19 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
  business intelligence data engineer: Fundamentals of Data Engineering Joe Reis, Matt Housley, 2022-06-22 Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle
  business intelligence data engineer: Google Cloud Platform for Data Engineering Alasdair Gilchrist, Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable.
  business intelligence data engineer: Data Engineering Best Practices Richard J. Schiller, David Larochelle, 2024-10-11 Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines.
  business intelligence data engineer: Microsoft Certified Exam guide - Azure Data Engineer Associate (DP-203) Cybellium Ltd, Unlock the Power of Data with Azure Data Engineering! Are you ready to become a Microsoft Azure Data Engineer Associate and harness the transformative potential of data in the cloud? Look no further than the Microsoft Certified Exam Guide - Azure Data Engineer Associate (DP-203). This comprehensive book is your ultimate companion on the journey to mastering Azure data engineering and acing the DP-203 exam. In today's data-driven world, organizations depend on the efficient management, processing, and analysis of data to make critical decisions and drive innovation. Microsoft Azure provides a cutting-edge platform for data engineers to design and implement data solutions, and the demand for skilled professionals in this field is soaring. Whether you're an experienced data engineer or just starting your journey, this book equips you with the knowledge and skills needed to excel in Azure data engineering. Inside this book, you will discover: ✔ Comprehensive Coverage: A deep dive into all the key concepts, tools, and best practices required for designing, building, and maintaining data solutions on Azure. ✔ Real-World Scenarios: Practical examples and case studies that illustrate how Azure is used to solve complex data challenges, making learning engaging and relevant. ✔ Exam-Ready Preparation: Thorough coverage of DP-203 exam objectives, complete with practice questions and expert tips to ensure you're well-prepared for exam day. ✔ Proven Expertise: Authored by Azure data engineering professionals who hold the certification and have hands-on experience in developing data solutions, offering you invaluable insights and practical guidance. Whether you aspire to advance your career, validate your expertise, or simply become a proficient Azure Data Engineer, Microsoft Certified Exam Guide - Azure Data Engineer Associate (DP-203) is your trusted companion on this journey. Don't miss this opportunity to become a sought-after data engineering expert in a competitive job market. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
  business intelligence data engineer: Integration Challenges for Analytics, Business Intelligence, and Data Mining Azevedo, Ana, Santos, Manuel Filipe, 2020-12-11 As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.
  business intelligence data engineer: Insights, Strategies, and Applications of Business Analytics A. Arun Kumar, 2024-03-06 This book is a transformative guide catering to undergraduate and graduate students and research scholars, providing a comprehensive understanding of critical concepts in modern analytics. In today’s fast-paced business landscape, data utilization is paramount for success. This book delves into tools and techniques facilitating the conversion of raw data into actionable insights, covering descriptive, predictive, and prescriptive analytics. Beginning with foundational principles, it ensures accessibility for readers of all backgrounds. Real-world case studies seamlessly woven throughout the text illustrate successful business analytics implementations, showcasing how organizations make strategic decisions. This precise and insightful guide equips readers with the knowledge to optimize processes, making it an indispensable resource for navigating the dynamic realm of business analytics.
  business intelligence data engineer: Data Engineering with Scala and Spark Eric Tome, Rupam Bhattacharjee, David Radford, 2024-01-31 Take your data engineering skills to the next level by learning how to utilize Scala and functional programming to create continuous and scheduled pipelines that ingest, transform, and aggregate data Key Features Transform data into a clean and trusted source of information for your organization using Scala Build streaming and batch-processing pipelines with step-by-step explanations Implement and orchestrate your pipelines by following CI/CD best practices and test-driven development (TDD) Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount. This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You’ll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You’ll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users. By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.What you will learn Set up your development environment to build pipelines in Scala Get to grips with polymorphic functions, type parameterization, and Scala implicits Use Spark DataFrames, Datasets, and Spark SQL with Scala Read and write data to object stores Profile and clean your data using Deequ Performance tune your data pipelines using Scala Who this book is for This book is for data engineers who have experience in working with data and want to understand how to transform raw data into a clean, trusted, and valuable source of information for their organization using Scala and the latest cloud technologies.
  business intelligence data engineer: Data Engineering with Alteryx Paul Houghton, 2022-06-30 Build and deploy data pipelines with Alteryx by applying practical DataOps principles Key Features • Learn DataOps principles to build data pipelines with Alteryx • Build robust data pipelines with Alteryx Designer • Use Alteryx Server and Alteryx Connect to share and deploy your data pipelines Book Description Alteryx is a GUI-based development platform for data analytic applications. Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you have. This book will teach you the principles of DataOps and how they can be used with the Alteryx software stack. You'll build data pipelines with Alteryx Designer and incorporate the error handling and data validation needed for reliable datasets. Next, you'll take the data pipeline from raw data, transform it into a robust dataset, and publish it to Alteryx Server following a continuous integration process. By the end of this Alteryx book, you'll be able to build systems for validating datasets, monitoring workflow performance, managing access, and promoting the use of your data sources. What you will learn • Build a working pipeline to integrate an external data source • Develop monitoring processes for the pipeline example • Understand and apply DataOps principles to an Alteryx data pipeline • Gain skills for data engineering with the Alteryx software stack • Work with spatial analytics and machine learning techniques in an Alteryx workflow Explore Alteryx workflow deployment strategies using metadata validation and continuous integration • Organize content on Alteryx Server and secure user access Who this book is for If you're a data engineer, data scientist, or data analyst who wants to set up a reliable process for developing data pipelines using Alteryx, this book is for you. You'll also find this book useful if you are trying to make the development and deployment of datasets more robust by following the DataOps principles. Familiarity with Alteryx products will be helpful but is not necessary.
  business intelligence data engineer: Microsoft Certified Azure Data Fundamentals (Exam DP-900) Certification Guide Marcelo Leite, 2022-11-25 Learn how to implement successful Azure Data projects and get the skills to clear the DP-900 certification exam with the help of mock tests and self-assessment scenarios for better preparation Key FeaturesGet the knowledge you need to pass the DP-900 exam on your first attemptGain fundamental knowledge of the core concepts of working with data in Azure cloud data servicesLearn through a practical approach and test yourself with mock exams at the end of the bookBook Description Passing the DP-900 Microsoft Azure Data Fundamentals exam opens the door to a myriad of opportunities for working with data services in the cloud. But it is not an easy exam and you'll need a guide to set you up for success and prepare you for a career in Microsoft Azure. Absolutely everything you need to pass the DP-900 exam is covered in this concise handbook. After an introductory chapter covering the core terms and concepts, you'll go through the various roles related to working with data in the cloud and learn the similarities and differences between relational and non-relational databases. This foundational knowledge is crucial, as you'll learn how to provision and deploy Azure's relational and non-relational services in detail later in the book. You'll also gain an understanding of how to glean insights with data analytics at both small and large scales, and how to visualize your insights with Power BI. Once you reach the end of the book, you'll be able to test your knowledge with practice tests with detailed explanations of the correct answers. By the end of this book, you will be armed with the knowledge and confidence to not only pass the DP-900 exam but also have a solid foundation from which to embark on a career in Azure data services. What you will learnExplore the concepts of IaaS and PaaS database services on AzureQuery, insert, update, and delete relational data using SQLExplore the concepts of data warehouses in AzurePerform data analytics with an Azure Synapse Analytics workspaceUpload and retrieve data in Azure Cosmos DB and Azure HDInsightProvision and deploy non-relational data services in AzureContextualize the knowledge with real-life use casesTest your progress with a mock examWho this book is for This book is for data engineers, database administrators, or aspiring data professionals getting ready to take the DP-900 exam. It will also be helpful for those looking for a bit of guidance on how to be better equipped for Azure-related job roles such as Azure database administrator or Azure data engineer. A basic understanding of core data concepts and relational and non-relational data will help you make the most out of this book, but they're not a pre-requisite.
  business intelligence data engineer: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.
  business intelligence data engineer: The Analytics Lifecycle Toolkit Gregory S. Nelson, 2018-03-07 An evidence-based organizational framework for exceptional analytics team results The Analytics Lifecycle Toolkit provides managers with a practical manual for integrating data management and analytic technologies into their organization. Author Gregory Nelson has encountered hundreds of unique perspectives on analytics optimization from across industries; over the years, successful strategies have proven to share certain practices, skillsets, expertise, and structural traits. In this book, he details the concepts, people and processes that contribute to exemplary results, and shares an organizational framework for analytics team functions and roles. By merging analytic culture with data and technology strategies, this framework creates understanding for analytics leaders and a toolbox for practitioners. Focused on team effectiveness and the design thinking surrounding product creation, the framework is illustrated by real-world case studies to show how effective analytics team leadership works on the ground. Tools and templates include best practices for process improvement, workforce enablement, and leadership support, while guidance includes both conceptual discussion of the analytics life cycle and detailed process descriptions. Readers will be equipped to: Master fundamental concepts and practices of the analytics life cycle Understand the knowledge domains and best practices for each stage Delve into the details of analytical team processes and process optimization Utilize a robust toolkit designed to support analytic team effectiveness The analytics life cycle includes a diverse set of considerations involving the people, processes, culture, data, and technology, and managers needing stellar analytics performance must understand their unique role in the process of winnowing the big picture down to meaningful action. The Analytics Lifecycle Toolkit provides expert perspective and much-needed insight to managers, while providing practitioners with a new set of tools for optimizing results.
  business intelligence data engineer: Azure Data Factory Cookbook Dmitry Foshin, Tonya Chernyshova, Dmitry Anoshin, Xenia Ireton, 2024-02-28 Data Engineers guide to solve real-world problems encountered while building and transforming data pipelines using Azure's data integration tool Key Features Solve real-world data problems and create data-driven workflows with ease using Azure Data Factory Build an ADF pipeline that operates on pre-built ML model and Azure AI Get up and running with Fabric Data Explorer and extend ADF with Logic Apps and Azure functions Book DescriptionThis new edition of the Azure Data Factory book, fully updated to reflect ADS V2, will help you get up and running by showing you how to create and execute your first job in ADF. There are updated and new recipes throughout the book based on developments happening in Azure Synapse, Deployment with Azure DevOps, and Azure Purview. The current edition also runs you through Fabric Data Factory, Data Explorer, and some industry-grade best practices with specific chapters on each. You’ll learn how to branch and chain activities, create custom activities, and schedule pipelines, as well as discover the benefits of cloud data warehousing, Azure Synapse Analytics, and Azure Data Lake Gen2 Storage. With practical recipes, you’ll learn how to actively engage with analytical tools from Azure Data Services and leverage your on-premises infrastructure with cloud-native tools to get relevant business insights. You'll familiarize yourself with the common errors that you may encounter while working with ADF and find out the solutions to them. You’ll also understand error messages and resolve problems in connectors and data flows with the debugging capabilities of ADF. By the end of this book, you’ll be able to use ADF with its latest advancements as the main ETL and orchestration tool for your data warehouse projects.What you will learn Build and Manage data pipelines with ease using the latest version of ADF Configure, load data, and operate data flows with Azure Synapse Get up and running with Fabric Data Factory Working with Azure Data Factory and Azure Purview Create big data pipelines using Databricks and Delta tables Integrate ADF with commonly used Azure services such as Azure ML, Azure Logic Apps, and Azure Functions Learn industry-grade best practices for using Azure Data Factory Who this book is for This book is for ETL developers, data warehouse and ETL architects, software professionals, and anyone else who wants to learn about the common and not-so-common challenges faced while developing traditional and hybrid ETL solutions using Microsoft's Azure Data Factory. You’ll also find this book useful if you are looking for recipes to improve or enhance your existing ETL pipelines. Basic knowledge of data warehousing is a prerequisite.
  business intelligence data engineer: Architecting Data and Machine Learning Platforms Marco Tranquillin, Valliappa Lakshmanan, Firat Tekiner, 2023-10-12 All cloud architects need to know how to build data platforms that enable businesses to make data-driven decisions and deliver enterprise-wide intelligence in a fast and efficient way. This handbook shows you how to design, build, and modernize cloud native data and machine learning platforms using AWS, Azure, Google Cloud, and multicloud tools like Snowflake and Databricks. Authors Marco Tranquillin, Valliappa Lakshmanan, and Firat Tekiner cover the entire data lifecycle from ingestion to activation in a cloud environment using real-world enterprise architectures. You'll learn how to transform, secure, and modernize familiar solutions like data warehouses and data lakes, and you'll be able to leverage recent AI/ML patterns to get accurate and quicker insights to drive competitive advantage. You'll learn how to: Design a modern and secure cloud native or hybrid data analytics and machine learning platform Accelerate data-led innovation by consolidating enterprise data in a governed, scalable, and resilient data platform Democratize access to enterprise data and govern how business teams extract insights and build AI/ML capabilities Enable your business to make decisions in real time using streaming pipelines Build an MLOps platform to move to a predictive and prescriptive analytics approach
  business intelligence data engineer: Azure Data Engineer Associate Certification Guide Giacinto Palmieri, Surendra Mettapalli, Newton Alex, 2024-05-23 Achieve Azure Data Engineer Associate certification success with this DP-203 exam guide Purchase of this book unlocks access to web-based exam prep resources including mock exams, flashcards, and exam tips, and the eBook PDF Key Features Prepare for the DP-203 exam with expert insights, real-world examples, and practice resources Gain up-to-date skills to thrive in the dynamic world of cloud data engineering Build secure and sustainable data solutions using Azure services Book DescriptionOne of the top global cloud providers, Azure offers extensive data hosting and processing services, driving widespread cloud adoption and creating a high demand for skilled data engineers. The Azure Data Engineer Associate (DP-203) certification is a vital credential, demonstrating your proficiency as an Azure data engineer to prospective employers. This comprehensive exam guide is designed for both beginners and seasoned professionals, aligned with the latest DP-203 certification exam, to help you pass the exam on your first try. The book provides a foundational understanding of IaaS, PaaS, and SaaS, starting with core concepts like virtual machines (VMs), VNETS, and App Services and progressing to advanced topics such as data storage, processing, and security. What sets this exam guide apart is its hands-on approach, seamlessly integrating theory with practice through real-world examples, practical exercises, and insights into Azure's evolving ecosystem. Additionally, you'll unlock lifetime access to supplementary practice material on an online platform, including mock exams, interactive flashcards, and exam tips, ensuring a comprehensive exam prep experience. By the end of this book, you’ll not only be ready to excel in the DP-203 exam, but also be equipped to tackle complex challenges as an Azure data engineer.What you will learn Design and implement data lake solutions with batch and stream pipelines Secure data with masking, encryption, RBAC, and ACLs Perform standard extract, transform, and load (ETL) and analytics operations Implement different table geometries in Azure Synapse Analytics Write Spark code, design ADF pipelines, and handle batch and stream data Use Azure Databricks or Synapse Spark for data processing using Notebooks Leverage Synapse Analytics and Purview for comprehensive data exploration Confidently manage VMs, VNETS, App Services, and more Who this book is for This book is for data engineers who want to take the Azure Data Engineer Associate (DP-203) exam and delve deep into the Azure cloud stack. Engineers and product managers new to Azure or preparing for interviews with companies working on Azure technologies will find invaluable hands-on experience with Azure data technologies through this book. A basic understanding of cloud technologies, ETL, and databases will assist with understanding the concepts covered.
  business intelligence data engineer: Data Engineering with Google Cloud Platform Adi Wijaya, 2024-04-30 Become a successful data engineer by building and deploying your own data pipelines on Google Cloud, including making key architectural decisions Key Features Get up to speed with data governance on Google Cloud Learn how to use various Google Cloud products like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream Boost your confidence by getting Google Cloud data engineering certification guidance from real exam experiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe second edition of Data Engineering with Google Cloud builds upon the success of the first edition by offering enhanced clarity and depth to data professionals navigating the intricate landscape of data engineering. Beyond its foundational lessons, this new edition delves into the essential realm of data governance within Google Cloud, providing you with invaluable insights into managing and optimizing data resources effectively. Written by a Data Strategic Cloud Engineer at Google, this book helps you stay ahead of the curve by guiding you through the latest technological advancements in the Google Cloud ecosystem. You’ll cover essential aspects, from exploring Cloud Composer 2 to the evolution of Airflow 2.5. Additionally, you’ll explore how to work with cutting-edge tools like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream to perform data governance on datasets. By the end of this book, you'll be equipped to navigate the ever-evolving world of data engineering on Google Cloud, from foundational principles to cutting-edge practices.What you will learn Load data into BigQuery and materialize its output Focus on data pipeline orchestration using Cloud Composer Formulate Airflow jobs to orchestrate and automate a data warehouse Establish a Hadoop data lake, generate ephemeral clusters, and execute jobs on the Dataproc cluster Harness Pub/Sub for messaging and ingestion for event-driven systems Apply Dataflow to conduct ETL on streaming data Implement data governance services on Google Cloud Who this book is for Data analysts, IT practitioners, software engineers, or any data enthusiasts looking to have a successful data engineering career will find this book invaluable. Additionally, experienced data professionals who want to start using Google Cloud to build data platforms will get clear insights on how to navigate the path. Whether you're a beginner who wants to explore the fundamentals or a seasoned professional seeking to learn the latest data engineering concepts, this book is for you.
  business intelligence data engineer: Building Interactive Dashboards in Microsoft 365 Excel Michael Olafusi, 2024-02-29 Unleash the full potential of Microsoft Excel's latest version and elevate your data-driven prowess with this comprehensive resource Key Features Create robust and automated dashboards in Excel for M365 Apply data visualization principles and employ dynamic charts and tables to create constantly updated and informative dashboards for your organization Uncover the best practices for effective dashboard creation Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionM365 Excel is a modern Excel version that is constantly updated with features that make creating and automating analyses, reports, and dashboards very easy compared with older Excel versions. This book will help you leverage its full capabilities, beginning with a quick overview of what dashboards are and how they are different from other types of reports. Then, you’ll familiarize yourself with the different standard dashboards currently available and what they are meant to accomplish for organizations. As you progress, you’ll get to grips with the use of new powerful tools such as Power Query and dynamic array formulae in the automation of analysis, gaining insights into the right approach to take in building effective dashboards. You’ll equip yourself with not only all the essential formulae, charts, and non-chart visuals but also learn how to set up your dashboard perfectly. Along the way, you’ll build a couple of awesome dashboards from scratch to utilize your newfound knowledge. By the end of this book, you will be able to carry out an impressive and robust level of analysis on business data that may come from multiple sources or files, using better processes, formulae, and best practices in M365 to create insightful dashboards faster.What you will learn Understand the importance of dashboards in today's business analytics environment Delve into the various essential formulae in Excel Utilize Power Query to shape and transform data to extract insights easily Explore the power of the new dynamic array functions in M365 Employ PivotTable and Power Pivot to automate your dashboards Master the setup and optimization of your dashboard canvas Discover best practices for visualization, charts, and effective dashboard creation Consolidate your knowledge through a hands-on concluding project Who this book is for This book is for Microsoft Excel users, especially those tasked with creating dynamic reports and dashboards that require data and help support to decision-makers within an organization with visually engaging and actionable insights. Financial analysts, data analysts, business analysts, and BI professionals will also greatly benefit from this book. Some familiarity with the Microsoft Excel interface is a prerequisite.
  business intelligence data engineer: Data Science Fundamentals and Practical Approaches Dr. Gypsy Nandi, Dr. Rupam Kumar Sharma, 2020-06-02 Learn how to process and analysis data using PythonÊ KEY FEATURESÊ - The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. - The book is not just dealing with the background mathematics alone or only the programs but beautifully correlates the background mathematics to the theory and then finally translating it into the programs. - A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. DESCRIPTION This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems.Ê Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic.Ê WHAT WILL YOU LEARNÊ Perform processing on data for making it ready for visual plot and understand the pattern in data over time. Understand what machine learning is and how learning can be incorporated into a program. Know how tools can be used to perform analysis on big data using python and other standard tools. Perform social media analytics, business analytics, and data analytics on any data of a company or organization. WHO THIS BOOK IS FOR The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. TABLE OF CONTENTS 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics
  business intelligence data engineer: Azure Data Engineer Associate Certification Guide Newton Alex, 2022-02-28 Become well-versed with data engineering concepts and exam objectives to achieve Azure Data Engineer Associate certification Key Features Understand and apply data engineering concepts to real-world problems and prepare for the DP-203 certification exam Explore the various Azure services for building end-to-end data solutions Gain a solid understanding of building secure and sustainable data solutions using Azure services Book DescriptionAzure is one of the leading cloud providers in the world, providing numerous services for data hosting and data processing. Most of the companies today are either cloud-native or are migrating to the cloud much faster than ever. This has led to an explosion of data engineering jobs, with aspiring and experienced data engineers trying to outshine each other. Gaining the DP-203: Azure Data Engineer Associate certification is a sure-fire way of showing future employers that you have what it takes to become an Azure Data Engineer. This book will help you prepare for the DP-203 examination in a structured way, covering all the topics specified in the syllabus with detailed explanations and exam tips. The book starts by covering the fundamentals of Azure, and then takes the example of a hypothetical company and walks you through the various stages of building data engineering solutions. Throughout the chapters, you'll learn about the various Azure components involved in building the data systems and will explore them using a wide range of real-world use cases. Finally, you’ll work on sample questions and answers to familiarize yourself with the pattern of the exam. By the end of this Azure book, you'll have gained the confidence you need to pass the DP-203 exam with ease and land your dream job in data engineering.What you will learn Gain intermediate-level knowledge of Azure the data infrastructure Design and implement data lake solutions with batch and stream pipelines Identify the partition strategies available in Azure storage technologies Implement different table geometries in Azure Synapse Analytics Use the transformations available in T-SQL, Spark, and Azure Data Factory Use Azure Databricks or Synapse Spark to process data using Notebooks Design security using RBAC, ACL, encryption, data masking, and more Monitor and optimize data pipelines with debugging tips Who this book is for This book is for data engineers who want to take the DP-203: Azure Data Engineer Associate exam and are looking to gain in-depth knowledge of the Azure cloud stack. The book will also help engineers and product managers who are new to Azure or interviewing with companies working on Azure technologies, to get hands-on experience of Azure data technologies. A basic understanding of cloud technologies, extract, transform, and load (ETL), and databases will help you get the most out of this book.
  business intelligence data engineer: Data Teams Jesse Anderson, 2020
Job Description - kohlandfrisch.com
We’re looking for a skilled Business Intelligence/Data Engineer to help drive our transition to a cutting-edge Azure-based BI ecosystem. As part of our team, you’ll design and develop data …

CAREER PATHWAY DATA ANALYST (422) - Cyber
Examines data from multiple disparate sources with the goal of providing security and privacy insight. Designs and implements custom algorithms, workflow processes, and layouts for …

Information Technology Job Family: Business Intelligence …
Translate business requirements into appropriate Data models, ETL processes, data warehouses, and applications; work closely with analytics team to develop solutions to address business …

ATTACHMENT J-3 - ALLIANT 2 LABOR CATEGORIES AND BLS …
Business Intelligence Analyst - Plan, direct, or coordinate activities in such fields as electronic data processing, information systems, systems analysis, and computer programming.

BUSINESS INTELLIGENCE: CONCEPTS, COMPONENTS, …
It describes the insights on the role and requirement of real time BI by examining the business needs. The paper explores the concepts of BI, its components, emergence of BI, benefits of BI, …

Introduction to Business Data Analytics: Organizational View
Business analysis provides the business context for business data analytics. Business analysis defines the focus for the research questions being asked and sets the scope before data is …

The Open Data Lake Company - Qubole
ing for data-engineering careers, managers responsible for data, and others who need to understand how data can work in modern organizations. It covers the following: • Major tasks …

Business Intelligence and Analytics
6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to …

Big Data Analytics & Business Intelligence - IIT Kharagpur
This course provides an introduction to the field of business intelligence and big data analytics, which has been defined as the extensive use of data, statistical and quantitative analysis, …

Business Intelligence Data Engineer Copy - old.icapgen.org
Business Intelligence Data Engineer: Business Intelligence Demystified Anoop Kumar V K,2021-09-25 Clear your doubts about Business Intelligence and start your new journey KEY …

Data Analytics (MS) - City University of New York
Graduates of the online Master’s Degree in Data Analytics are prepared for a variety of technical and managerial positions such as Data Scientist, Business Intelligence Analyst, Knowledge …

INFORMATION SYSTEMS - uwosh.edu
An Information Systems major combines technology, business and management to teach students how to design, implement and manage IT systems that support organizational goals. …

Databricks “Data Intelligence Platform”
Data Engineer ML Engineer Data Scientist Business Analyst / User Collaboration Business Partners AI Engine Workflows (Jobs, DLT) IDE support Notebooks Databricks SQL AI …

Business Intelligence Engineer Resume Example
Business Intelligence Engineer at Cognizant Technology Solutions - Indiana, IN Jul 2020 - Aug 2022 •Developed an automated data integration system for Cognizant Technology Solutions, …

Business Intelligence & Data Engineer
Built ETL workflows with Airflow and Python for efficient data processing. Managed Google BigQuery data warehouses and optimized data storage. Designed dashboards and reports …

Mining Big Data in the Enterprise for Better Business Intelligence
Intel’s big data efforts represent a key element in our overall roadmap for transforming Intel’s business with advanced analytics. Intel IT is developing several big data proofs of concept to …

Descriptions of IT Staff Augmentation Contract (ITSAC) Titles
Artificial Intelligence/Machine Learning Engineer Enhances data collection procedures to include information that is relevant for building analytics and machine learning systems. Processing, …

Business Intelligence Solution for an SME: A Case Study
In this paper, we examine the challenges such as lack of technical expertise and limited budget when implementing a BI solution within an SME in the UK. In light of our experiences in …

Databricks “Data Intelligence Platform”
Data Engineer ML Engineer Data Scientist Business Analyst Business Partner Dev tools BI Apps App Developer Ingest and Transform Advanced Analytics, ML and AI Data Warehouse Photon …

B.TECH. CSE (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)
AI/ML Engineer Business Intelligence Engineer Research Scientist Data and AI Consultant Machine Learning Architect Software Developer or Python Developer-Machine Learning/NLP. …

Job Description - kohlandfrisch.com
We’re looking for a skilled Business Intelligence/Data Engineer to help drive our transition to a cutting-edge Azure-based BI ecosystem. As part of our team, you’ll design and develop data …

CAREER PATHWAY DATA ANALYST (422) - Cyber
Examines data from multiple disparate sources with the goal of providing security and privacy insight. Designs and implements custom algorithms, workflow processes, and layouts for …

Information Technology Job Family: Business Intelligence …
Translate business requirements into appropriate Data models, ETL processes, data warehouses, and applications; work closely with analytics team to develop solutions to address business …

ATTACHMENT J-3 - ALLIANT 2 LABOR CATEGORIES AND BLS …
Business Intelligence Analyst - Plan, direct, or coordinate activities in such fields as electronic data processing, information systems, systems analysis, and computer programming.

BUSINESS INTELLIGENCE: CONCEPTS, COMPONENTS, …
It describes the insights on the role and requirement of real time BI by examining the business needs. The paper explores the concepts of BI, its components, emergence of BI, benefits of …

Introduction to Business Data Analytics: Organizational View
Business analysis provides the business context for business data analytics. Business analysis defines the focus for the research questions being asked and sets the scope before data is …

The Open Data Lake Company - Qubole
ing for data-engineering careers, managers responsible for data, and others who need to understand how data can work in modern organizations. It covers the following: • Major tasks …

Business Intelligence and Analytics
6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant …

Big Data Analytics & Business Intelligence - IIT Kharagpur
This course provides an introduction to the field of business intelligence and big data analytics, which has been defined as the extensive use of data, statistical and quantitative analysis, …

Business Intelligence Data Engineer Copy - old.icapgen.org
Business Intelligence Data Engineer: Business Intelligence Demystified Anoop Kumar V K,2021-09-25 Clear your doubts about Business Intelligence and start your new journey KEY …

Data Analytics (MS) - City University of New York
Graduates of the online Master’s Degree in Data Analytics are prepared for a variety of technical and managerial positions such as Data Scientist, Business Intelligence Analyst, Knowledge …

INFORMATION SYSTEMS - uwosh.edu
An Information Systems major combines technology, business and management to teach students how to design, implement and manage IT systems that support organizational goals. …

Databricks “Data Intelligence Platform”
Data Engineer ML Engineer Data Scientist Business Analyst / User Collaboration Business Partners AI Engine Workflows (Jobs, DLT) IDE support Notebooks Databricks SQL AI …

Business Intelligence Engineer Resume Example
Business Intelligence Engineer at Cognizant Technology Solutions - Indiana, IN Jul 2020 - Aug 2022 •Developed an automated data integration system for Cognizant Technology Solutions, …

Business Intelligence & Data Engineer
Built ETL workflows with Airflow and Python for efficient data processing. Managed Google BigQuery data warehouses and optimized data storage. Designed dashboards and reports …

Mining Big Data in the Enterprise for Better Business …
Intel’s big data efforts represent a key element in our overall roadmap for transforming Intel’s business with advanced analytics. Intel IT is developing several big data proofs of concept to …

Descriptions of IT Staff Augmentation Contract (ITSAC) Titles
Artificial Intelligence/Machine Learning Engineer Enhances data collection procedures to include information that is relevant for building analytics and machine learning systems. Processing, …

Business Intelligence Solution for an SME: A Case Study
In this paper, we examine the challenges such as lack of technical expertise and limited budget when implementing a BI solution within an SME in the UK. In light of our experiences in …

Databricks “Data Intelligence Platform”
Data Engineer ML Engineer Data Scientist Business Analyst Business Partner Dev tools BI Apps App Developer Ingest and Transform Advanced Analytics, ML and AI Data Warehouse Photon …

B.TECH. CSE (ARTIFICIAL INTELLIGENCE & MACHINE …
AI/ML Engineer Business Intelligence Engineer Research Scientist Data and AI Consultant Machine Learning Architect Software Developer or Python Developer-Machine Learning/NLP. …