Advertisement
business intelligence in decision-making: Business Intelligence Carlo Vercellis, 2011-08-10 Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide. |
business intelligence in decision-making: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration. |
business intelligence in decision-making: Business Intelligence, Reprint Edition Stacia Misner, Michael Luckevich, Elizabeth Vitt, 2008-12-10 “This readable, practical book helps business people quickly understand what business intelligence is, how it works, where it's used, and why and when to use it—all illustrated by real case studies, not just theory.” Nigel Pendse Author of The OLAP Report www.olapreport.com So much information, so little time. All too often, business data is hard to get at and use—thus slowing decision-making to a crawl. This insightful book illustrates how organizations can make better, faster decisions about their customers, partners, and operations by turning mountains of data into valuable business information that’s always at the fingertips of decision makers. You’ll learn what’s involved in using business intelligence to bring together information, people, and technology to create successful business strategies—and how to execute those strategies with confidence. Topics covered include: THE BUSINESS INTELLIGENCE MINDSET: Discover the basics behind business intelligence, such as how it’s defined, why and how to use it in your organization, and what characteristics, components, and general architecture most business intelligence solutions share. THE CASE FOR BUSINESS INTELLIGENCE: Read how world leaders in finance, manufacturing, and retail have successfully implemented business intelligence solutions and see what benefits they have reaped. THE PRACTICE OF BUSINESS INTELLIGENCE: Find out what’s involved in implementing a business intelligence solution in your organization, including how to identify your business intelligence opportunities, what decisions you must make to get a business intelligence project going, and what to do to sustain the momentum so that you can continue to make sense of all the data you gather. |
business intelligence in decision-making: Integration Challenges for Analytics, Business Intelligence, and Data Mining Azevedo, Ana, Santos, Manuel Filipe, 2020-12-11 As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students. |
business intelligence in decision-making: Business Intelligence Jerzy Surma, 2011 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration. |
business intelligence in decision-making: The Support of Decision Processes with Business Intelligence and Analytics Martin Kowalczyk, 2017-08-22 In his research, Martin Kowalczyk empirically investigates the challenges of designing and establishing successful decision support with Business Intelligence and Analytics (BI&A). The results from his work elucidate organizational and individual perspectives of BI&A support in decision processes. The organizational perspective considers the processual aspects of decision making and addresses process phases, roles and their interactions. The individual perspective reflects upon decision making of human individuals including their cognition and behaviors involved in decision making. The support of managerial decision making with BI&A gains increasing priority for many businesses in their desire to achieve better decision outcomes and improved organizational performance. |
business intelligence in decision-making: Decision Support Systems for Business Intelligence Vicki L. Sauter, 2014-08-21 Praise for the First Edition This is the most usable decision support systems text. [i]t is far better than any other text in the field —Computing Reviews Computer-based systems known as decision support systems (DSS) play a vital role in helping professionals across various fields of practice understand what information is needed, when it is needed, and in what form in order to make smart and valuable business decisions. Providing a unique combination of theory, applications, and technology, Decision Support Systems for Business Intelligence, Second Edition supplies readers with the hands-on approach that is needed to understand the implications of theory to DSS design as well as the skills needed to construct a DSS. This new edition reflects numerous advances in the field as well as the latest related technological developments. By addressing all topics on three levels—general theory, implications for DSS design, and code development—the author presents an integrated analysis of what every DSS designer needs to know. This Second Edition features: Expanded coverage of data mining with new examples Newly added discussion of business intelligence and transnational corporations Discussion of the increased capabilities of databases and the significant growth of user interfaces and models Emphasis on analytics to encourage DSS builders to utilize sufficient modeling support in their systems A thoroughly updated section on data warehousing including architecture, data adjustment, and data scrubbing Explanations and implications of DSS differences across cultures and the challenges associated with transnational systems Each chapter discusses various aspects of DSS that exist in real-world applications, and one main example of a DSS to facilitate car purchases is used throughout the entire book. Screenshots from JavaScript® and Adobe® ColdFusion are presented to demonstrate the use of popular software packages that carry out the discussed techniques, and a related Web site houses all of the book's figures along with demo versions of decision support packages, additional examples, and links to developments in the field. Decision Support Systems for Business Intelligence, Second Edition is an excellent book for courses on information systems, decision support systems, and data mining at the advanced undergraduate and graduate levels. It also serves as a practical reference for professionals working in the fields of business, statistics, engineering, and computer technology. |
business intelligence in decision-making: Getting Started with Business Analytics David Roi Hardoon, Galit Shmueli, 2013-03-26 Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization. |
business intelligence in decision-making: Business Intelligence Roadmap Larissa Terpeluk Moss, S. Atre, 2003 This software will enable the user to learn about business intelligence roadmap. |
business intelligence in decision-making: Getting Started with Business Analytics David Roi Hardoon, Galit Shmueli, 2013-03-26 Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts |
business intelligence in decision-making: Business Intelligence and Analytics Ramesh Sharda, Efraim Turban, Dursun Delen, 2014-02-28 Decision Support and Business Intelligence Systems provides the only comprehensive, up-to-date guide to today's revolutionary management support system technologies, and showcases how they can be used for better decision-making. The 10th edition focuses on Business Intelligence (BI) and analytics for enterprise decision support in a more streamlined book. |
business intelligence in decision-making: Decision Support, Analytics, and Business Intelligence, Third Edition Daniel Power, Ciara Heavin, 2017-06-08 A data-driven, global business environment requires increasingly sophisticated decision support, analytics and business intelligence. Also, changing technologies including mobile devices and cloud computing have created new opportunities for computerized decision support and an increasing need for technology support of business decision making. Contemporary managers must know much more about information technology solutions and especially computerized decision support, data science and analytics. This book is targeted to busy managers and MBA students who want to grasp the basics of computerized decision support. Some of the topics covered include: What is a decision support system? What is big data and how is it useful? What is business intelligence? How can predictive analytics support decision making? What is the impact of decision support on decision making? And how can managers identify opportunities for innovative analytics and decision support? Overall the book addresses 70 major questions relevant to decision support. |
business intelligence in decision-making: Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering Management Association, Information Resources, 2021-05-28 Decision support systems (DSS) are widely touted for their effectiveness in aiding decision making, particularly across a wide and diverse range of industries including healthcare, business, and engineering applications. The concepts, principles, and theories of enhanced decision making are essential points of research as well as the exact methods, tools, and technologies being implemented in these industries. From both a standpoint of DSS interfaces, namely the design and development of these technologies, along with the implementations, including experiences and utilization of these tools, one can get a better sense of how exactly DSS has changed the face of decision making and management in multi-industry applications. Furthermore, the evaluation of the impact of these technologies is essential in moving forward in the future. The Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering explores how decision support systems have been developed and implemented across diverse industries through perspectives on the technology, the utilizations of these tools, and from a decision management standpoint. The chapters will cover not only the interfaces, implementations, and functionality of these tools, but also the overall impacts they have had on the specific industries mentioned. This book also evaluates the effectiveness along with benefits and challenges of using DSS as well as the outlook for the future. This book is ideal for decision makers, IT consultants and specialists, software developers, design professionals, academicians, policymakers, researchers, professionals, and students interested in how DSS is being used in different industries. |
business intelligence in decision-making: Decision Management Systems James Taylor, 2011-10-13 A very rich book sprinkled with real-life examples as well as battle-tested advice.” —Pierre Haren, VP ILOG, IBM James does a thorough job of explaining Decision Management Systems as enablers of a formidable business transformation.” —Deepak Advani, Vice President, Business Analytics Products and SPSS, IBM Build Systems That Work Actively to Help You Maximize Growth and Profits Most companies rely on operational systems that are largely passive. But what if you could make your systems active participants in optimizing your business? What if your systems could act intelligently on their own? Learn, not just report? Empower users to take action instead of simply escalating their problems? Evolve without massive IT investments? Decision Management Systems can do all that and more. In this book, the field’s leading expert demonstrates how to use them to drive unprecedented levels of business value. James Taylor shows how to integrate operational and analytic technologies to create systems that are more agile, more analytic, and more adaptive. Through actual case studies, you’ll learn how to combine technologies such as predictive analytics, optimization, and business rules—improving customer service, reducing fraud, managing risk, increasing agility, and driving growth. Both a practical how-to guide and a framework for planning, Decision Management Systems focuses on mainstream business challenges. Coverage includes Understanding how Decision Management Systems can transform your business Planning your systems “with the decision in mind” Identifying, modeling, and prioritizing the decisions you need to optimize Designing and implementing robust decision services Monitoring your ongoing decision-making and learning how to improve it Proven enablers of effective Decision Management Systems: people, process, and technology Identifying and overcoming obstacles that can derail your Decision Management Systems initiative |
business intelligence in decision-making: Business Intelligence and Big Data Celina M. Olszak, 2020-11-17 The twenty-first century is a time of intensifying competition and progressive digitization. Individual employees, managers, and entire organizations are under increasing pressure to succeed. The questions facing us today are: What does success mean? Is success a matter of chance and luck or perhaps is success a category that can be planned and properly supported? Business Intelligence and Big Data: Drivers of Organizational Success examines how the success of an organization largely depends on the ability to anticipate and quickly respond to challenges from the market, customers, and other stakeholders. Success is also associated with the potential to process and analyze a variety of information and the means to use modern information and communication technologies (ICTs). Success also requires creative behaviors and organizational cleverness from an organization. The book discusses business intelligence (BI) and Big Data (BD) issues in the context of modern management paradigms and organizational success. It presents a theoretically and empirically grounded investigation into BI and BD application in organizations and examines such issues as: Analysis and interpretation of the essence of BI and BD Decision support Potential areas of BI and BD utilization in organizations Factors determining success with using BI and BD The role of BI and BD in value creation for organizations Identifying barriers and constraints related to BI and BD design and implementation The book presents arguments and evidence confirming that BI and BD may be a trigger for making more effective decisions, improving business processes and business performance, and creating new business. The book proposes a comprehensive framework on how to design and use BI and BD to provide organizational success. |
business intelligence in decision-making: Customer and Business Analytics Daniel S. Putler, Robert E. Krider, 2012-05-07 Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the tex |
business intelligence in decision-making: Prescriptive Analytics Dursun Delen, 2019-10-21 Make Better Decisions, Leverage New Opportunities, and Automate Decisioning at Scale Prescriptive analytics is more directly linked to successful decision-making than any other form of business analytics. It can help you systematically sort through your choices to optimize decisions, respond to new opportunities and risks with precision, and continually reflect new information into your decisioning process. In Prescriptive Analytics, analytics expert Dr. Dursun Delen illuminates the field’s state-of-the-art methods, offering holistic insight for both professionals and students. Delen’s end-to-end, all-inclusive approach covers optimization, simulation, multi-criteria decision-making methods, inference- and heuristic-based decisioning, and more. Balancing theory and practice, he presents intuitive conceptual illustrations, realistic example problems, and real-world case studies–all designed to deliver knowledge you can use. Discover where prescriptive analytics fits and how it improves decision-making Identify optimal solutions for achieving an objective within real-world constraints Analyze complex systems via Monte-Carlo, discrete, and continuous simulations Apply powerful multi-criteria decision-making and mature expert systems and case-based reasoning Preview emerging techniques based on deep learning and cognitive computing |
business intelligence in decision-making: Business Intelligence For Dummies Swain Scheps, 2011-02-04 You're intelligent, right? So you've already figured out that Business Intelligence can be pretty valuable in making the right decisions about your business. But you’ve heard at least a dozen definitions of what it is, and heard of at least that many BI tools. Where do you start? Business Intelligence For Dummies makes BI understandable! It takes you step by step through the technologies and the alphabet soup, so you can choose the right technology and implement a successful BI environment. You'll see how the applications and technologies work together to access, analyze, and present data that you can use to make better decisions about your products, customers, competitors, and more. You’ll find out how to: Understand the principles and practical elements of BI Determine what your business needs Compare different approaches to BI Build a solid BI architecture and roadmap Design, develop, and deploy your BI plan Relate BI to data warehousing, ERP, CRM, and e-commerce Analyze emerging trends and developing BI tools to see what else may be useful Whether you’re the business owner or the person charged with developing and implementing a BI strategy, checking out Business Intelligence For Dummies is a good business decision. |
business intelligence in decision-making: AI Meets BI Lakshman Bulusu, Rosendo Abellera, 2020-11-03 With the emergence of Artificial Intelligence (AI) in the business world, a new era of Business Intelligence (BI) has been ushered in to create real-world business solutions using analytics. BI developers and practitioners now have tools and technologies to create systems and solutions to guide effective decision making. Decisions can be made on the basis of more reliable and accurate information and intelligence, which can lead to valuable, actionable insights for business. Previously, BI professionals were stymied by bad or incomplete data, poorly architected solutions, or even just outright incapable systems or resources. With the advent of AI, BI has new possibilities for effectiveness. This is a long-awaited phase for practitioners and developers and, moreover, for executives and leaders relying on knowledgeable and intelligent decision making for their organizations. Beginning with an outline of the traditional methods for implementing BI in the enterprise and how BI has evolved into using self-service analytics, data discovery, and most recently AI, AI Meets BI first lays out the three typical architectures of the first, second, and third generations of BI. It then takes an in-depth look at various types of analytics and highlights how each of these can be implemented using AI-enabled algorithms and deep learning models. The crux of the book is four industry use cases. They describe how an enterprise can access, assess, and perform analytics on data by way of discovering data, defining key metrics that enable the same, defining governance rules, and activating metadata for AI/ML recommendations. Explaining the implementation specifics of each of these four use cases by way of using various AI-enabled machine learning and deep learning algorithms, this book provides complete code for each of the implementations, along with the output of the code, supplemented by visuals that aid in BI-enabled decision making. Concluding with a brief discussion of the cognitive computing aspects of AI, the book looks at future trends, including augmented analytics, automated and autonomous BI, and security and governance of AI-powered BI. |
business intelligence in decision-making: Intelligent Decision Making: An AI-Based Approach Gloria Phillips-Wren, Nikhil Ichalkaranje, 2008-03-04 Intelligent Decision Support Systems have the potential to transform human decision making by combining research in artificial intelligence, information technology, and systems engineering. The field of intelligent decision making is expanding rapidly due, in part, to advances in artificial intelligence and network-centric environments that can deliver the technology. Communication and coordination between dispersed systems can deliver just-in-time information, real-time processing, collaborative environments, and globally up-to-date information to a human decision maker. At the same time, artificial intelligence techniques have demonstrated that they have matured sufficiently to provide computational assistance to humans in practical applications. This book includes contributions from leading researchers in the field beginning with the foundations of human decision making and the complexity of the human cognitive system. Researchers contrast human and artificial intelligence, survey computational intelligence, present pragmatic systems, and discuss future trends. This book will be an invaluable resource to anyone interested in the current state of knowledge and key research gaps in the rapidly developing field of intelligent decision support. |
business intelligence in decision-making: Management Decision-Making, Big Data and Analytics Simone Gressel, David J. Pauleen, Nazim Taskin, 2020-10-12 Accessible and concise, this exciting new textbook examines data analytics from a managerial and organizational perspective and looks at how they can help managers become more effective decision-makers. The book successfully combines theory with practical application, featuring case studies, examples and a ‘critical incidents’ feature that make these topics engaging and relevant for students of business and management. The book features chapters on cutting-edge topics, including: • Big data • Analytics • Managing emerging technologies and decision-making • Managing the ethics, security, privacy and legal aspects of data-driven decision-making The book is accompanied by an Instructor’s Manual, PowerPoint slides and access to journal articles. Suitable for management students studying business analytics and decision-making at undergraduate, postgraduate and MBA levels. |
business intelligence in decision-making: Business Intelligence and Performance Management Peter Rausch, Alaa F. Sheta, Aladdin Ayesh, 2013-02-15 During the 21st century business environments have become more complex and dynamic than ever before. Companies operate in a world of change influenced by globalisation, volatile markets, legal changes and technical progress. As a result, they have to handle growing volumes of data and therefore require fast storage, reliable data access, intelligent retrieval of information and automated decision-making mechanisms, all provided at the highest level of service quality. Successful enterprises are aware of these challenges and efficiently respond to the dynamic environment in which their business operates. Business Intelligence (BI) and Performance Management (PM) offer solutions to these challenges and provide techniques to enable effective business change. The important aspects of both topics are discussed within this state-of-the-art volume. It covers the strategic support, business applications, methodologies and technologies from the field, and explores the benefits, issues and challenges of each. Issues are analysed from many different perspectives, ranging from strategic management to data technologies, and the different subjects are complimented and illustrated by numerous examples of industrial applications. Contributions are authored by leading academics and practitioners representing various universities, research centres and companies worldwide. Their experience covers multiple disciplines and industries, including finance, construction, logistics, and public services, amongst others. Business Intelligence and Performance Management is a valuable source of reference for graduates approaching MSc or PhD programs and for professionals in industry researching in the fields of BI and PM for industrial application. |
business intelligence in decision-making: Aircraft Maintenance Programs David Lapesa Barrera, 2022-02-16 This book provides the first comprehensive comparison of the Aircraft Maintenance Program (AMP) requirements of the two most widely known aviation regulators: the European Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA). It offers an in-depth examination of the elements of an AMP, explaining the aircraft accident investigations and events that have originated and modelled the current rules. By introducing the Triangle of Airworthiness model (Reliability, Quality and Safety), the book enables easier understanding of the processes by which an aircraft and its components are deemed to be in a safe condition for operation from a cost-effective and optimization perspective. The book compares the best practices used by top airlines and compiles a series of tools and techniques to improve the standards of the AMP. Aircraft maintenance engineers, students in the field of aerospace engineering, and airlines staff, as well as researchers more widely interested in safety, quality, and reliability will benefit from reading this book |
business intelligence in decision-making: Real-time Strategy and Business Intelligence Marko Kohtamäki, 2017-07-05 This book discusses and conceptualizes practices on real-time strategy, focusing on the interplay between strategy and business intelligence. Combining strategic practices and business intelligence systems, the authors demonstrate how managerial practices can be developed in the age of digitization. Also developing the concept of strategic agility, the book provides perspectives from a range of disciplines including strategic practices and decision making, customer relationship management, human resource management, competitive intelligence, supplier network management and business intelligence systems. Presenting managerial frameworks and guidelines, Real-time Strategy and Business Intelligence explores how to improve utilization of business intelligence systems in real-time decision making. Providing practical and future-oriented insights backed by examples and best practices, the authors present a clearly conceptualized theoretical framework. |
business intelligence in decision-making: Decision Support and Business Intelligence Systems Efraim Turban, 2011 |
business intelligence in decision-making: Information and Communication Technologies in Tourism 2022 Jason L. Stienmetz, Berta Ferrer-Rosell, David Massimo, 2022 This open access book presents the proceedings of the International Federation for IT and Travel & Tourism (IFITT)’s 29th Annual International eTourism Conference, which assembles the latest research presented at the ENTER2022 conference, which will be held on January 11–14, 2022. The book provides an extensive overview of how information and communication technologies can be used to develop tourism and hospitality. It covers the latest research on various topics within the field, including augmented and virtual reality, website development, social media use, e-learning, big data, analytics, and recommendation systems. The readers will gain insights and ideas on how information and communication technologies can be used in tourism and hospitality. Academics working in the eTourism field, as well as students and practitioners, will find up-to-date information on the status of research. |
business intelligence in decision-making: Decision Intelligence Analytics and the Implementation of Strategic Business Management P. Mary Jeyanthi, Tanupriya Choudhury, Dieu Hack-Polay, T P Singh, Sheikh Abujar, 2022-01-01 This book presents a framework for developing an analytics strategy that includes a range of activities, from problem definition and data collection to data warehousing, analysis, and decision making. The authors examine best practices in team analytics strategies such as player evaluation, game strategy, and training and performance. They also explore the way in which organizations can use analytics to drive additional revenue and operate more efficiently. The authors provide keys to building and organizing a decision intelligence analytics that delivers insights into all parts of an organization. The book examines the criteria and tools for evaluating and selecting decision intelligence analytics technologies and the applicability of strategies for fostering a culture that prioritizes data-driven decision making. Each chapter is carefully segmented to enable the reader to gain knowledge in business intelligence, decision making and artificial intelligence in a strategic management context. |
business intelligence in decision-making: Real-world Data Mining Dursun Delen, 2015 As business becomes increasingly complex and global, decision-makers must act more rapidly and accurately, based on the best available evidence. Modern data mining and analytics is indispensable for doing this. Real-World Data Mining demystifies current best practices, showing how to use data mining and analytics to uncover hidden patterns and correlations, and leverage these to improve all business decision-making. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, Delen provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: data mining processes, methods, and techniques; the role and management of data; tools and metrics; text and web mining; sentiment analysis; and integration with cutting-edge Big Data approaches. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials. |
business intelligence in decision-making: Business Intelligence Rimvydas Skyrius, 2022-03-09 This book examines the managerial dimensions of business intelligence (BI) systems. It develops a set of guidelines for value creation by implementing business intelligence systems and technologies. In particular the book looks at BI as a process – driven by a mix of human and technological capabilities – to serve complex information needs in building insights and providing aid in decision making. After an introduction to the key concepts of BI and neighboring areas of information processing, the book looks at the complexity and multidimensionality of BI. It tackles both data integration and information integration issues. Bodies of knowledge and other widely accepted collections of experience are presented and turned into lessons learned. Following a straightforward introduction to the processes and technologies of BI the book embarks on BI maturity and agility, the components, drivers and inhibitors of BI culture and soft BI factors like attention, sense and trust. Eventually the book attempts to provide a holistic view on business intelligence, possible structures and tradeoffs and embarks to provide an outlook on possible developments in BI and analytics. |
business intelligence in decision-making: Adaptive Business Intelligence Zbigniew Michalewicz, Martin Schmidt, Matthew Michalewicz, Constantin Chiriac, 2006-12-02 Adaptive business intelligence systems combine prediction and optimization techniques to assist decision makers in complex, rapidly changing environments. These systems address fundamental questions: What is likely to happen in the future? What is the best course of action? Adaptive Business Intelligence explores elements of data mining, predictive modeling, forecasting, optimization, and adaptability. The book explains the application of numerous prediction and optimization techniques, and shows how these concepts can be used to develop adaptive systems. Coverage includes linear regression, time-series forecasting, decision trees and tables, artificial neural networks, genetic programming, fuzzy systems, genetic algorithms, simulated annealing, tabu search, ant systems, and agent-based modeling. |
business intelligence in decision-making: Business Analytics, Volume I Amar Sahay, 2018-08-23 Business Analytics: A Data-Driven Decision Making Approach for Business-Part I,/i> provides an overview of business analytics (BA), business intelligence (BI), and the role and importance of these in the modern business decision-making. The book discusses all these areas along with three main analytics categories: (1) descriptive, (2) predictive, and (3) prescriptive analytics with their tools and applications in business. This volume focuses on descriptive analytics that involves the use of descriptive and visual or graphical methods, numerical methods, as well as data analysis tools, big data applications, and the use of data dashboards to understand business performance. The highlights of this volume are: Business analytics at a glance; Business intelligence (BI), data analytics; Data, data types, descriptive analytics; Data visualization tools; Data visualization with big data; Descriptive analytics-numerical methods; Case analysis with computer applications. |
business intelligence in decision-making: Business Intelligence in the Digital Economy: Opportunities, Limitations and Risks Raisinghani, Mahesh S., 2003-07-01 Business Intelligence in the Digital Economy: Opportunities, Limitations and Risks describes business intelligence (BI), how it is being conducted and managed and its major opportunities, limitations, issues and risks. This book takes an in-depth look at the scope of global technological change and BI. During this transition to BI, information does not merely add efficiency to the transaction; it adds value. This book brings together high quality expository discussions from experts in this field to identify, define, and explore BI methodologies, systems, and approaches in order to understand the opportunities, limitations and risks. |
business intelligence in decision-making: Analytics at Work Thomas H. Davenport, Jeanne G. Harris, Robert Morison, 2010 As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical. |
business intelligence in decision-making: A Practitioner's Guide to Business Analytics (PB) Randy Bartlett, 2013-01-25 Gain the competitive edge with the smart use of business analytics In today’s volatile business environment, the strategic use of business analytics is more important than ever. A Practitioners Guide to Business Analytics helps you get the organizational commitment you need to get business analytics up and running in your company. It provides solutions for meeting the strategic challenges of applying analytics, such as: Integrating analytics into decision making, corporate culture, and business strategy Leading and organizing analytics within the corporation Applying statistical qualifications, statistical diagnostics, and statistical review Providing effective building blocks to support analytics—statistical software, data collection, and data management Randy Bartlett, Ph.D., is Chief Statistical Officer of the consulting company Blue Sigma Analytics. He currently works with Infosys, where he has helped build their new Business Analytics practice. |
business intelligence in decision-making: Handbook of Research on Applied AI for International Business and Marketing Applications Christiansen, Bryan, Škrinjari?, Tihana, 2020-09-25 Artificial intelligence (AI) describes machines/computers that mimic cognitive functions that humans associate with other human minds, such as learning and problem solving. As businesses have evolved to include more automation of processes, it has become more vital to understand AI and its various applications. Additionally, it is important for workers in the marketing industry to understand how to coincide with and utilize these techniques to enhance and make their work more efficient. The Handbook of Research on Applied AI for International Business and Marketing Applications is a critical scholarly publication that provides comprehensive research on artificial intelligence applications within the context of international business. Highlighting a wide range of topics such as diversification, risk management, and artificial intelligence, this book is ideal for marketers, business professionals, academicians, practitioners, researchers, and students. |
business intelligence in decision-making: Decision Intelligence For Dummies Pamela Baker, 2022-02-08 Learn to use, and not be used by, data to make more insightful decisions The availability of data and various forms of AI unlock countless possibilities for business decision makers. But what do you do when you feel pressured to cede your position in the decision-making process altogether? Decision Intelligence For Dummies pumps the brakes on the growing trend to take human beings out of the decision loop and walks you through the best way to make data-informed but human-driven decisions. The book shows you how to achieve maximum flexibility by using every available resource, and not just raw data, to make the most insightful decisions possible. In this timely book, you’ll learn to: Make data a means to an end, rather than an end in itself, by expanding your decision-making inquiries Find a new path to solid decisions that includes, but isn’t dominated, by quantitative data Measure the results of your new framework to prove its effectiveness and efficiency and expand it to a whole team or company Perfect for business leaders in technology and finance, Decision Intelligence For Dummies is ideal for anyone who recognizes that data is not the only powerful tool in your decision-making toolbox. This book shows you how to be guided, and not ruled, by the data. |
business intelligence in decision-making: Business Intelligence: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2015-12-29 Data analysis is an important part of modern business administration, as efficient compilation of information allows managers and business leaders to make the best decisions for the financial solvency of their organizations. Understanding the use of analytics, reporting, and data mining in everyday business environments is imperative to the success of modern businesses. Business Intelligence: Concepts, Methodologies, Tools, and Applications presents a comprehensive examination of business data analytics along with case studies and practical applications for businesses in a variety of fields and corporate arenas. Focusing on topics and issues such as critical success factors, technology adaptation, agile development approaches, fuzzy logic tools, and best practices in business process management, this multivolume reference is of particular use to business analysts, investors, corporate managers, and entrepreneurs in a variety of prominent industries. |
business intelligence in decision-making: The Profit Impact of Business Intelligence Steve Williams, Nancy Williams, 2010-07-27 The Profit Impact of Business Intelligence presents an A-to-Z approach for getting the most business intelligence (BI) from a company's data assets or data warehouse. BI is not just a technology or methodology, it is a powerful new management approach that – when done right – can deliver knowledge, efficiency, better decisions, and profit to almost any organization that uses it. When BI first came on the scene, it promised a lot but often failed to deliver. The missing element was the business-centric focus explained in this book. It shows how you can achieve the promise of BI by connecting it to your organization's strategic goals, culture, and strengths while correcting your BI weaknesses. It provides a practical, process-oriented guide to achieve the full promise of BI; shows how world-class companies used BI to become leaders in their industries; helps senior business and IT executives understand the strategic impact of BI and how they can ensure a strong payoff from their BI investments; and identifies the most common mistakes organizations make in implementing BI. The book also includes a helpful glossary of BI terms; a BI readiness assessment for your organization; and Web links and extensive references for more information. - A practical, process-oriented book that will help organizations realize the promise of BI - Written by Nancy and Steve Williams, veteran consultants and instructors with hands-on, in the trenches experience in government and corporate business intelligence applications - Will help senior business and IT executives understand the strategic impact of BI and how they can help ensure a strong payoff on BI investments |
business intelligence in decision-making: Business Intelligence Techniques Murugan Anandarajan, Asokan Anandarajan, Cadambi A. Srinivasan, 2012-11-02 Modern businesses generate huge volumes of accounting data on a daily basis. The recent advancements in information technology have given organizations the ability to capture and store data in an efficient and effective manner. However, there is a widening gap between this data storage and usage of the data. Business intelligence techniques can help an organization obtain and process relevant accounting data quickly and cost efficiently. Such techniques include: query and reporting tools, online analytical processing (OLAP), statistical analysis, text mining, data mining, and visualization. Business Intelligence Techniques is a compilation of chapters written by experts in the various areas. While these chapters stand on their own, taken together they provide a comprehensive overview of how to exploit accounting data in the business environment. |
business intelligence in decision-making: Big Data, Mining, and Analytics Stephan Kudyba, 2014-03-12 This book ties together big data, data mining, and analytics to explain how readers can leverage them to transform their business strategy. Illustrating basic approaches of business intelligence to data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and Internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining. |
BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys and….
VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….
ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, especially one that….
INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the person who has or….
AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned before it happens: 2. made….
LEVERAGE | English meaning - Cambridge Dictionary
LEVERAGE definition: 1. the action or advantage of using a lever: 2. power to influence people and get the results you….
ENTREPRENEUR | English meaning - Cambridge Dictionary
ENTREPRENEUR definition: 1. someone who starts their own business, especially when this involves seeing a new opportunity….
CULTIVATE | English meaning - Cambridge Dictionary
CULTIVATE definition: 1. to prepare land and grow crops on it, or to grow a particular crop: 2. to try to develop and….
EQUITY | English meaning - Cambridge Dictionary
EQUITY definition: 1. the value of a company, divided into many equal parts owned by the shareholders, or one of the….
LIAISE | English meaning - Cambridge Dictionary
LIAISE definition: 1. to speak to people in other organizations, etc. in order to work with them or exchange….
Role of Emerging Technologies in Accounting Information …
ment (IS-SEM) practices can leverage decision-making performance (DMP) and impact on strategic flexibility and innovation. Keywords Accounting information systems Business analytics Business …
Business Intelligence - Internet Archive
Business Intelligence: Data Mining and Optimization for Decision Making Carlo Vercellis Politecnico di Milano, Italy. A John Wiley and Sons, Ltd., Publication
Business Intelligence: Data Mining and Optimization for …
I Components of the decision-making process 1 1 Business intelligence 3 1.1 Effective and timely decisions 3 1.2 Data, information and knowledge 6 ... 2.2.4 Approaches to the decision-making …
Insights about Business Intelligence and Decision-Making
Business Intelligence in relation to decision-making is problematized and the research questions are thereafter presented. Followed by a brief presentation of the methodology and the main findings …
Impact of Artificial Intelligence on Decision- Making in
Impact of Artificial Intelligence on Decision-Making in Organisations: P. Chandana Charitha1, B. Hemaraju2 1,2Student, Computer Science Department, ... business world of today.Making better …
Business Intelligence & Decision Making UNIT 5 …
Business Intelligence & Decision Making Step 1: Defining the problem or opportunity: The first step in the decision-making process is to define the problem or opportunity, which involves …
Scholars Journal of Economics, Business and Management
the effect of Business Intelligence on the decision-making of micro small and medium enterprises in Anambra state Nigeria. Specifically, the study will examine: 1. The effect of data sourcing on …
Enhancing Data Storytelling: A Conceptual Framework
big data, analytics, business intelligence, decision-making, decision-making quality, data-driven decision, data analytics performance Inclusion Criteria (1) Subject must be about data storytelling …
Business intelligence - Wiley
Figure 1.1 Benefits of a business intelligence system actions, achieve more accurate conclusions and reach effective and timely deci-sions. We may therefore conclude that the major advantage …
Business Intelligence Success: An Empirical Evaluation of …
Since the concept of business intelligence (BI) was introduced in the late 1980s by Howard Dresner, a Gartner Research Group analyst (Power, 2003; Buchanan and O’Connell, 2006), the nformation …
Big Data Analytics: Transforming Business Intelligence and …
1.3.2.Business Intelligence (BI) Business Intelligence (BI) is a concept that refers to technologies, applications, and practices for collecting, integrating, analyzing, and presenting business …
A Framework of Business Intelligence System for Decision …
Framework of business intelligence system for decision making 114 D. Borissova et al. database is intended for single and multi-objective models as shown because the
Scholars Journal of Economics, Business and Management
Business Intelligence and Decision-Making in Micro Small and Medium Enterprises in Africa. Sch J Econ Bus Manag, 2024 Apr 11(4): 124-133. 124 Scholars Journal of Economics, Business and …
The Effects of Using Business Intelligence Systems on an …
The Effects of Using Business Intelligence Systems on an Excellence Management and Decision-Making Process by Start-Up Companies: A Case Study 32 Figure 1: Business Intelligence Process …
Decision Support Systems for Business Intelligence
Description: This is a basic course in Decision Support Systems for Business Intelligence. Prerequisite (SCMA 5300, or permission of instructor) Description: This class examines the …
The Intersection of Data Science, Technology, and Business …
support decision-making processes and drive business growth. This article aims to explore how these three domains—Data Science, Technology, and Business Intelligence—intersect to create …
Advanced data analytics and business intelligence: Building …
Business Intelligence for Decision-Making Under Uncertainty . 3.1. Business Intelligence Supports Strategic Decision-Making in Volatile Environments .
Brochure AI-Powered Business Intelligence for Smarter …
Business Intelligence for Smarter Decision-Making and Growth. Artificial Intelligence (AI) adalah teknologi yang memungkinkan mesin untuk meniru kecer - ... AI-Powered Business Intelligence …
B.N.N College,Bhiwandi Department Of Information …
7. Which phases is used for planning of Development of a business intelligence system. A. Analysis and Design B. Planning C. Implementation and Control D. Maintenance Answer: B 8. Decision …
The main purpose of business intelligence systems is to …
UNIT-I Business intelligence: Effective and timely decisions, Data, information and knowledge, the role of mathematical models, Business intelligence architectures, Ethics and business intelligence …
Chapter 2: Decision Support System - NKT Degree College
(Reference: Business Intelligence: Data Mining and Optimization for Decision Making by Carlo Vercellis ISBN: 978-0-470-51138-1) ... A structured decision is one in which the phases of the …
Decision Support System for the Industry 4.0 Environment: …
allows improving the management and transmission of information and, consequently, improving the decision -making process. For this purpose, a Business Intelligence platform was created using …
Redalyc.Business Intelligence in the Process of Decision …
Key words: business intelligence, decision making, human-centred approach Introduction Since its first mentioning in 1958 by the pioneer of information science H. P. Luhn (Luhn, 1958), business …
BUSINESS INTELLIGENCE - Xavier University
Sometimes business intelligence refers to on-line decision making, that is, instant response. Most of the time, it refers to shrinking the time frame so that the intelligence is still useful to the decision …
ISSN: 2643-9123 The Role of AI in Enhancing Business …
Keywords: Artificial Intelligence, Decision making, Opportunities, Challenges I. Introduction ... This paper explores the application of AI in business decision-making, focusing on its potential to …
Impact of Data Warehousing on Business Intelligence and …
Figure 1: The Role of Business Intelligence and Analytics b) Enhancing Decision-Making Capabilities: It is crucial to embrace BI and analytics in a company to improve decision-making throughout the …
Insights about Business Intelligence and Decision-Making
Business Intelligence in relation to decision-making is problematized and the research questions are thereafter presented. Followed by a brief presentation of the methodology and the main findings …
CASE STUDY ELECTRICITY COMPANY OF GHANA (E.C.G)
Business Intelligence (BI) possesses the capabilities that support superior business decision-making through past, present and predictive composition/trends of organisations’ operations. Business …
Decision Support and Business Intelligence Systems
Managerial Decision Making Management is a process by which organizational goals are achieved by using resources Inputs: resources Output: attainment of goals Measure of success: outputs / …
The Role of Artificial Intelligence in Strategic Decision …
As AI continues to transform the business landscape, opportunities arise for enhanced data-driven decision-making, innovation, and organizational agility. However, challenges related to ethical ...
A Comparative Study of Business Intelligence and Artificial ...
A Comparative Study of Business Intelligence and Artificial Intelligence with Big Data Analytics ... decision-making models from raw data. Decision trees, regression, artificial neural networks ...
Identifying Key Components of Business Intelligence …
KEY COMPONENTS OF BUSINESS INTELLIGENCE SYSTEMS 16 decision making process" (Cella, Golfarelli, & Rizzi, 2004, p. 1). According to Watson and Wixom (2007) "business intelligence is …
Strategic Impact of Business Intelligence : A Review of …
Business intelligence (BI) is an eco-system comprising of databases, architecture, business applications, and methodologies facilitating timely decision making for managers through …
Impact of Data Visualization on Management Decisions
Impact of Data Visualization on Management Decisions Aru n Kh at ri α & Naku l Gu pt a σ ABST RACT Da ta vi sua li z a ti on i s th e g r a ph i c a l di spla y of th e
Business Intelligence to Optimize Decision-Making in a ...
the implementation of a business intelligence solution applied to the telecommunications sector. Keywords - Business intelligence, Decision making, Telecommunications, Ralph Kimball, ISO/IEC …
FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES …
Chapter 6: Foundations of Business Intelligence •Business intelligence infrastructure –Today includes an array of tools for separate systems, and big data •Contemporary tools: –Data …
Chapter 1
An Overview of Business Intelligence, Analytics, and Decision Support ... Managerial Decision Making Management is a process by which organizational goals are achieved by using resources. …
The Impact of Interactive Data Visualization on Decision …
Keywords: Data visualization, interactive visualization, business intelligence, decision-making, visual analytics 1. Introduction In the era of big data, firms must effectively analyze complex data sets …
AI A TOOL REVOLUTIONIZING DECISION MAKING
Keywords: Business Intelligence, Decision Making, AI, Artificial Intelligence. INTRODUCTION: It is now evident that throughout the COVID-19 pandemic, socioeconomic, political, and socio-technical
Big Data Analytics, Artificial Intelligence, Machine Learning, …
The business intelligence (BI) landscape has been profoundly changed by the fast development of digital technologies, creating excellent chances for data-driven decision-making and gaining …
Business Intelligence - Wiley India
Business intelligence : data mining and optimization for decision making / Carlo Vercellis. p. cm. Includes bibliographical references and index. ISBN 978-0-470-51138-1 (cloth) – ISBN 978-0 …
THE IMPACT OF ARTIFICIAL INTELLIGENCE IN DECISION …
2.2 Types of AI in Decision Making AI techniques employed in decision making can be categorized into different types. Rule-based systems utilize predefined rules to make decisions based on …
mba especializado businesss intelligence decision making …
INTRODUCCIÓN AL BUSINESS INTELLIGENCE · Origen, historia y componentes del Business Intelligence. · Dato, información y conocimiento. · Origen, historia y evolución del Big Data. · La …
Business Intelligence: Optimization techniques for Decision …
Business Intelligence: Optimization techniques for Decision Making Mary Jeyanthi Prem *# and M.Karnan # VELS University, Pallavaram, Chennai, Tamilnadu, India. * Tamil Nadu College of …
How Does AI Improve Human Decision-making? - MIT …
Artificial Intelligence (AI) is the newest general-purpose technology (GPT) in the foreseeable future (Goldfarb et al. 2020, Trajtenberg 2018) . It has the potential to affect all aspects of the economy …
Big Data and Business Intelligence: a data-driven strategy for …
An organization could start with Big Data, Business Intelligence, and Decision Making by: (i) selecting a test department with an open-minded and data friendly manager (ii) identifying and …
Business Intelligence Implementation and its Impact on …
Keywords – Business Intelligence, Decision Making, Big Data, Data Analytics, Performance, Operational Efficiency, Data Quality ... The impact of Business Intelligence (BI) and Decision …
Business Intelligence: As a Strategic Tool for ... - ResearchGate
Business intelligence makes better decision making effective utilization of resources, ... to make a better decision. Business intelligence supports the activities: decision support system (DSS ...
The Impact of Adopting “Business Intelligence (BI)” in - DiVA
The use of Business Intelligence refers to certain skills, technologies, practices, and processes that are employed as part of supporting decision making in an organization. The applications of …
Intention to use business intelligence tools in decision …
tools in business processes, especially decision-making, and their subsequent opti-mal use in business practice. The researched scheme was modified according to the specifics of business …