Business Intelligence Data Management



  business intelligence data management: Business Intelligence Strategy and Big Data Analytics Steve Williams, 2016-04-08 Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like big data and big data analytics have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. - Provides ideas for improving the business performance of one's company or business functions - Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies - Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans
  business intelligence data management: Business Intelligence David Loshin, 2012-11-27 Business Intelligence: The Savvy Managers Guide, Second Edition, discusses the objectives and practices for designing and deploying a business intelligence (BI) program. It looks at the basics of a BI program, from the value of information and the mechanics of planning for success to data model infrastructure, data preparation, data analysis, integration, knowledge discovery, and the actual use of discovered knowledge. Organized into 21 chapters, this book begins with an overview of the kind of knowledge that can be exposed and exploited through the use of BI. It then proceeds with a discussion of information use in the context of how value is created within an organization, how BI can improve the ways of doing business, and organizational preparedness for exploiting the results of a BI program. It also looks at some of the critical factors to be taken into account in the planning and execution of a successful BI program. In addition, the reader is introduced to considerations for developing the BI roadmap, the platforms for analysis such as data warehouses, and the concepts of business metadata. Other chapters focus on data preparation and data discovery, the business rules approach, and data mining techniques and predictive analytics. Finally, emerging technologies such as text analytics and sentiment analysis are considered. This book will be valuable to data management and BI professionals, including senior and middle-level managers, Chief Information Officers and Chief Data Officers, senior business executives and business staff members, database or software engineers, and business analysts. - Guides managers through developing, administering, or simply understanding business intelligence technology - Keeps pace with the changes in best practices, tools, methods and processes used to transform an organization's data into actionable knowledge - Contains a handy, quick-reference to technologies and terminology
  business intelligence data management: Business Intelligence Carlo Vercellis, 2011-08-10 Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
  business intelligence data management: Business Intelligence and Big Data Celina M. Olszak, 2020-11-17 The twenty-first century is a time of intensifying competition and progressive digitization. Individual employees, managers, and entire organizations are under increasing pressure to succeed. The questions facing us today are: What does success mean? Is success a matter of chance and luck or perhaps is success a category that can be planned and properly supported? Business Intelligence and Big Data: Drivers of Organizational Success examines how the success of an organization largely depends on the ability to anticipate and quickly respond to challenges from the market, customers, and other stakeholders. Success is also associated with the potential to process and analyze a variety of information and the means to use modern information and communication technologies (ICTs). Success also requires creative behaviors and organizational cleverness from an organization. The book discusses business intelligence (BI) and Big Data (BD) issues in the context of modern management paradigms and organizational success. It presents a theoretically and empirically grounded investigation into BI and BD application in organizations and examines such issues as: Analysis and interpretation of the essence of BI and BD Decision support Potential areas of BI and BD utilization in organizations Factors determining success with using BI and BD The role of BI and BD in value creation for organizations Identifying barriers and constraints related to BI and BD design and implementation The book presents arguments and evidence confirming that BI and BD may be a trigger for making more effective decisions, improving business processes and business performance, and creating new business. The book proposes a comprehensive framework on how to design and use BI and BD to provide organizational success.
  business intelligence data management: Business Intelligence For Dummies Swain Scheps, 2011-02-04 You're intelligent, right? So you've already figured out that Business Intelligence can be pretty valuable in making the right decisions about your business. But you’ve heard at least a dozen definitions of what it is, and heard of at least that many BI tools. Where do you start? Business Intelligence For Dummies makes BI understandable! It takes you step by step through the technologies and the alphabet soup, so you can choose the right technology and implement a successful BI environment. You'll see how the applications and technologies work together to access, analyze, and present data that you can use to make better decisions about your products, customers, competitors, and more. You’ll find out how to: Understand the principles and practical elements of BI Determine what your business needs Compare different approaches to BI Build a solid BI architecture and roadmap Design, develop, and deploy your BI plan Relate BI to data warehousing, ERP, CRM, and e-commerce Analyze emerging trends and developing BI tools to see what else may be useful Whether you’re the business owner or the person charged with developing and implementing a BI strategy, checking out Business Intelligence For Dummies is a good business decision.
  business intelligence data management: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration.
  business intelligence data management: Encyclopedia of Organizational Knowledge, Administration, and Technology Khosrow-Pour D.B.A., Mehdi, 2020-09-29 For any organization to be successful, it must operate in such a manner that knowledge and information, human resources, and technology are continually taken into consideration and managed effectively. Business concepts are always present regardless of the field or industry – in education, government, healthcare, not-for-profit, engineering, hospitality/tourism, among others. Maintaining organizational awareness and a strategic frame of mind is critical to meeting goals, gaining competitive advantage, and ultimately ensuring sustainability. The Encyclopedia of Organizational Knowledge, Administration, and Technology is an inaugural five-volume publication that offers 193 completely new and previously unpublished articles authored by leading experts on the latest concepts, issues, challenges, innovations, and opportunities covering all aspects of modern organizations. Moreover, it is comprised of content that highlights major breakthroughs, discoveries, and authoritative research results as they pertain to all aspects of organizational growth and development including methodologies that can help companies thrive and analytical tools that assess an organization’s internal health and performance. Insights are offered in key topics such as organizational structure, strategic leadership, information technology management, and business analytics, among others. The knowledge compiled in this publication is designed for entrepreneurs, managers, executives, investors, economic analysts, computer engineers, software programmers, human resource departments, and other industry professionals seeking to understand the latest tools to emerge from this field and who are looking to incorporate them in their practice. Additionally, academicians, researchers, and students in fields that include but are not limited to business, management science, organizational development, entrepreneurship, sociology, corporate psychology, computer science, and information technology will benefit from the research compiled within this publication.
  business intelligence data management: Business Intelligence Guidebook Rick Sherman, 2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.
  business intelligence data management: Business Intelligence Tools for Small Companies Albert Nogués, Juan Valladares, 2017-05-25 Learn how to transition from Excel-based business intelligence (BI) analysis to enterprise stacks of open-source BI tools. Select and implement the best free and freemium open-source BI tools for your company’s needs and design, implement, and integrate BI automation across the full stack using agile methodologies. Business Intelligence Tools for Small Companies provides hands-on demonstrations of open-source tools suitable for the BI requirements of small businesses. The authors draw on their deep experience as BI consultants, developers, and administrators to guide you through the extract-transform-load/data warehousing (ETL/DWH) sequence of extracting data from an enterprise resource planning (ERP) database freely available on the Internet, transforming the data, manipulating them, and loading them into a relational database. The authors demonstrate how to extract, report, and dashboard key performance indicators (KPIs) in a visually appealing format from the relational database management system (RDBMS). They model the selection and implementation of free and freemium tools such as Pentaho Data Integrator and Talend for ELT, Oracle XE and MySQL/MariaDB for RDBMS, and Qliksense, Power BI, and MicroStrategy Desktop for reporting. This richly illustrated guide models the deployment of a small company BI stack on an inexpensive cloud platform such as AWS. What You'll Learn You will learn how to manage, integrate, and automate the processes of BI by selecting and implementing tools to: Implement and manage the business intelligence/data warehousing (BI/DWH) infrastructure Extract data from any enterprise resource planning (ERP) tool Process and integrate BI data using open-source extract-transform-load (ETL) tools Query, report, and analyze BI data using open-source visualization and dashboard tools Use a MOLAP tool to define next year's budget, integrating real data with target scenarios Deploy BI solutions and big data experiments inexpensively on cloud platforms Who This Book Is For Engineers, DBAs, analysts, consultants, and managers at small companies with limited resources but whose BI requirements have outgrown the limitations of Excel spreadsheets; personnel in mid-sized companies with established BI systems who are exploring technological updates and more cost-efficient solutions
  business intelligence data management: Data Governance John Ladley, 2019-11-08 Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition
  business intelligence data management: Business Intelligence and Performance Management Peter Rausch, Alaa F. Sheta, Aladdin Ayesh, 2013-02-15 During the 21st century business environments have become more complex and dynamic than ever before. Companies operate in a world of change influenced by globalisation, volatile markets, legal changes and technical progress. As a result, they have to handle growing volumes of data and therefore require fast storage, reliable data access, intelligent retrieval of information and automated decision-making mechanisms, all provided at the highest level of service quality. Successful enterprises are aware of these challenges and efficiently respond to the dynamic environment in which their business operates. Business Intelligence (BI) and Performance Management (PM) offer solutions to these challenges and provide techniques to enable effective business change. The important aspects of both topics are discussed within this state-of-the-art volume. It covers the strategic support, business applications, methodologies and technologies from the field, and explores the benefits, issues and challenges of each. Issues are analysed from many different perspectives, ranging from strategic management to data technologies, and the different subjects are complimented and illustrated by numerous examples of industrial applications. Contributions are authored by leading academics and practitioners representing various universities, research centres and companies worldwide. Their experience covers multiple disciplines and industries, including finance, construction, logistics, and public services, amongst others. Business Intelligence and Performance Management is a valuable source of reference for graduates approaching MSc or PhD programs and for professionals in industry researching in the fields of BI and PM for industrial application.
  business intelligence data management: Data Virtualization for Business Intelligence Systems Rick van der Lans, 2012-07-25 Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
  business intelligence data management: Integration Challenges for Analytics, Business Intelligence, and Data Mining Azevedo, Ana, Santos, Manuel Filipe, 2020-12-11 As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.
  business intelligence data management: Business Analytics for Managers Gert Laursen, Jesper Thorlund, 2010-07-13 While business analytics sounds like a complex subject, this book provides a clear and non-intimidating overview of the topic. Following its advice will ensure that your organization knows the analytics it needs to succeed, and uses them in the service of key strategies and business processes. You too can go beyond reporting!—Thomas H. Davenport, President's Distinguished Professor of IT and Management, Babson College; coauthor, Analytics at Work: Smarter Decisions, Better Results Deliver the right decision support to the right people at the right time Filled with examples and forward-thinking guidance from renowned BA leaders Gert Laursen and Jesper Thorlund, Business Analytics for Managers offers powerful techniques for making increasingly advanced use of information in order to survive any market conditions. Take a look inside and find: Proven guidance on developing an information strategy Tips for supporting your company's ability to innovate in the future by using analytics Practical insights for planning and implementing BA How to use information as a strategic asset Why BA is the next stepping-stone for companies in the information age today Discussion on BA's ever-increasing role Improve your business's decision making. Align your business processes with your business's objectives. Drive your company into a prosperous future. Taking BA from buzzword to enormous value-maker, Business Analytics for Managers helps you do it all with workable solutions that will add tremendous value to your business.
  business intelligence data management: Business Intelligence and Data Mining Anil Maheshwari, 2014-12-31 “This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.
  business intelligence data management: Business Intelligence for the Enterprise Mike Biere, 2003 This text aims to help you to maximize the potential of Business Intelligence in your organization. It includes stories of companies that implemented BI - those that have succeeded and those that have failed.
  business intelligence data management: Handbook of Research on Applied AI for International Business and Marketing Applications Christiansen, Bryan, Škrinjari?, Tihana, 2020-09-25 Artificial intelligence (AI) describes machines/computers that mimic cognitive functions that humans associate with other human minds, such as learning and problem solving. As businesses have evolved to include more automation of processes, it has become more vital to understand AI and its various applications. Additionally, it is important for workers in the marketing industry to understand how to coincide with and utilize these techniques to enhance and make their work more efficient. The Handbook of Research on Applied AI for International Business and Marketing Applications is a critical scholarly publication that provides comprehensive research on artificial intelligence applications within the context of international business. Highlighting a wide range of topics such as diversification, risk management, and artificial intelligence, this book is ideal for marketers, business professionals, academicians, practitioners, researchers, and students.
  business intelligence data management: Business Intelligence Roadmap Larissa Terpeluk Moss, S. Atre, 2003 This software will enable the user to learn about business intelligence roadmap.
  business intelligence data management: Successful Business Intelligence: Secrets to Making BI a Killer App Cindi Howson, 2007-12-17 Praise for Successful Business Intelligence If you want to be an analytical competitor, you've got to go well beyond business intelligence technology. Cindi Howson has wrapped up the needed advice on technology, organization, strategy, and even culture in a neat package. It's required reading for quantitatively oriented strategists and the technologists who support them. --Thomas H. Davenport, President's Distinguished Professor, Babson College and co-author, Competing on Analytics When used strategically, business intelligence can help companies transform their organization to be more agile, more competitive, and more profitable. Successful Business Intelligence offers valuable guidance for companies looking to embark upon their first BI project as well as those hoping to maximize their current deployments. --John Schwarz, CEO, Business Objects A thoughtful, clearly written, and carefully researched examination of all facets of business intelligence that your organization needs to know to run its business more intelligently and exploit information to its fullest extent. --Wayne Eckerson, Director, TDWI Research Using real-world examples, Cindi Howson shows you how to use business intelligence to improve the performance, and the quality, of your company. --Bill Baker, Distinguished Engineer & GM, Business Intelligence Applications, Microsoft Corporation This book outlines the key steps to make BI an integral part of your company's culture and demonstrates how your company can use BI as a competitive differentiator. --Robert VanHees, CFO, Corporate Express Given the trend to expand the business analytics user base, organizations are faced with a number of challenges that affect the success rate of these projects. This insightful book provides practical advice on improving that success rate. --Dan Vesset, Vice President, Business Analytics Solution Research, IDC
  business intelligence data management: E-Business Robert M.X. Wu, Marinela Mircea, 2021-05-19 This book provides the latest viewpoints of scientific research in the field of e-business. It is organized into three sections: “Higher Education and Digital Economy Development”, “Artificial Intelligence in E-Business”, and “Business Intelligence Applications”. Chapters focus on China’s higher education in e-commerce, digital economy development, natural language processing applications in business, Information Technology Governance, Risk and Compliance (IT GRC), business intelligence, and more.
  business intelligence data management: Business Intelligence in the Digital Economy: Opportunities, Limitations and Risks Raisinghani, Mahesh S., 2003-07-01 Business Intelligence in the Digital Economy: Opportunities, Limitations and Risks describes business intelligence (BI), how it is being conducted and managed and its major opportunities, limitations, issues and risks. This book takes an in-depth look at the scope of global technological change and BI. During this transition to BI, information does not merely add efficiency to the transaction; it adds value. This book brings together high quality expository discussions from experts in this field to identify, define, and explore BI methodologies, systems, and approaches in order to understand the opportunities, limitations and risks.
  business intelligence data management: Fundamentals of Business Intelligence Wilfried Grossmann, Stefanie Rinderle-Ma, 2015-06-02 This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples.
  business intelligence data management: Integrated Business Information Systems Klaus-Dieter Gronwald, 2017-05-30 Enterprise Resource Planning (ERP), Supply Chain Management (SCM), Customer Relationship Management (CRM), Business Intelligence (BI) and Big Data Analytics (BDA) are business related tasks and processes, which are supported by standardized software solutions. The book explains that this requires business oriented thinking and acting from IT specialists and data scientists. It is a good idea to let students experience this directly from the business perspective, for example as executives of a virtual company. The course simulates the stepwise integration of the linked business process chain ERP-SCM-CRM-BI-Big Data of four competing groups of companies. The course participants become board members with full P&L responsibility for business units of one of four beer brewery groups managing supply chains from production to retailer.
  business intelligence data management: Global Business Intelligence J Mark Munoz, 2017-11-10 Global Business Intelligence refers to an organization’s ability to gather, process and analyze pertinent international information in order to make optimal business decisions in a timely manner. With a challenging economic and geopolitical environment, companies and executives need to be adept at information gathering in order to manage emerging challenges and gain competitive advantages. This book Global Business Intelligence assembles a cast of international experts and thought leaders and explores the implications of business intelligence on contemporary management. Global Business Intelligence will be a key resource for researchers, academics, students and policy makers alike in the fields of International Business & Management, Business Strategy, and Geopolitics as well as related disciplines like Political Science, Economics, and Geography.
  business intelligence data management: Business Intelligence Ramesh Sharda, Dursun Delen, Efraim Turban, 2017-01-13 For courses on Business Intelligence or Decision Support Systems. A managerial approach to understanding business intelligence systems. To help future managers use and understand analytics, Business Intelligence provides students with a solid foundation of BI that is reinforced with hands-on practice.
  business intelligence data management: Information and Communication Technologies in Tourism 2022 Jason L. Stienmetz, Berta Ferrer-Rosell, David Massimo, 2022 This open access book presents the proceedings of the International Federation for IT and Travel & Tourism (IFITT)’s 29th Annual International eTourism Conference, which assembles the latest research presented at the ENTER2022 conference, which will be held on January 11–14, 2022. The book provides an extensive overview of how information and communication technologies can be used to develop tourism and hospitality. It covers the latest research on various topics within the field, including augmented and virtual reality, website development, social media use, e-learning, big data, analytics, and recommendation systems. The readers will gain insights and ideas on how information and communication technologies can be used in tourism and hospitality. Academics working in the eTourism field, as well as students and practitioners, will find up-to-date information on the status of research.
  business intelligence data management: Business Intelligence and Analytics in Small and Medium Enterprises Pedro Novo Melo, Carolina Machado, 2019-11-26 Technological developments in recent years have been tremendous. This evolution is visible in companies through technological equipment, computerized procedures, and management practices associated with technologies. One of the management practices that is visible is related to business intelligence and analytics (BI&A). Concepts such as data warehousing, key performance indicators (KPIs), data mining, and dashboards are changing the business arena. This book aims to promote research related to these new trends that open up a new field of research in the small and medium enterprises (SMEs) area. Features Focuses on the more recent research findings occurring in the fields of BI&A Conveys how companies in the developed world are facing today's technological challenges Shares knowledge and insights on an international scale Provides different options and strategies to manage competitive organizations Addresses several dimensions of BI&A in favor of SMEs
  business intelligence data management: Agile Data Warehousing Project Management Ralph Hughes, 2012-12-28 You have to make sense of enormous amounts of data, and while the notion of agile data warehousing might sound tricky, it can yield as much as a 3-to-1 speed advantage while cutting project costs in half. Bring this highly effective technique to your organization with the wisdom of agile data warehousing expert Ralph Hughes. Agile Data Warehousing Project Management will give you a thorough introduction to the method as you would practice it in the project room to build a serious data mart. Regardless of where you are today, this step-by-step implementation guide will prepare you to join or even lead a team in visualizing, building, and validating a single component to an enterprise data warehouse. - Provides a thorough grounding on the mechanics of Scrum as well as practical advice on keeping your team on track - Includes strategies for getting accurate and actionable requirements from a team's business partner - Revolutionary estimating techniques that make forecasting labor far more understandable and accurate - Demonstrates a blends of Agile methods to simplify team management and synchronize inputs across IT specialties - Enables you and your teams to start simple and progress steadily to world-class performance levels
  business intelligence data management: Oracle Data Warehousing and Business Intelligence Solutions Robert Stackowiak, Joseph Rayman, Rick Greenwald, 2007-01-06 Up-to-date, comprehensive coverage of the Oracle database and business intelligence tools Written by a team of Oracle insiders, this authoritative book provides you with the most current coverage of the Oracle data warehousing platform as well as the full suite of business intelligence tools. You'll learn how to leverage Oracle features and how those features can be used to provide solutions to a variety of needs and demands. Plus, you'll get valuable tips and insight based on the authors' real-world experiences and their own implementations. Avoid many common pitfalls while learning best practices for: Leveraging Oracle technologies to design, build, and manage data warehouses Integrating specific database and business intelligence solutions from other vendors Using the new suite of Oracle business intelligence tools to analyze data for marketing, sales, and more Handling typical data warehouse performance challenges Uncovering initiatives by your business community, security business sponsorship, project staffing, and managing risk
  business intelligence data management: Tapping into Unstructured Data William H. Inmon, Anthony Nesavich, 2007-12-11 The Definitive Guide to Unstructured Data Management and Analysis--From the World’s Leading Information Management Expert A wealth of invaluable information exists in unstructured textual form, but organizations have found it difficult or impossible to access and utilize it. This is changing rapidly: new approaches finally make it possible to glean useful knowledge from virtually any collection of unstructured data. William H. Inmon--the father of data warehousing--and Anthony Nesavich introduce the next data revolution: unstructured data management. Inmon and Nesavich cover all you need to know to make unstructured data work for your organization. You’ll learn how to bring it into your existing structured data environment, leverage existing analytical infrastructure, and implement textual analytic processing technologies to solve new problems and uncover new opportunities. Inmon and Nesavich introduce breakthrough techniques covered in no other book--including the powerful role of textual integration, new ways to integrate textual data into data warehouses, and new SQL techniques for reading and analyzing text. They also present five chapter-length, real-world case studies--demonstrating unstructured data at work in medical research, insurance, chemical manufacturing, contracting, and beyond. This book will be indispensable to every business and technical professional trying to make sense of a large body of unstructured text: managers, database designers, data modelers, DBAs, researchers, and end users alike. Coverage includes What unstructured data is, and how it differs from structured data First generation technology for handling unstructured data, from search engines to ECM--and its limitations Integrating text so it can be analyzed with a common, colloquial vocabulary: integration engines, ontologies, glossaries, and taxonomies Processing semistructured data: uncovering patterns, words, identifiers, and conflicts Novel processing opportunities that arise when text is freed from context Architecture and unstructured data: Data Warehousing 2.0 Building unstructured relational databases and linking them to structured data Visualizations and Self-Organizing Maps (SOMs), including Compudigm and Raptor solutions Capturing knowledge from spreadsheet data and email Implementing and managing metadata: data models, data quality, and more
  business intelligence data management: Data Mining for Business Analytics Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel, 2019-10-14 Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
  business intelligence data management: Handbook on Decision Support Systems 2 Frada Burstein, Clyde W. Holsapple, 2008-01-22 As the most comprehensive reference work dealing with decision support systems (DSS), this book is essential for the library of every DSS practitioner, researcher, and educator. Written by an international array of DSS luminaries, it contains more than 70 chapters that approach decision support systems from a wide variety of perspectives. These range from classic foundations to cutting-edge thought, informative to provocative, theoretical to practical, historical to futuristic, human to technological, and operational to strategic. The chapters are conveniently organized into ten major sections that novices and experts alike will refer to for years to come.
  business intelligence data management: Business Intelligence: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2015-12-29 Data analysis is an important part of modern business administration, as efficient compilation of information allows managers and business leaders to make the best decisions for the financial solvency of their organizations. Understanding the use of analytics, reporting, and data mining in everyday business environments is imperative to the success of modern businesses. Business Intelligence: Concepts, Methodologies, Tools, and Applications presents a comprehensive examination of business data analytics along with case studies and practical applications for businesses in a variety of fields and corporate arenas. Focusing on topics and issues such as critical success factors, technology adaptation, agile development approaches, fuzzy logic tools, and best practices in business process management, this multivolume reference is of particular use to business analysts, investors, corporate managers, and entrepreneurs in a variety of prominent industries.
  business intelligence data management: Implementing Information Technology Governance: Models, Practices and Cases Van Grembergen, Wim, De Haes, Steven, 2007-09-30 In many organizations, information technology (IT) has become crucial in the support, sustainability, and growth of the business. This pervasive use of technology has created a critical dependency on IT that calls for a specific focus on IT governance. Implementing Information Technology Governance: Models, Practices and Cases presents insight gained through literature reviews and case studies to provide practical guidance for organizations who want to start implementing IT governance or improving existing governance models, and provides a detailed set of IT governance structures, processes, and relational mechanisms that can be leveraged to implement IT governance in practice.
  business intelligence data management: Managing Data in Motion April Reeve, 2013-02-26 Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the data in motion in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and big data applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of Big Data
  business intelligence data management: Modern Enterprise Business Intelligence and Data Management Alan Simon, 2014-08-28 Nearly every large corporation and governmental agency is taking a fresh look at their current enterprise-scale business intelligence (BI) and data warehousing implementations at the dawn of the Big Data Era...and most see a critical need to revitalize their current capabilities. Whether they find the frustrating and business-impeding continuation of a long-standing silos of data problem, or an over-reliance on static production reports at the expense of predictive analytics and other true business intelligence capabilities, or a lack of progress in achieving the long-sought-after enterprise-wide single version of the truth – or all of the above – IT Directors, strategists, and architects find that they need to go back to the drawing board and produce a brand new BI/data warehousing roadmap to help move their enterprises from their current state to one where the promises of emerging technologies and a generation's worth of best practices can finally deliver high-impact, architecturally evolvable enterprise-scale business intelligence and data warehousing. Author Alan Simon, whose BI and data warehousing experience dates back to the late 1970s and who has personally delivered or led more than thirty enterprise-wide BI/data warehousing roadmap engagements since the mid-1990s, details a comprehensive step-by-step approach to building a best practices-driven, multi-year roadmap in the quest for architecturally evolvable BI and data warehousing at the enterprise scale. Simon addresses the triad of technology, work processes, and organizational/human factors considerations in a manner that blends the visionary and the pragmatic. - Takes a fresh look at true enterprise-scale BI/DW in the Dawn of the Big Data Era - Details a checklist-based approach to surveying one's current state and identifying which components are enterprise-ready and which ones are impeding the key objectives of enterprise-scale BI/DW - Provides an approach for how to analyze and test-bed emerging technologies and architectures and then figure out how to include the relevant ones in the roadmaps that will be developed - Presents a tried-and-true methodology for building a phased, incremental, and iterative enterprise BI/DW roadmap that is closely aligned with an organization's business imperatives, organizational culture, and other considerations
  business intelligence data management: Big Data For Dummies Judith S. Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, 2013-04-02 Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.
  business intelligence data management: Healthcare Business Intelligence Laura Madsen, 2012 This book will be constructed as a guidebook for healthcare organizations that are attempting BI/DW. It will address the primary functions of a business intelligence capability and how BI can ease the increasing regulatory reporting pressures on all healthcare organizations. Also included will be tables, checklists and a few forms. Tenative chapter contents: Chapter 1: What is Healthcare BI? Chapter 2: The Five Disciplines of Business Intelligence Chapter 3: The Importance of ETL Chapter 4: Starting with Data Governance Chapter 5: Creating a BI team Chapter 6: Data Modeling for Healthcare Chapter 7: Gaining Support for your BI program Chapter 8: Ensuring good User Adoption Chapter 9: Marketing Your BI Program Chapter 10: Maintaining Your BI Program--
  business intelligence data management: Seven Methods for Transforming Corporate Data Into Business Intelligence Vasant Dhar, Roger Stein, 1997 Information systems: past, present, and emerging; Intelligence density a metric for knowledge work; The vocabulary of intelligence density; Method one: data-driven decision support; Method two: evolving solutions: genetic algorithms; Method three: simulating the brain to solve problems: neural networks; Method four: putting expert resoning in a box: rule-based systems; Method five: dealing with linguistic ambiguity: fuzzy logic; Method six: soilving problems by analogy case-based resoning; Method seven: deriving rules from data: machine learning; Appendix saving time and money with object; Appendix case studies.
  business intelligence data management: Business Analysis for Business Intelligence Bert Brijs, 2016-04-19 Aligning business intelligence (BI) infrastructure with strategy processes not only improves your organization's ability to respond to change, but also adds significant value to your BI infrastructure and development investments. Until now, there has been a need for a comprehensive book on business analysis for BI that starts with a macro view and
BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys and….

VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….

ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, especially one that….

INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the person who has or….

AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned before it happens: 2. made….

LEVERAGE | English meaning - Cambridge Dictionary
LEVERAGE definition: 1. the action or advantage of using a lever: 2. power to influence people and get the results you….

ENTREPRENEUR | English meaning - Cambridge Dictionary
ENTREPRENEUR definition: 1. someone who starts their own business, especially when this involves seeing a new opportunity….

CULTIVATE | English meaning - Cambridge Dictionary
CULTIVATE definition: 1. to prepare land and grow crops on it, or to grow a particular crop: 2. to try to develop and….

EQUITY | English meaning - Cambridge Dictionary
EQUITY definition: 1. the value of a company, divided into many equal parts owned by the shareholders, or one of the….

LIAISE | English meaning - Cambridge Dictionary
LIAISE definition: 1. to speak to people in other organizations, etc. in order to work with them or exchange….

BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys and….

VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….

ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, especially one that….

INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the person who has or….

AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned before it happens: 2. made….

LEVERAGE | English meaning - Cambridge Dictionary
LEVERAGE definition: 1. the action or advantage of using a lever: 2. power to influence people and get the results you….

ENTREPRENEUR | English meaning - Cambridge Dictionary
ENTREPRENEUR definition: 1. someone who starts their own business, especially when this involves seeing a new opportunity….

CULTIVATE | English meaning - Cambridge Dictionary
CULTIVATE definition: 1. to prepare land and grow crops on it, or to grow a particular crop: 2. to try to develop and….

EQUITY | English meaning - Cambridge Dictionary
EQUITY definition: 1. the value of a company, divided into many equal parts owned by the shareholders, or one of the….

LIAISE | English meaning - Cambridge Dictionary
LIAISE definition: 1. to speak to people in other organizations, etc. in order to work with them or exchange….