Business Intelligence Data Warehouse

Advertisement



  business intelligence data warehouse: Oracle Data Warehousing and Business Intelligence Solutions Robert Stackowiak, Joseph Rayman, Rick Greenwald, 2007-01-06 Up-to-date, comprehensive coverage of the Oracle database and business intelligence tools Written by a team of Oracle insiders, this authoritative book provides you with the most current coverage of the Oracle data warehousing platform as well as the full suite of business intelligence tools. You'll learn how to leverage Oracle features and how those features can be used to provide solutions to a variety of needs and demands. Plus, you'll get valuable tips and insight based on the authors' real-world experiences and their own implementations. Avoid many common pitfalls while learning best practices for: Leveraging Oracle technologies to design, build, and manage data warehouses Integrating specific database and business intelligence solutions from other vendors Using the new suite of Oracle business intelligence tools to analyze data for marketing, sales, and more Handling typical data warehouse performance challenges Uncovering initiatives by your business community, security business sponsorship, project staffing, and managing risk
  business intelligence data warehouse: Data Warehousing in the Age of Big Data Krish Krishnan, 2013-05-02 Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a Big Data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory. Ultimately, this book will help you navigate through the complex layers of Big Data and data warehousing while providing you information on how to effectively think about using all these technologies and the architectures to design the next-generation data warehouse. - Learn how to leverage Big Data by effectively integrating it into your data warehouse. - Includes real-world examples and use cases that clearly demonstrate Hadoop, NoSQL, HBASE, Hive, and other Big Data technologies - Understand how to optimize and tune your current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements
  business intelligence data warehouse: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2013-07-01 Updated new edition of Ralph Kimball's groundbreaking book on dimensional modeling for data warehousing and business intelligence! The first edition of Ralph Kimball's The Data Warehouse Toolkit introduced the industry to dimensional modeling, and now his books are considered the most authoritative guides in this space. This new third edition is a complete library of updated dimensional modeling techniques, the most comprehensive collection ever. It covers new and enhanced star schema dimensional modeling patterns, adds two new chapters on ETL techniques, includes new and expanded business matrices for 12 case studies, and more. Authored by Ralph Kimball and Margy Ross, known worldwide as educators, consultants, and influential thought leaders in data warehousing and business intelligence Begins with fundamental design recommendations and progresses through increasingly complex scenarios Presents unique modeling techniques for business applications such as inventory management, procurement, invoicing, accounting, customer relationship management, big data analytics, and more Draws real-world case studies from a variety of industries, including retail sales, financial services, telecommunications, education, health care, insurance, e-commerce, and more Design dimensional databases that are easy to understand and provide fast query response with The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.
  business intelligence data warehouse: Open Source Data Warehousing and Business Intelligence Lakshman Bulusu, 2012-08-06 Open Source Data Warehousing and Business Intelligence is an all-in-one reference for developing open source based data warehousing (DW) and business intelligence (BI) solutions that are business-centric, cross-customer viable, cross-functional, cross-technology based, and enterprise-wide. Considering the entire lifecycle of an open source DW &
  business intelligence data warehouse: Business Intelligence and Data Warehousing Simplified Arshad Khan, 2012 This book targets business and IT professionals who need an introduction to business intelligence and data warehousing fundamentals through a simple question / answer format. Topics include evolution and fundamentals, characteristics and process, architecture and objects, metadata, data conversion, ETL, data storage, infrastructure, data access, data marts, implementation approaches, planning, design, Inmon vs. Kimball, multi-dimensionality, OLAP, facts and dimensions, common mistakes and tips, trends, etc.
  business intelligence data warehouse: The Data Warehouse Mentor: Practical Data Warehouse and Business Intelligence Insights Robert Laberge, 2011-05-12 Develop a custom, agile data warehousing and business intelligence architecture Empower your users and drive better decision making across your enterprise with detailed instructions and best practices from an expert developer and trainer. The Data Warehouse Mentor: Practical Data Warehouse and Business Intelligence Insights shows how to plan, design, construct, and administer an integrated end-to-end DW/BI solution. Learn how to choose appropriate components, build an enterprise data model, configure data marts and data warehouses, establish data flow, and mitigate risk. Change management, data governance, and security are also covered in this comprehensive guide. Understand the components of BI and data warehouse systems Establish project goals and implement an effective deployment plan Build accurate logical and physical enterprise data models Gain insight into your company's transactions with data mining Input, cleanse, and normalize data using ETL (Extract, Transform, and Load) techniques Use structured input files to define data requirements Employ top-down, bottom-up, and hybrid design methodologies Handle security and optimize performance using data governance tools Robert Laberge is the founder of several Internet ventures and a principle consultant for the IBM Industry Models and Assets Lab, which has a focus on data warehousing and business intelligence solutions.
  business intelligence data warehouse: Agile Data Warehousing Project Management Ralph Hughes, 2012-12-28 You have to make sense of enormous amounts of data, and while the notion of agile data warehousing might sound tricky, it can yield as much as a 3-to-1 speed advantage while cutting project costs in half. Bring this highly effective technique to your organization with the wisdom of agile data warehousing expert Ralph Hughes. Agile Data Warehousing Project Management will give you a thorough introduction to the method as you would practice it in the project room to build a serious data mart. Regardless of where you are today, this step-by-step implementation guide will prepare you to join or even lead a team in visualizing, building, and validating a single component to an enterprise data warehouse. - Provides a thorough grounding on the mechanics of Scrum as well as practical advice on keeping your team on track - Includes strategies for getting accurate and actionable requirements from a team's business partner - Revolutionary estimating techniques that make forecasting labor far more understandable and accurate - Demonstrates a blends of Agile methods to simplify team management and synchronize inputs across IT specialties - Enables you and your teams to start simple and progress steadily to world-class performance levels
  business intelligence data warehouse: Agile Analytics Ken Collier, 2012 Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve back-end data management, front-end business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.
  business intelligence data warehouse: DW 2.0: The Architecture for the Next Generation of Data Warehousing W.H. Inmon, Derek Strauss, Genia Neushloss, 2010-07-28 DW 2.0: The Architecture for the Next Generation of Data Warehousing is the first book on the new generation of data warehouse architecture, DW 2.0, by the father of the data warehouse. The book describes the future of data warehousing that is technologically possible today, at both an architectural level and technology level. The perspective of the book is from the top down: looking at the overall architecture and then delving into the issues underlying the components. This allows people who are building or using a data warehouse to see what lies ahead and determine what new technology to buy, how to plan extensions to the data warehouse, what can be salvaged from the current system, and how to justify the expense at the most practical level. This book gives experienced data warehouse professionals everything they need in order to implement the new generation DW 2.0. It is designed for professionals in the IT organization, including data architects, DBAs, systems design and development professionals, as well as data warehouse and knowledge management professionals. - First book on the new generation of data warehouse architecture, DW 2.0 - Written by the father of the data warehouse, Bill Inmon, a columnist and newsletter editor of The Bill Inmon Channel on the Business Intelligence Network - Long overdue comprehensive coverage of the implementation of technology and tools that enable the new generation of the DW: metadata, temporal data, ETL, unstructured data, and data quality control
  business intelligence data warehouse: The Data Warehouse Lifecycle Toolkit Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy, Bob Becker, 2008-01-10 A thorough update to the industry standard for designing, developing, and deploying data warehouse and business intelligence systems The world of data warehousing has changed remarkably since the first edition of The Data Warehouse Lifecycle Toolkit was published in 1998. In that time, the data warehouse industry has reached full maturity and acceptance, hardware and software have made staggering advances, and the techniques promoted in the premiere edition of this book have been adopted by nearly all data warehouse vendors and practitioners. In addition, the term business intelligence emerged to reflect the mission of the data warehouse: wrangling the data out of source systems, cleaning it, and delivering it to add value to the business. Ralph Kimball and his colleagues have refined the original set of Lifecycle methods and techniques based on their consulting and training experience. The authors understand first-hand that a data warehousing/business intelligence (DW/BI) system needs to change as fast as its surrounding organization evolves. To that end, they walk you through the detailed steps of designing, developing, and deploying a DW/BI system. You'll learn to create adaptable systems that deliver data and analyses to business users so they can make better business decisions.
  business intelligence data warehouse: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.
  business intelligence data warehouse: Progressive Methods in Data Warehousing and Business Intelligence David Taniar, 2009 This book observes state-of-the-art developments and research, as well as current innovative activities in data warehousing and mining, focusing on the intersection of data warehousing and business intelligence--Provided by publisher.
  business intelligence data warehouse: Data Virtualization for Business Intelligence Systems Rick van der Lans, 2012-07-25 Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
  business intelligence data warehouse: Enterprise Business Intelligence and Data Warehousing Alan Simon, 2014 Corporations and governmental agencies of all sizes are embracing a new generation of enterprise-scale business intelligence (BI) and data warehousing (DW), and very often appoint a single senior-level individual to serve as the Enterprise BI/DW Program Manager. This book is the essential guide to the incremental and iterative build-out of a successful enterprise-scale BI/DW program comprised of multiple underlying projects, and what the Enterprise Program Manager must successfully accomplish to orchestrate the many moving parts in the quest for true enterprise-scale business intelligence and data warehousing. Author Alan Simon has served as an enterprise business intelligence and data warehousing program management advisor to many of his clients, and spent an entire year with a single client as the adjunct consulting director for a $10 million enterprise data warehousing (EDW) initiative. He brings a wealth of knowledge about best practices, risk management, organizational culture alignment, and other Critical Success Factors (CSFs) to the discipline of enterprise-scale business intelligence and data warehousing.
  business intelligence data warehouse: Data Warehousing SCN Education B.V., 2013-11-11 Rapid access to information is a prime requirement in any organization that wants to have a competitive edge in today's fast changing markets. How to retrieve information? How to capture data? How to format it? The answer lies in Data Warehousing. This HOTT Guide will give you access to all the essential information about the newest data storehouse: through articles by expert trendwachters on strategic considerations, how-to reports defining the various ways to extract the data needed for critical business decisions, technical papers clarifying technologies and tools, business cases and key concepts that will provide the reader with a comprehensive overview of a business solution that is already indispensable.
  business intelligence data warehouse: The Kimball Group Reader Ralph Kimball, Margy Ross, 2016-02-01 The final edition of the incomparable data warehousing and business intelligence reference, updated and expanded The Kimball Group Reader, Remastered Collection is the essential reference for data warehouse and business intelligence design, packed with best practices, design tips, and valuable insight from industry pioneer Ralph Kimball and the Kimball Group. This Remastered Collection represents decades of expert advice and mentoring in data warehousing and business intelligence, and is the final work to be published by the Kimball Group. Organized for quick navigation and easy reference, this book contains nearly 20 years of experience on more than 300 topics, all fully up-to-date and expanded with 65 new articles. The discussion covers the complete data warehouse/business intelligence lifecycle, including project planning, requirements gathering, system architecture, dimensional modeling, ETL, and business intelligence analytics, with each group of articles prefaced by original commentaries explaining their role in the overall Kimball Group methodology. Data warehousing/business intelligence industry's current multi-billion dollar value is due in no small part to the contributions of Ralph Kimball and the Kimball Group. Their publications are the standards on which the industry is built, and nearly all data warehouse hardware and software vendors have adopted their methods in one form or another. This book is a compendium of Kimball Group expertise, and an essential reference for anyone in the field. Learn data warehousing and business intelligence from the field's pioneers Get up to date on best practices and essential design tips Gain valuable knowledge on every stage of the project lifecycle Dig into the Kimball Group methodology with hands-on guidance Ralph Kimball and the Kimball Group have continued to refine their methods and techniques based on thousands of hours of consulting and training. This Remastered Collection of The Kimball Group Reader represents their final body of knowledge, and is nothing less than a vital reference for anyone involved in the field.
  business intelligence data warehouse: The Kimball Group Reader Ralph Kimball, Margy Ross, 2010-03-11 An unparalleled collection of recommended guidelines for data warehousing and business intelligence pioneered by Ralph Kimball and his team of colleagues from the Kimball Group. Recognized and respected throughout the world as the most influential leaders in the data warehousing industry, Ralph Kimball and the Kimball Group have written articles covering more than 250 topics that define the field of data warehousing. For the first time, the Kimball Group's incomparable advice, design tips, and best practices have been gathered in this remarkable collection of articles, which spans a decade of data warehousing innovation. Each group of articles is introduced with original commentaries that explain their role in the overall lifecycle methodology developed by the Kimball Group. These practical, hands-on articles are fully updated to reflect current practices and terminology and cover the complete lifecycle—including project planning, requirements gathering, dimensional modeling, ETL, and business intelligence and analytics. This easily referenced collection is nothing less than vital if you are involved with data warehousing or business intelligence in any capacity.
  business intelligence data warehouse: Agile Data Warehousing Ralph Hughes, 2008-07-14 Contains a six-stage plan for starting new warehouse projects and guiding programmers step-by-step until they become a world-class, Agile development team. It describes also how to avoid or contain the fierce opposition that radically new methods can encounter from the traditionally-minded IS departments found in many large companies.
  business intelligence data warehouse: Business Intelligence Guidebook Rick Sherman, 2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.
  business intelligence data warehouse: The Biml Book Andy Leonard, Scott Currie, Jacob Alley, Martin Andersson, Peter Avenant, Bill Fellows, Simon Peck, Reeves Smith, Raymond Sondak, Benjamin Weissman, Cathrine Wilhelmsen, 2017-10-30 Learn Business Intelligence Markup Language (Biml) for automating much of the repetitive, manual labor involved in data integration. We teach you how to build frameworks and use advanced Biml features to get more out of SQL Server Integration Services (SSIS), Transact-SQL (T-SQL), and SQL Server Analysis Services (SSAS) than you ever thought possible. The first part of the book starts with the basics—getting your development environment configured, Biml syntax, and scripting essentials. Whether a beginner or a seasoned Biml expert, the next part of the book guides you through the process of using Biml to build a framework that captures both your design patterns and execution management. Design patterns are reusable code blocks that standardize the approach you use to perform certain types of data integration, logging, and other key data functions. Design patterns solve common problems encountered when developing data integration solutions. Because you do not have to build the code from scratch each time, design patterns improve your efficiency as a Biml developer. In addition to leveraging design patterns in your framework, you will learn how to build a robust metadata store and how to package your framework into Biml bundles for deployment within your enterprise. In the last part of the book, we teach you more advanced Biml features and capabilities, such as SSAS development, T-SQL recipes, documentation autogeneration, and Biml troubleshooting. The Biml Book: Provides practical and applicable examples Teaches you how to use Biml to reduce development time while improving quality Takes you through solutions to common data integration and BI challenges What You'll Learn Master the basics of Business Intelligence Markup Language (Biml) Study patterns for automating SSIS package generation Build a Biml Framework Import and transform database schemas Automate generation of scripts and projects Who This Book Is For BI developers wishing to quickly locate previously tested solutions, Microsoft BI specialists, those seeking more information about solution automation and code generation, and practitioners of Data Integration Lifecycle Management (DILM) in the DevOps enterprise
  business intelligence data warehouse: The Microsoft Data Warehouse Toolkit Joy Mundy, Warren Thornthwaite, 2007-03-22 This groundbreaking book is the first in the Kimball Toolkit series to be product-specific. Microsoft’s BI toolset has undergone significant changes in the SQL Server 2005 development cycle. SQL Server 2005 is the first viable, full-functioned data warehouse and business intelligence platform to be offered at a price that will make data warehousing and business intelligence available to a broad set of organizations. This book is meant to offer practical techniques to guide those organizations through the myriad of challenges to true success as measured by contribution to business value. Building a data warehousing and business intelligence system is a complex business and engineering effort. While there are significant technical challenges to overcome in successfully deploying a data warehouse, the authors find that the most common reason for data warehouse project failure is insufficient focus on the business users and business problems. In an effort to help people gain success, this book takes the proven Business Dimensional Lifecycle approach first described in best selling The Data Warehouse Lifecycle Toolkit and applies it to the Microsoft SQL Server 2005 tool set. Beginning with a thorough description of how to gather business requirements, the book then works through the details of creating the target dimensional model, setting up the data warehouse infrastructure, creating the relational atomic database, creating the analysis services databases, designing and building the standard report set, implementing security, dealing with metadata, managing ongoing maintenance and growing the DW/BI system. All of these steps tie back to the business requirements. Each chapter describes the practical steps in the context of the SQL Server 2005 platform. Intended Audience The target audience for this book is the IT department or service provider (consultant) who is: Planning a small to mid-range data warehouse project; Evaluating or planning to use Microsoft technologies as the primary or exclusive data warehouse server technology; Familiar with the general concepts of data warehousing and business intelligence. The book will be directed primarily at the project leader and the warehouse developers, although everyone involved with a data warehouse project will find the book useful. Some of the book’s content will be more technical than the typical project leader will need; other chapters and sections will focus on business issues that are interesting to a database administrator or programmer as guiding information. The book is focused on the mass market, where the volume of data in a single application or data mart is less than 500 GB of raw data. While the book does discuss issues around handling larger warehouses in the Microsoft environment, it is not exclusively, or even primarily, concerned with the unusual challenges of extremely large datasets. About the Authors JOY MUNDY has focused on data warehousing and business intelligence since the early 1990s, specializing in business requirements analysis, dimensional modeling, and business intelligence systems architecture. Joy co-founded InfoDynamics LLC, a data warehouse consulting firm, then joined Microsoft WebTV to develop closed-loop analytic applications and a packaged data warehouse. Before returning to consulting with the Kimball Group in 2004, Joy worked in Microsoft SQL Server product development, managing a team that developed the best practices for building business intelligence systems on the Microsoft platform. Joy began her career as a business analyst in banking and finance. She graduated from Tufts University with a BA in Economics, and from Stanford with an MS in Engineering Economic Systems. WARREN THORNTHWAITE has been building data warehousing and business intelligence systems since 1980. Warren worked at Metaphor for eight years, where he managed the consulting organization and implemented many major data warehouse systems. After Metaphor, Warren managed the enterprise-wide data warehouse development at Stanford University. He then co-founded InfoDynamics LLC, a data warehouse consulting firm, with his co-author, Joy Mundy. Warren joined up with WebTV to help build a world class, multi-terabyte customer focused data warehouse before returning to consulting with the Kimball Group. In addition to designing data warehouses for a range of industries, Warren speaks at major industry conferences and for leading vendors, and is a long-time instructor for Kimball University. Warren holds an MBA in Decision Sciences from the University of Pennsylvania's Wharton School, and a BA in Communications Studies from the University of Michigan. RALPH KIMBALL, PH.D., has been a leading visionary in the data warehouse industry since 1982 and is one of today's most internationally well-known authors, speakers, consultants, and teachers on data warehousing. He writes the Data Warehouse Architect column for Intelligent Enterprise (formerly DBMS) magazine.
  business intelligence data warehouse: Data Warehouse Systems Alejandro Vaisman, Esteban Zimányi, 2022-08-16 With this textbook, Vaisman and Zimányi deliver excellent coverage of data warehousing and business intelligence technologies ranging from the most basic principles to recent findings and applications. To this end, their work is structured into three parts. Part I describes “Fundamental Concepts” including conceptual and logical data warehouse design, as well as querying using MDX, DAX and SQL/OLAP. This part also covers data analytics using Power BI and Analysis Services. Part II details “Implementation and Deployment,” including physical design, ETL and data warehouse design methodologies. Part III covers “Advanced Topics” and it is almost completely new in this second edition. This part includes chapters with an in-depth coverage of temporal, spatial, and mobility data warehousing. Graph data warehouses are also covered in detail using Neo4j. The last chapter extensively studies big data management and the usage of Hadoop, Spark, distributed, in-memory, columnar, NoSQL and NewSQL database systems, and data lakes in the context of analytical data processing. As a key characteristic of the book, most of the topics are presented and illustrated using application tools. Specifically, a case study based on the well-known Northwind database illustrates how the concepts presented in the book can be implemented using Microsoft Analysis Services and Power BI. All chapters have been revised and updated to the latest versions of the software tools used. KPIs and Dashboards are now also developed using DAX and Power BI, and the chapter on ETL has been expanded with the implementation of ETL processes in PostgreSQL. Review questions and exercises complement each chapter to support comprehensive student learning. Supplemental material to assist instructors using this book as a course text is available online and includes electronic versions of the figures, solutions to all exercises, and a set of slides accompanying each chapter. Overall, students, practitioners and researchers alike will find this book the most comprehensive reference work on data warehouses, with key topics described in a clear and educational style. “I can only invite you to dive into the contents of the book, feeling certain that once you have completed its reading (or maybe, targeted parts of it), you will join me in expressing our gratitude to Alejandro and Esteban, for providing such a comprehensive textbook for the field of data warehousing in the first place, and for keeping it up to date with the recent developments, in this current second edition.” From the foreword by Panos Vassiliadis, University of Ioannina, Greece.
  business intelligence data warehouse: Corporate Information Factory W. H. Inmon, Claudia Imhoff, Ryan Sousa, 2002-03-14 The father of data warehousing incorporates the latesttechnologies into his blueprint for integrated decision supportsystems Today's corporate IT and data warehouse managers are required tomake a small army of technologies work together to ensure fast andaccurate information for business managers. Bill Inmon created theCorporate Information Factory to solve the needs ofthese managers. Since the First Edition, the design of the factoryhas grown and changed dramatically. This Second Edition, revisedand expanded by 40% with five new chapters, incorporates thesechanges. This step-by-step guide will enable readers to connecttheir legacy systems with the data warehouse and deal with a hostof new and changing technologies, including Web access mechanisms,e-commerce systems, ERP (Enterprise Resource Planning) systems. Thebook also looks closely at exploration and data mining servers foranalyzing customer behavior and departmental data marts forfinance, sales, and marketing.
  business intelligence data warehouse: Business Intelligence Tools for Small Companies Albert Nogués, Juan Valladares, 2017-05-25 Learn how to transition from Excel-based business intelligence (BI) analysis to enterprise stacks of open-source BI tools. Select and implement the best free and freemium open-source BI tools for your company’s needs and design, implement, and integrate BI automation across the full stack using agile methodologies. Business Intelligence Tools for Small Companies provides hands-on demonstrations of open-source tools suitable for the BI requirements of small businesses. The authors draw on their deep experience as BI consultants, developers, and administrators to guide you through the extract-transform-load/data warehousing (ETL/DWH) sequence of extracting data from an enterprise resource planning (ERP) database freely available on the Internet, transforming the data, manipulating them, and loading them into a relational database. The authors demonstrate how to extract, report, and dashboard key performance indicators (KPIs) in a visually appealing format from the relational database management system (RDBMS). They model the selection and implementation of free and freemium tools such as Pentaho Data Integrator and Talend for ELT, Oracle XE and MySQL/MariaDB for RDBMS, and Qliksense, Power BI, and MicroStrategy Desktop for reporting. This richly illustrated guide models the deployment of a small company BI stack on an inexpensive cloud platform such as AWS. What You'll Learn You will learn how to manage, integrate, and automate the processes of BI by selecting and implementing tools to: Implement and manage the business intelligence/data warehousing (BI/DWH) infrastructure Extract data from any enterprise resource planning (ERP) tool Process and integrate BI data using open-source extract-transform-load (ETL) tools Query, report, and analyze BI data using open-source visualization and dashboard tools Use a MOLAP tool to define next year's budget, integrating real data with target scenarios Deploy BI solutions and big data experiments inexpensively on cloud platforms Who This Book Is For Engineers, DBAs, analysts, consultants, and managers at small companies with limited resources but whose BI requirements have outgrown the limitations of Excel spreadsheets; personnel in mid-sized companies with established BI systems who are exploring technological updates and more cost-efficient solutions
  business intelligence data warehouse: Business Intelligence Carlo Vercellis, 2011-08-10 Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
  business intelligence data warehouse: Agile Data Warehouse Design Lawrence Corr, Jim Stagnitto, 2011-11 Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.
  business intelligence data warehouse: Dimensional Modeling: In a Business Intelligence Environment Chuck Ballard, Daniel M. Farrell, Amit Gupta, Carlos Mazuela, Stanislav Vohnik, IBM Redbooks, 2012-07-31 In this IBM Redbooks publication we describe and demonstrate dimensional data modeling techniques and technology, specifically focused on business intelligence and data warehousing. It is to help the reader understand how to design, maintain, and use a dimensional model for data warehousing that can provide the data access and performance required for business intelligence. Business intelligence is comprised of a data warehousing infrastructure, and a query, analysis, and reporting environment. Here we focus on the data warehousing infrastructure. But only a specific element of it, the data model - which we consider the base building block of the data warehouse. Or, more precisely, the topic of data modeling and its impact on the business and business applications. The objective is not to provide a treatise on dimensional modeling techniques, but to focus at a more practical level. There is technical content for designing and maintaining such an environment, but also business content. For example, we use case studies to demonstrate how dimensional modeling can impact the business intelligence requirements for your business initiatives. In addition, we provide a detailed discussion on the query aspects of BI and data modeling. For example, we discuss query optimization and how you can determine performance of the data model prior to implementation. You need a solid base for your data warehousing infrastructure . . . . a solid data model.
  business intelligence data warehouse: Data Warehousing and Analytics David Taniar, Wenny Rahayu, 2022-02-04 This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics). This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.
  business intelligence data warehouse: The Kimball Group Reader Ralph Kimball, Margy Ross, 2016-02-01 The final edition of the incomparable data warehousing and business intelligence reference, updated and expanded The Kimball Group Reader, Remastered Collection is the essential reference for data warehouse and business intelligence design, packed with best practices, design tips, and valuable insight from industry pioneer Ralph Kimball and the Kimball Group. This Remastered Collection represents decades of expert advice and mentoring in data warehousing and business intelligence, and is the final work to be published by the Kimball Group. Organized for quick navigation and easy reference, this book contains nearly 20 years of experience on more than 300 topics, all fully up-to-date and expanded with 65 new articles. The discussion covers the complete data warehouse/business intelligence lifecycle, including project planning, requirements gathering, system architecture, dimensional modeling, ETL, and business intelligence analytics, with each group of articles prefaced by original commentaries explaining their role in the overall Kimball Group methodology. Data warehousing/business intelligence industry's current multi-billion dollar value is due in no small part to the contributions of Ralph Kimball and the Kimball Group. Their publications are the standards on which the industry is built, and nearly all data warehouse hardware and software vendors have adopted their methods in one form or another. This book is a compendium of Kimball Group expertise, and an essential reference for anyone in the field. Learn data warehousing and business intelligence from the field's pioneers Get up to date on best practices and essential design tips Gain valuable knowledge on every stage of the project lifecycle Dig into the Kimball Group methodology with hands-on guidance Ralph Kimball and the Kimball Group have continued to refine their methods and techniques based on thousands of hours of consulting and training. This Remastered Collection of The Kimball Group Reader represents their final body of knowledge, and is nothing less than a vital reference for anyone involved in the field.
  business intelligence data warehouse: The Microsoft Data Warehouse Toolkit Joy Mundy, Warren Thornthwaite, 2011-03-08 Best practices and invaluable advice from world-renowned data warehouse experts In this book, leading data warehouse experts from the Kimball Group share best practices for using the upcoming “Business Intelligence release” of SQL Server, referred to as SQL Server 2008 R2. In this new edition, the authors explain how SQL Server 2008 R2 provides a collection of powerful new tools that extend the power of its BI toolset to Excel and SharePoint users and they show how to use SQL Server to build a successful data warehouse that supports the business intelligence requirements that are common to most organizations. Covering the complete suite of data warehousing and BI tools that are part of SQL Server 2008 R2, as well as Microsoft Office, the authors walk you through a full project lifecycle, including design, development, deployment and maintenance. Features more than 50 percent new and revised material that covers the rich new feature set of the SQL Server 2008 R2 release, as well as the Office 2010 release Includes brand new content that focuses on PowerPivot for Excel and SharePoint, Master Data Services, and discusses updated capabilities of SQL Server Analysis, Integration, and Reporting Services Shares detailed case examples that clearly illustrate how to best apply the techniques described in the book The accompanying Web site contains all code samples as well as the sample database used throughout the case studies The Microsoft Data Warehouse Toolkit, Second Edition provides you with the knowledge of how and when to use BI tools such as Analysis Services and Integration Services to accomplish your most essential data warehousing tasks.
  business intelligence data warehouse: Data Warehouse Design: Modern Principles and Methodologies Matteo Golfarelli, Stefano Rizzi, 2009-03-03 Foreword by Mark Stephen LaRow, Vice President of Products, MicroStrategy A unique and authoritative book that blends recent research developments with industry-level practices for researchers, students, and industry practitioners. Il-Yeol Song, Professor, College of Information Science and Technology, Drexel University
  business intelligence data warehouse: Business Intelligence and Data Mining Anil Maheshwari, 2014-12-31 “This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.
  business intelligence data warehouse: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration.
  business intelligence data warehouse: Open Source Data Warehousing and Business Intelligence Lakshman Bulusu, 2012-08-06 Open Source Data Warehousing and Business Intelligence is an all-in-one reference for developing open source based data warehousing (DW) and business intelligence (BI) solutions that are business-centric, cross-customer viable, cross-functional, cross-technology based, and enterprise-wide. Considering the entire lifecycle of an open source DW &
  business intelligence data warehouse: Business Intelligence and Data Warehousing A. S. Lather, Anil K. Saini, Sanjay Dhingra, 2012 Dealing with the main components of a data warehouse for business intelligence applications, Lather's book details how a data warehouse fits into the overall strategy of a complex enterprise, how to develop data models useful for business intelligence and how to combine data from operational databases into a data warehouse.
  business intelligence data warehouse: Data Warehousing Fundamentals Paulraj Ponniah, 2004-04-07 Geared to IT professionals eager to get into the all-importantfield of data warehousing, this book explores all topics needed bythose who design and implement data warehouses. Readers will learnabout planning requirements, architecture, infrastructure, datapreparation, information delivery, implementation, and maintenance.They'll also find a wealth of industry examples garnered from theauthor's 25 years of experience in designing and implementingdatabases and data warehouse applications for majorcorporations. Market: IT Professionals, Consultants.
  business intelligence data warehouse: Building the Data Warehouse W. H. Inmon, 2002-10-01 The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing bible provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.
  business intelligence data warehouse: Emerging Perspectives in Big Data Warehousing Taniar, David, Rahayu, Wenny, 2019-06-28 The concept of a big data warehouse appeared in order to store moving data objects and temporal data information. Moving objects are geometries that change their position and shape continuously over time. In order to support spatio-temporal data, a data model and associated query language is needed for supporting moving objects. Emerging Perspectives in Big Data Warehousing is an essential research publication that explores current innovative activities focusing on the integration between data warehousing and data mining with an emphasis on the applicability to real-world problems. Featuring a wide range of topics such as index structures, ontology, and user behavior, this book is ideally designed for IT consultants, researchers, professionals, computer scientists, academicians, and managers.
  business intelligence data warehouse: E-Data Jill Dyché, 2000 Dyche presents the complete manager's briefing on what data warehousing technology can do today and how to achieve optimal results. Using real-world case studies from Charles Schwab, Bank of America, Qantas, 20th Century Fox, and others, she covers decision support, database marketing, and many industry-specific data warehouse applications.
  business intelligence data warehouse: Principles of Database Management Wilfried Lemahieu, Seppe vanden Broucke, Bart Baesens, 2018-07-12 Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science.
Introduction to Data Warehousing and Business Intelligence
Business intelligence Extract knowledge from large amounts of data collected in a modern enterprise Data warehousing, machine learning Purpose Acquire theoretical … See more

Data Warehouse & Business Intelligence - hexaware.com
warehouse serves as the intelligence repository for 50 different applications, ranging from …

A Review of Data Warehousing and Business Intelligence in …
organization. The Business intelligence is the delivery of accurate, useful information to the …

1 Data Warehousing, Business Intelligence, and Dimensional
Business users want to separate and combine analytic data in endless combinations. The …

BUSINESS INTELLIGENCE: CONCEPTS, COMPONENTS, …
Data Warehouse and data marts: The data warehouse is the significant component of business …

Using a Multiple Data Warehouse Strategy to Improve BI …
Our multiple data warehouse BI strategy has enabled us to move from an expensive, one-size …

CST 4704 Business Intelligence, Data Warehousing and Data …
CST4704 – BUSINESS INTELLIGENCE, DATA WAREHOUSING & DATA MINING 4 Class …

Design of Data Warehouse and Business Intelligence System
Data warehouse (DW) is pivotal and central to BI applications in that it integrates several …

Introduction to Data Warehousing & Business Intelligence …
Identify any organisational requirement for a Data Warehouse or Business Intelligence …

Data Warehousing and Business Intelligence - Springer
In this chapter, the two classic architectures for data warehousing (Kimball and Inmon) are …

IS7034: Data Warehousing and Business Intelligence - Carl H.
This course is designed for the comprehensive learning of data warehousing technology for …

The Role of Data Warehousing in Business Intelligence …
looks at how data warehouses are designed and used within the context of modern business …

Simplify Your BI Architecture for Better Business Intelligence
To enable data analytics to keep pace with the speed of business in the digital age, companies …

Data Warehouse & Business Intelligence - Hexaware …
warehouse serves as the intelligence repository for 50 different applications, ranging from …

Magic Quadrant for Data Warehouse Database Management …
The data warehouse DBMS market is undergoing a transformation, including many …

Data Warehouse Testing: A Step Towards using Business …
In this research paper we have discussed the impact of data warehouse testing on the banking …

An Evaluation of How Big-Data and Data Warehouses …
Analyze and understand how to combine data warehouse with busi-ness intelligence tools, and …

Educational Data Mining and Data Warehouse Design Using …
business intelligence (BI) and related technologies such as a datawarehouse (DW) and data …

Oracle11g for Data Warehousing and Business Intelligence
Oracle Database 11g is a comprehensive database platform for data warehousing and business …

Data Warehouse Success and Strategic Oriented Business …
data warehouses for strategic business intelligence purposes. The framework developed in this …

Introduction to Data Warehousing and Business Intelligence
What is Business Intelligence (BI)? • From Encyclopedia of Database Systems: “[BI] refers to a set of tools and techniques that enable a company to transform its business data into timely and …

Data Warehouse & Business Intelligence - hexaware.com
warehouse serves as the intelligence repository for 50 different applications, ranging from Sales Pipeline Management, Project Accounting, Accounts Payables, Accounts Receivables, …

A Review of Data Warehousing and Business Intelligence in …
organization. The Business intelligence is the delivery of accurate, useful information to the appropriate decision makers with necessary timeframe to support effective decision-making. …

1 Data Warehousing, Business Intelligence, and Dimensional
Business users want to separate and combine analytic data in endless combinations. The business intelligence tools and applications that access the data must be simple and easy to use. They …

BUSINESS INTELLIGENCE: CONCEPTS, COMPONENTS, …
Data Warehouse and data marts: The data warehouse is the significant component of business intelligence. It is subject oriented, integrated. The data warehouse supports the physical …

Using a Multiple Data Warehouse Strategy to Improve BI …
Our multiple data warehouse BI strategy has enabled us to move from an expensive, one-size-fits-all approach to a more cost-effective, multi-tiered data warehouse architecture that better …

CST 4704 Business Intelligence, Data Warehousing and …
CST4704 – BUSINESS INTELLIGENCE, DATA WAREHOUSING & DATA MINING 4 Class Hours, 3 Credits COURSE DESCRIPTION This course provides a general introduction to the design of Data …

Design of Data Warehouse and Business Intelligence …
Data warehouse (DW) is pivotal and central to BI applications in that it integrates several diverse data sources, mainly structured transactional databases. However, current researches in

Introduction to Data Warehousing & Business Intelligence …
Identify any organisational requirement for a Data Warehouse or Business Intelligence application. Understand how to improve an organisation's data and information. Understand what is involved …

Data Warehousing and Business Intelligence - Springer
In this chapter, the two classic architectures for data warehousing (Kimball and Inmon) are discussed. Three modern approaches are discussed as well: the data integration and access …

IS7034: Data Warehousing and Business Intelligence - Carl …
This course is designed for the comprehensive learning of data warehousing technology for business intelligence. Data warehouses have been created to store (archive) data from …

The Role of Data Warehousing in Business Intelligence …
looks at how data warehouses are designed and used within the context of modern business intelligence study provides a comprehensive overview of data warehousing, outlining both its …

Simplify Your BI Architecture for Better Business Intelligence
To enable data analytics to keep pace with the speed of business in the digital age, companies will have to transform and simplify the traditional data warehouse, using replication technologies and …

Data Warehouse & Business Intelligence - Hexaware …
warehouse serves as the intelligence repository for 50 different applications, ranging from Sales Pipeline Management, Project Accounting, Accounts Payables, Accounts Receivables, …

Magic Quadrant for Data Warehouse Database Management …
The data warehouse DBMS market is undergoing a transformation, including many acquisitions, as vendors adapt data warehouses to support the modern business intelligence and analytic …

Data Warehouse Testing: A Step Towards using Business …
In this research paper we have discussed the impact of data warehouse testing on the banking environment. The paper has been organized in the following way – Section 2 talks about the uses …

An Evaluation of How Big-Data and Data Warehouses Improve …
Analyze and understand how to combine data warehouse with busi-ness intelligence tools, and other useful information or tools to visualize KPIs are critical factors in achieving the goal of …

Educational Data Mining and Data Warehouse Design Using …
business intelligence (BI) and related technologies such as a datawarehouse (DW) and data mining program or algorithm is suggested for transforming data into knowledge [1].

Oracle11g for Data Warehousing and Business Intelligence
Oracle Database 11g is a comprehensive database platform for data warehousing and business intelligence that combines industry-leading scalability and performance, deeply-integrated …

Data Warehouse Success and Strategic Oriented Business …
data warehouses for strategic business intelligence purposes. The framework developed in this study consists of the following nine measures: Vendors and Consultants, Management Actions, …