Advertisement
business fundamentals for analytics: Fundamentals of Business Intelligence Wilfried Grossmann, Stefanie Rinderle-Ma, 2015-06-02 This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples. |
business fundamentals for analytics: Fundamentals of Business (black and White) Stephen J. Skripak, 2016-07-29 (Black & White version) Fundamentals of Business was created for Virginia Tech's MGT 1104 Foundations of Business through a collaboration between the Pamplin College of Business and Virginia Tech Libraries. This book is freely available at: http://hdl.handle.net/10919/70961 It is licensed with a Creative Commons-NonCommercial ShareAlike 3.0 license. |
business fundamentals for analytics: Fundamentals of Machine Learning for Predictive Data Analytics, second edition John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, 2020-10-20 The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning. |
business fundamentals for analytics: HBR Guide to Data Analytics Basics for Managers (HBR Guide Series) Harvard Business Review, 2018-03-13 Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes |
business fundamentals for analytics: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates |
business fundamentals for analytics: Fundamentals of Analytics Engineering Dumky De Wilde, Fanny Kassapian, Jovan Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Taís Laurindo Pereira, 2024-03-29 Gain a holistic understanding of the analytics engineering lifecycle by integrating principles from both data analysis and engineering Key Features Discover how analytics engineering aligns with your organization's data strategy Access insights shared by a team of seven industry experts Tackle common analytics engineering problems faced by modern businesses Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWritten by a team of 7 industry experts, Fundamentals of Analytics Engineering will introduce you to everything from foundational concepts to advanced skills to get started as an analytics engineer. After conquering data ingestion and techniques for data quality and scalability, you’ll learn about techniques such as data cleaning transformation, data modeling, SQL query optimization and reuse, and serving data across different platforms. Armed with this knowledge, you will implement a simple data platform from ingestion to visualization, using tools like Airbyte Cloud, Google BigQuery, dbt, and Tableau. You’ll also get to grips with strategies for data integrity with a focus on data quality and observability, along with collaborative coding practices like version control with Git. You’ll learn about advanced principles like CI/CD, automating workflows, gathering, scoping, and documenting business requirements, as well as data governance. By the end of this book, you’ll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.What you will learn Design and implement data pipelines from ingestion to serving data Explore best practices for data modeling and schema design Scale data processing with cloud based analytics platforms and tools Understand the principles of data quality management and data governance Streamline code base with best practices like collaborative coding, version control, reviews and standards Automate and orchestrate data pipelines Drive business adoption with effective scoping and prioritization of analytics use cases Who this book is for This book is for data engineers and data analysts considering pivoting their careers into analytics engineering. Analytics engineers who want to upskill and search for gaps in their knowledge will also find this book helpful, as will other data professionals who want to understand the value of analytics engineering in their organization's journey toward data maturity. To get the most out of this book, you should have a basic understanding of data analysis and engineering concepts such as data cleaning, visualization, ETL and data warehousing. |
business fundamentals for analytics: Fundamentals of Data Analytics Rudolf Mathar, Gholamreza Alirezaei, Emilio Balda, Arash Behboodi, 2020-09-15 This book introduces the basic methodologies for successful data analytics. Matrix optimization and approximation are explained in detail and extensively applied to dimensionality reduction by principal component analysis and multidimensional scaling. Diffusion maps and spectral clustering are derived as powerful tools. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning. |
business fundamentals for analytics: The Intelligent Company Bernard Marr, 2010-03-10 Today's most successful companies are Intelligent Companies that use the best available data to inform their decision making. This is called Evidence-Based Management and is one of the fastest growing business trends of our times. Intelligent Companies bring together tools such as Business Intelligence, Analytics, Key Performance Indicators, Balanced Scorecards, Management Reporting and Strategic Decision Making to generate real competitive advantages. As information and data volumes grow at explosive rates, the challenges of managing this information is turning into a losing battle for most companies and they end up drowning in data while thirsting for insights. This is made worse by the severe skills shortage in analytics, data presentation and communication. This latest book by best-selling management expert Bernard Marr will equip you with a set of powerful skills that are vital for successful managers now and in the future. Increase your market value by gaining essential skills that are in high demand but in short supply. Loaded with practical step-by-step guidance, simple tools and real life examples of how leading organizations such as Google, CocaCola, Capital One, Saatchi & Saatchi, Tesco, Yahoo, as well as Government Departments and Agencies have put the principles into practice. The five steps to more intelligent decision making are: Step 1: More intelligent strategies by identifying strategic priorities and agreeing your real information needs Step 2: More intelligent data by creating relevant and meaningful performance indicators and qualitative management information linked back to your strategic information needs Step 3: More intelligent insights by using good evidence to test and prove ideas and by analysing the data to gain robust and reliable insights Step 4: More intelligent communication by creating informative and engaging management information packs and dashboards that provide the essential information, packaged in an easy-to-read way Step 5: More intelligent decision making by fostering an evidence-based culture of turning information into actionable knowledge and real decisions Bernard Marr did it again! This outstanding and practical book will help your company become more intelligent and more successful. Marr takes the fields of business-intelligence, analytics and scorecarding to bring them together into a powerful and easy-to-follow 5-step framework. The Intelligent Company is THE must-read book of our times. Bruno Aziza, Co-author of best-selling book Drive Business Performance and Worldwide Strategy Lead, Microsoft Business Intelligence Book after book Bernard Marr is redefining the fundamentals of good business management. The Intelligent Company is a must read in these changing times and a reference you will want on your desk every day! Gabriel Bellenger, Accenture Strategy |
business fundamentals for analytics: Introduction to Business Analytics Using Simulation Jonathan P. Pinder, 2022-02-06 Introduction to Business Analytics Using Simulation, Second Edition employs an innovative strategy to teach business analytics. The book uses simulation modeling and analysis as mechanisms to introduce and link predictive and prescriptive modeling. Because managers can't fully assess what will happen in the future, but must still make decisions, the book treats uncertainty as an essential element in decision-making. Its use of simulation gives readers a superior way of analyzing past data, understanding an uncertain future, and optimizing results to select the best decision. With its focus on uncertainty and variability, this book provides a comprehensive foundation for business analytics. Students will gain a better understanding of fundamental statistical concepts that are essential to marketing research, Six-Sigma, financial analysis, and business analytics. - Teaches managers how they can use business analytics to formulate and solve business problems to enhance managerial decision-making - Explains the processes needed to develop, report and analyze business data - Describes how to use and apply business analytics software - Offers expanded coverage on the value and application of prescriptive analytics - Includes a wealth of illustrative exercises that are newly organized by difficulty level - Winner of the 2017 Textbook and Academic Authors Association's (TAA) Most Promising New Textbook Award in the prior edition |
business fundamentals for analytics: Fundamentals of Predictive Analytics with JMP, Second Edition Ron Klimberg, B. D. McCullough, 2017-12-19 Going beyond the theoretical foundation, this step-by-step book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. -- |
business fundamentals for analytics: Big Data Analytics in Cybersecurity Onur Savas, Julia Deng, 2017-09-18 Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research. |
business fundamentals for analytics: Business analyst: a profession and a mindset Yulia Kosarenko, 2019-05-12 What does it mean to be a business analyst? What would you do every day? How will you bring value to your clients? And most importantly, what makes a business analyst exceptional? This book will answer your questions about this challenging career choice through the prism of the business analyst mindset — a concept developed by the author, and its twelve principles demonstrated through many case study examples. Business analyst: a profession and a mindset is a structurally rich read with over 90 figures, tables and models. It offers you more than just techniques and methodologies. It encourages you to understand people and their behaviour as the key to solving business problems. |
business fundamentals for analytics: Business Analytics S. Christian Albright, Wayne L. Winston, 2017 |
business fundamentals for analytics: Essentials of Business Analytics Bhimasankaram Pochiraju, Sridhar Seshadri, 2019-07-10 This comprehensive edited volume is the first of its kind, designed to serve as a textbook for long-duration business analytics programs. It can also be used as a guide to the field by practitioners. The book has contributions from experts in top universities and industry. The editors have taken extreme care to ensure continuity across the chapters. The material is organized into three parts: A) Tools, B) Models and C) Applications. In Part A, the tools used by business analysts are described in detail. In Part B, these tools are applied to construct models used to solve business problems. Part C contains detailed applications in various functional areas of business and several case studies. Supporting material can be found in the appendices that develop the pre-requisites for the main text. Every chapter has a business orientation. Typically, each chapter begins with the description of business problems that are transformed into data questions; and methodology is developed to solve these questions. Data analysis is conducted using widely used software, the output and results are clearly explained at each stage of development. These are finally transformed into a business solution. The companion website provides examples, data sets and sample code for each chapter. |
business fundamentals for analytics: Business Analytics Principles, Concepts, and Applications with SAS Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 2014-10-07 Responding to a shortage of effective content for teaching business analytics, this text offers a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. Business Analytics Principles, Concepts, and Applications with SAS offers a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, Business Analytics Principles, Concepts, and Applications with SAS demonstrates the use of SAS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself. |
business fundamentals for analytics: Big Data Fundamentals Thomas Erl, Wajid Khattak, Paul Buhler, 2015-12-29 “This text should be required reading for everyone in contemporary business.” --Peter Woodhull, CEO, Modus21 “The one book that clearly describes and links Big Data concepts to business utility.” --Dr. Christopher Starr, PhD “Simply, this is the best Big Data book on the market!” --Sam Rostam, Cascadian IT Group “...one of the most contemporary approaches I’ve seen to Big Data fundamentals...” --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data’s fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 “V” characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data’s relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data’s distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning |
business fundamentals for analytics: FUNDAMENTALS OF BUSINESS ANALYTICS (With CD ) R. N. Prasad, Seema Acharya, 2011-08 Market_Desc: Primary MarketEngineering (BE/BTech)/ME/MTech students who are interested to develop conceptual level subject knowledge with examples of industrial strength applications.Secondary MarketMCA/MBA/Business users/business analysts Special Features: · Foreword by Prof R Natarajan, Former Chairman, AICTE, Former Director, IIT Madras.· Excellent authorship.· Single source of introductory knowledge on business intelligence (BI).· Provides a good start for first-time learners typically from the engineering and management discipline.· Covers the complete life cycle of BI/Analytics Application development project.· Helps develop deeper understanding of the subject with an enterprise context, and discusses its application in businesses.· Explains concepts with the help of illustrations, application to real-life scenarios and provides opportunities to test understanding.· States the pre-requisites for each chapter and different reference sources available.· In addition the book also has the following pedagogical features:· Industrial application case studies.· Crossword puzzles/do it yourself exercises/assignments to help with self-assessment. The solutions to these have also been provided. · Glossary of terms.· References/web links/bibliography - generally at the end of every concept.CD Companion:To ensure that concepts can be practiced for deeper understanding at low cost, the book is accompanied with a CD containing:· Step-by-step Hands-On manual on:ü An open source tool, Pentaho Data Integrator (PDI) to explain the process of extraction of data from multiple varied sources.ü MS Excel to explain the concept of analysis.ü MS Access to generate reports on the analyzed data.· An integrated project that encompasses the complete life cycle of a BI project. About The Book: The book promises to be a single source of introductory knowledge on business intelligence which can be taught in one semester. It will provide a good start for first time learners typically from the engineering and management discipline. Business Intelligence subject cannot be studied in isolation. The book provides a holistic coverage beginning with an enterprise context, developing deeper understanding through the use of tools, touching a few domains where BI is embraced and discussing the problems that BI can help solve. It covers the complete life cycle of BI/Analytics project: Covering operational/transactional data sources, data transformation, data mart/warehouse design-build, analytical reporting, and dashboards. To ensure that concepts can be practiced for deeper understanding at low cost, the book is accompanied with step-by-step hands-on manual in the CD. |
business fundamentals for analytics: Win with Advanced Business Analytics Jean-Paul Isson, Jesse Harriott, 2012-09-25 Plain English guidance for strategic business analytics and big data implementation In today's challenging economy, business analytics and big data have become more and more ubiquitous. While some businesses don't even know where to start, others are struggling to move from beyond basic reporting. In some instances management and executives do not see the value of analytics or have a clear understanding of business analytics vision mandate and benefits. Win with Advanced Analytics focuses on integrating multiple types of intelligence, such as web analytics, customer feedback, competitive intelligence, customer behavior, and industry intelligence into your business practice. Provides the essential concept and framework to implement business analytics Written clearly for a nontechnical audience Filled with case studies across a variety of industries Uniquely focuses on integrating multiple types of big data intelligence into your business Companies now operate on a global scale and are inundated with a large volume of data from multiple locations and sources: B2B data, B2C data, traffic data, transactional data, third party vendor data, macroeconomic data, etc. Packed with case studies from multiple countries across a variety of industries, Win with Advanced Analytics provides a comprehensive framework and applications of how to leverage business analytics/big data to outpace the competition. |
business fundamentals for analytics: e-Business Fundamentals Peter Eckersley, Lisa Harris, Paul Jackson, 2003-05-29 This comprehensive textbook considers all of the key business, management and technical issues of e-Business, examining and explaining how technologies can help organizations in both the public and private sectors conduct business in new ways.After addressing the changing nature of the e-Economy and the impact of the dot.com 'bubble' of the late 19 |
business fundamentals for analytics: Business Analytics Using R - A Practical Approach Umesh R Hodeghatta, Umesha Nayak, 2016-12-27 Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals. |
business fundamentals for analytics: Data Mining and Business Analytics with R Johannes Ledolter, 2013-05-28 Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences. |
business fundamentals for analytics: Hands On With Google Data Studio Lee Hurst, 2020-02-05 Learn how to easily transform your data into engaging, interactive visual reports! Data is no longer the sole domain of tech professionals and scientists. Whether in our personal, business, or community lives, data is rapidly increasing in both importance and sheer volume. The ability to visualize all kinds of data is now within reach for anyone with a computer and an internet connection. Google Data Studio, quickly becoming the most popular free tool in data visualization, offers users a flexible, powerful way to transform private and public data into interactive knowledge that can be easily shared and understood. Hands On With Google Data Studio teaches you how to visualize your data today and produce professional quality results quickly and easily. No previous experience is required to get started right away—all you need is this guide, a Gmail account, and a little curiosity to access and visualize data just like large businesses and organizations. Clear, step-by-step instructions help you identify business trends, turn budget data into a report, assess how your websites or business listings are performing, analyze public data, and much more. Practical examples and expert tips are found throughout the text to help you fully understand and apply your new knowledge to a wide array of real-world scenarios. This engaging, reader-friendly guide will enable you to: Use Google Data Studio to access various types of data, from your own personal data to public sources Build your first data set, navigate the Data Studio interface, customize reports, and share your work Learn the fundamentals of data visualization, personal data accessibility, and open data API's Harness the power of publicly accessible data services including Google’s recently released Data Set Search Add banners, logos, custom graphics, and color palettes Hands On With Google Data Studio: A Data Citizens Survival Guide is a must-have resource for anyone starting their data visualization journey, from individuals, consultants, and small business owners to large business and organization managers and leaders. |
business fundamentals for analytics: Business Analytics, Global Edition James R. Evans, 2016-01-29 A balanced and holistic approach to business analytics 'Business Analytics', teaches the fundamental concepts of the emerging field of business analytics and provides vital tools in understanding how data analysis works in today's organizations. Students will learn to apply basic business analytics principles, communicate with analytics professionals, and effectively use and interpret analytic models to make better business decisions. |
business fundamentals for analytics: Business Analytics Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, 2018-03-08 Build valuable skills that are in high demand in today’s businesses with Camm/Cochran/Fry/Ohlmann/Anderson/Sweeney/Williams' market-leading BUSINESS ANALYTICS, 3E. Readers master the full range of analytics while strengthening descriptive, predictive and prescriptive analytic skills. Real-world examples and visuals help illustrate data and results for each topic. Clear, step-by-step instructions guide readers through using various software programs, including Microsoft Excel, Analytic Solver, and JMP Pro, to perform the analyses discussed. Practical, relevant problems at all levels of difficulty reinforce and teach readers to apply the concepts learned. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. |
business fundamentals for analytics: AI-Enabled Analytics for Business Lawrence S. Maisel, Robert J. Zwerling, Jesper H. Sorensen, 2022-01-19 We are entering the era of digital transformation where human and artificial intelligence (AI) work hand in hand to achieve data driven performance. Today, more than ever, businesses are expected to possess the talent, tools, processes, and capabilities to enable their organizations to implement and utilize continuous analysis of past business performance and events to gain forward-looking insight to drive business decisions and actions. AI-Enabled Analytics in Business is your Roadmap to meet this essential business capability. To ensure we can plan for the future vs react to the future when it arrives, we need to develop and deploy a toolbox of tools, techniques, and effective processes to reveal forward-looking unbiased insights that help us understand significant patterns, relationships, and trends. This book promotes clarity to enable you to make better decisions from insights about the future. Learn how advanced analytics ensures that your people have the right information at the right time to gain critical insights and performance opportunities Empower better, smarter decision making by implementing AI-enabled analytics decision support tools Uncover patterns and insights in data, and discover facts about your business that will unlock greater performance Gain inspiration from practical examples and use cases showing how to move your business toward AI-Enabled decision making AI-Enabled Analytics in Business is a must-have practical resource for directors, officers, and executives across various functional disciplines who seek increased business performance and valuation. |
business fundamentals for analytics: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
business fundamentals for analytics: Fundamentals of Clinical Data Science Pieter Kubben, Michel Dumontier, Andre Dekker, 2018-12-21 This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience. |
business fundamentals for analytics: Using Excel for Business Analysis Danielle Stein Fairhurst, 2015-05-18 This is a guide to building financial models for business proposals, to evaluate opportunities, or to craft financial reports. It covers the principles and best practices of financial modelling, including the Excel tools, formulas, and functions to master, and the techniques and strategies necessary to eliminate errors. |
business fundamentals for analytics: Fundamentals of HR Analytics Fermin Diez, Mark Bussin, Venessa Lee, 2019-11-11 Providing practical, hands-on approaches to connect data to HR policies and practices to help influence overall business performance, this book is an essential resource for aspiring, new and experienced HR professionals across a wide range of industrial contexts. |
business fundamentals for analytics: Social Network Analytics for Contemporary Business Organizations Bansal, Himani, Shrivastava, Gulshan, Nguyen, Gia Nhu, Stanciu, Loredana-Mihaela, 2018-03-23 Social technology is quickly becoming a vital tool in our personal, educational, and professional lives. Its use must be further examined in order to determine the role of social media technology in organizational settings to promote business development and growth. Social Network Analytics for Contemporary Business Organizations is a critical scholarly resource that analyzes the application of social media in business applications. Featuring coverage on a broad range of topics, such as business management, dynamic networks, and online interaction, this book is geared towards professionals, researchers, academics, students, managers, and practitioners actively involved in the business industry. |
business fundamentals for analytics: Predictive Analytics for Business Forecasting & Planning J. Eric Wilson, 2020-12 |
business fundamentals for analytics: Essential Business Fundamentals for the Successful Eye Care Practice Savak Teymoorian, 2024-06-01 A compact business education that strategically incorporates 500 keywords to lay the foundation and over 50 action items to initiate meaningful advances and excel in your eye care practice today. Medical training is a difficult journey with enormous amounts of information to absorb over a short time period. The intense time commitment required during this process leaves little opportunity to study any other discipline. However, even the most intelligent and well-intentioned provider cannot care for patients if the front door of the building is closed. Simply put: A fundamental background in business is required to effectively practice medicine. Eye care professionals, which includes their ophthalmic staff, can now fill the critical gap in their education with Essential Business Fundamentals for the Successful Eye Care Practice, providing them the necessary basic tools to make and execute winning practice management decisions. Writing in a high-density format that medical professionals will be familiar with, Dr. Savak Teymoorian combines his physician training and experience as a successful ophthalmologist at Harvard Eye Associates with the knowledge acquired earning his MBA. This unique perspective allows him to provide the proper theory and execution in the business of eye care and present it in an efficient manner like that used in medical education. Each chapter is dedicated to a different subject that would routinely be taught in a masters of business administration degree, tailored specifically for eye care professionals and distilled into the most critical information for a strong foundation. Each section is further enhanced with real life examples seen in ophthalmic care showing how to properly apply business strategies and tactics to obtain the best results. Chapter topics include: Marketing Leadership Negotiations Operations Finance Ophthalmologists, optometrists, and eye care staff will appreciate Essential Business Fundamentals for the Successful Eye Care Practice for its efficient and relevant information to running an eye care practice, whether they are currently in training and want to set themselves up for success or they are already practicing and want to fill in a deficiency in their knowledge. |
business fundamentals for analytics: Computational Business Analytics Subrata Das, 2013-12-14 Learn How to Properly Use the Latest Analytics Approaches in Your Organization Computational Business Analytics presents tools and techniques for descriptive, predictive, and prescriptive analytics applicable across multiple domains. Through many examples and challenging case studies from a variety of fields, practitioners easily see the connections to their own problems and can then formulate their own solution strategies. The book first covers core descriptive and inferential statistics for analytics. The author then enhances numerical statistical techniques with symbolic artificial intelligence (AI) and machine learning (ML) techniques for richer predictive and prescriptive analytics. With a special emphasis on methods that handle time and textual data, the text: Enriches principal component and factor analyses with subspace methods, such as latent semantic analyses Combines regression analyses with probabilistic graphical modeling, such as Bayesian networks Extends autoregression and survival analysis techniques with the Kalman filter, hidden Markov models, and dynamic Bayesian networks Embeds decision trees within influence diagrams Augments nearest-neighbor and k-means clustering techniques with support vector machines and neural networks These approaches are not replacements of traditional statistics-based analytics; rather, in most cases, a generalized technique can be reduced to the underlying traditional base technique under very restrictive conditions. The book shows how these enriched techniques offer efficient solutions in areas, including customer segmentation, churn prediction, credit risk assessment, fraud detection, and advertising campaigns. |
business fundamentals for analytics: An Introduction to Business Analytics Ger Koole, 2019 Business Analytics (BA) is about turning data into decisions. This book covers the full range of BA topics, including statistics, machine learning and optimization, in a way that makes them accessible to a broader audience. Decision makers will gain enough insight into the subject to have meaningful discussions with machine learning specialists, and those starting out as data scientists will benefit from an overview of the field and take their first steps as business analytics specialist. Through this book and the various exercises included, you will be equipped with an understanding of BA, while learning R, a popular tool for statistics and machine learning. |
business fundamentals for analytics: Data Analytics for Intelligent Transportation Systems Mashrur Chowdhury, Kakan Dey, Amy Apon, 2024-11-02 Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics |
business fundamentals for analytics: Business Analytics Sanjiv Jaggia, Alison Kelly (Professor of economics), Kevin Lertwachara, Leida Chen, 2023 We wrote Business Analytics: Communicating with Numbers from the ground up to prepare students to understand, manage, and visualize the data; apply the appropriate analysis tools; and communicate the findings and their relevance. The text seamlessly threads the topics of data wrangling, descriptive analytics, predictive analytics, and prescriptive analytics into a cohesive whole. In the second edition of Business Analytics, we have made substantial revisions that meet the current needs of the instructors teaching the course and the companies that require the relevant skillset. These revisions are based on the feedback of reviewers and users of our first edition. The greatly expanded coverage of the text gives instructors the flexibility to select the topics that best align with their course objectives-- |
business fundamentals for analytics: Business Fundamentals for Engineering Managers C.M. Chang, 2014-08-31 Engineering managers and professionals make a long and lasting impact in the industry by regularly developing technology-based projects, as related to new product development, new service innovation or efficiency-centered process improvement, or both—to create strategic differentiation and operational excellence for their employers. They need certain business fundamentals that enable them to make decisions, based on both technology and business perspectives, leading to new or improved product or service offerings, which are technically feasible, economically viable, marketplace acceptable, and customer enlightening. This book consists of three sets of business fundamentals. The chapter “Cost Accounting and Control” discusses service and product costing, activity-based costing to define overhead expenses, and risk analysis and cost estimation under uncertainty. The chapter “Financial Accounting and Analysis” delineates the key financial statements, financial analyses, balanced scorecard, ratio analysis, and capital asset valuation—including operations, opportunities, and acquisition and mergers. The chapter “Marketing Management” reviews marketing functions, marketing forecasting, marketing segmentation, customers, and other factors affecting marketing in making value-adding contributions. The new business vocabulary and useful analysis tools presented will enable engineering managers to become more effective when interacting with senior management, and to prepare themselves for assuming higher-level corporate responsibilities. |
business fundamentals for analytics: Google Analytics Breakthrough Feras Alhlou, Shiraz Asif, Eric Fettman, 2016-09-06 A complete, start-to-finish guide to Google Analytics instrumentation and reporting Google Analytics Breakthrough is a much-needed comprehensive resource for the world's most widely adopted analytics tool. Designed to provide a complete, best-practices foundation in measurement strategy, implementation, reporting, and optimization, this book systematically demystifies the broad range of Google Analytics features and configurations. Throughout the end-to-end learning experience, you'll sharpen your core competencies, discover hidden functionality, learn to avoid common pitfalls, and develop next-generation tracking and analysis strategies so you can understand what is helping or hindering your digital performance and begin driving more success. Google Analytics Breakthrough offers practical instruction and expert perspectives on the full range of implementation and reporting skills: Learn how to campaign-tag inbound links to uncover the email, social, PPC, and banner/remarketing traffic hiding as other traffic sources and to confidently measure the ROI of each marketing channel Add event tracking to capture the many important user interactions that Google Analytics does not record by default, such as video plays, PDF downloads, scrolling, and AJAX updates Master Google Tag Manager for greater flexibility and process control in implementation Set up goals and Enhanced Ecommerce tracking to measure performance against organizational KPIs and configure conversion funnels to isolate drop-off Create audience segments that map to your audience constituencies, amplify trends, and help identify optimization opportunities Populate custom dimensions that reflect your organization, your content, and your visitors so Google Analytics can speak your language Gain a more complete view of customer behavior with mobile app and cross-device tracking Incorporate related tools and techniques: third-party data visualization, CRM integration for long-term value and lead qualification, marketing automation, phone conversion tracking, usability, and A/B testing Improve data storytelling and foster analytics adoption in the enterprise Millions of organizations have installed Google Analytics, including an estimated 67 percent of Fortune 500 companies, but deficiencies plague most implementations, and inadequate reporting practices continue to hinder meaningful analysis. By following the strategies and techniques in Google Analytics Breakthrough, you can address the gaps in your own still set, transcend the common limitations, and begin using Google Analytics for real competitive advantage. Critical contributions from industry luminaries such as Brian Clifton, Tim Ash, Bryan and Jeffrey Eisenberg, and Jim Sterne – and a foreword by Avinash Kaushik – enhance the learning experience and empower you to drive consistent, real-world improvement through analytics. |
business fundamentals for analytics: Towards Supply Chain Risk Analytics Iris Heckmann, 2016-07-20 In this thesis, Iris Heckmann develops a profound conceptual basis of supply chain risk analytics. She transfers the newly defined concepts for the modelling and operationalization of supply chain risk within simulation and optimization approaches, in order to ease unexpected deviations and disruptions, which are subsumed under the notion of supply chain risk, increasingly aggravating the planning and optimization of supply chains. |
business fundamentals for analytics: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it! |
BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys and….
VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….
ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, especially one that….
INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the person who has or….
AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned before it happens: 2. made….
LEVERAGE | English meaning - Cambridge Dictionary
LEVERAGE definition: 1. the action or advantage of using a lever: 2. power to influence people and get the results you….
ENTREPRENEUR | English meaning - Cambridge Dictionary
ENTREPRENEUR definition: 1. someone who starts their own business, especially when this involves seeing a new opportunity….
CULTIVATE | English meaning - Cambridge Dictionary
CULTIVATE definition: 1. to prepare land and grow crops on it, or to grow a particular crop: 2. to try to develop and….
EQUITY | English meaning - Cambridge Dictionary
EQUITY definition: 1. the value of a company, divided into many equal parts owned by the shareholders, or one of the….
LIAISE | English meaning - Cambridge Dictionary
LIAISE definition: 1. to speak to people in other organizations, etc. in order to work with them or exchange….
BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys and….
VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….
ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, especially one that….
INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the person who has or….
AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned before it happens: 2. made….
LEVERAGE | English meaning - Cambridge Dictionary
LEVERAGE definition: 1. the action or advantage of using a lever: 2. power to influence people and get the results you….
ENTREPRENEUR | English meaning - Cambridge Dictionary
ENTREPRENEUR definition: 1. someone who starts their own business, especially when this involves seeing a new opportunity….
CULTIVATE | English meaning - Cambridge Dictionary
CULTIVATE definition: 1. to prepare land and grow crops on it, or to grow a particular crop: 2. to try to develop and….
EQUITY | English meaning - Cambridge Dictionary
EQUITY definition: 1. the value of a company, divided into many equal parts owned by the shareholders, or one of the….
LIAISE | English meaning - Cambridge Dictionary
LIAISE definition: 1. to speak to people in other organizations, etc. in order to work with them or exchange….