Business Intelligence Data Model



  business intelligence data model: Dimensional Modeling: In a Business Intelligence Environment Chuck Ballard, Daniel M. Farrell, Amit Gupta, Carlos Mazuela, Stanislav Vohnik, IBM Redbooks, 2012-07-31 In this IBM Redbooks publication we describe and demonstrate dimensional data modeling techniques and technology, specifically focused on business intelligence and data warehousing. It is to help the reader understand how to design, maintain, and use a dimensional model for data warehousing that can provide the data access and performance required for business intelligence. Business intelligence is comprised of a data warehousing infrastructure, and a query, analysis, and reporting environment. Here we focus on the data warehousing infrastructure. But only a specific element of it, the data model - which we consider the base building block of the data warehouse. Or, more precisely, the topic of data modeling and its impact on the business and business applications. The objective is not to provide a treatise on dimensional modeling techniques, but to focus at a more practical level. There is technical content for designing and maintaining such an environment, but also business content. For example, we use case studies to demonstrate how dimensional modeling can impact the business intelligence requirements for your business initiatives. In addition, we provide a detailed discussion on the query aspects of BI and data modeling. For example, we discuss query optimization and how you can determine performance of the data model prior to implementation. You need a solid base for your data warehousing infrastructure . . . . a solid data model.
  business intelligence data model: Data Modeling for the Business Steve Hoberman, Donna Burbank, Chris Bradley, 2009 Did you ever try getting Business and IT to agree on the project scope for a new application? Or try getting the Sales & Marketing department to agree on the target audience? Or try bringing new team members up to speed on the hundreds of tables in your data warehouse -- without them dozing off? You can be the hero in each of these and hundreds of other scenarios by building a High-Level Data Model. The High-Level Data Model is a simplified view of our complex environment. It can be a powerful communication tool of the key concepts within our application development projects, business intelligence and master data management programs, and all enterprise and industry initiatives. Learn about the High-Level Data Model and master the techniques for building one, including a comprehensive ten-step approach. Know how to evaluate toolsets for building and storing your models. Practice exercises and walk through a case study to reinforce your modelling skills.
  business intelligence data model: Expert Data Modeling with Power BI Soheil Bakhshi, 2021-06-11 Manage and work with business data effectively by learning data modeling techniques and leveraging the latest features of Power BI Key Features Understand data modeling techniques to get the best out of data using Power BI Define the relationships between data to extract valuable insights Solve a wide variety of business challenges by building optimal data models Book DescriptionThis book is a comprehensive guide to understanding the ins and outs of data modeling and how to create data models using Power BI confidently. You'll learn how to connect data from multiple sources, understand data, define and manage relationships between data, and shape data models to gain deep and detailed insights about your organization. In this book, you'll explore how to use data modeling and navigation techniques to define relationships and create a data model before defining new metrics and performing custom calculations using modeling features. As you advance through the chapters, the book will demonstrate how to create full-fledged data models, enabling you to create efficient data models and simpler DAX code with new data modeling features. With the help of examples, you'll discover how you can solve business challenges by building optimal data models and changing your existing data models to meet evolving business requirements. Finally, you'll learn how to use some new and advanced modeling features to enhance your data models to carry out a wide variety of complex tasks. By the end of this Power BI book, you'll have gained the skills you need to structure data coming from multiple sources in different ways to create optimized data models that support reporting and data analytics.What you will learn Implement virtual tables and time intelligence functionalities in DAX to build a powerful model Identify Dimension and Fact tables and implement them in Power Query Editor Deal with advanced data preparation scenarios while building Star Schema Explore best practices for data preparation and modeling Discover different hierarchies and their common pitfalls Understand complex data models and how to decrease the level of model complexity with different approaches Learn advanced data modeling techniques such as aggregations, incremental refresh, and RLS/OLS Who this book is for This MS Power BI book is for BI users, data analysts, and analysis developers who want to become well-versed with data modeling techniques to make the most of Power BI. You’ll need a solid grasp on basic use cases and functionalities of Power BI and Star Schema functionality before you can dive in.
  business intelligence data model: Agile Data Warehouse Design Lawrence Corr, Jim Stagnitto, 2011-11 Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.
  business intelligence data model: Business Intelligence Carlo Vercellis, 2011-08-10 Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
  business intelligence data model: Integration Challenges for Analytics, Business Intelligence, and Data Mining Azevedo, Ana, Santos, Manuel Filipe, 2020-12-11 As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.
  business intelligence data model: Basics of Power BI Modeling Reza Rad, 2020-09-11 I have been dealing with many Power BI challenges in my professional life as a Power BI consultant and a trainer. Challenges normally come as calculation or DAX questions, or sometimes as a performance question. However, after digging deeper into the problem, soon, it will be revealed that the problem is related to a more fundamental challenge; data modeling.If you have a Power BI implementation with many calculation-related or performance-related issues, I strongly suggest looking into your data model because that is where most of the problems start.A good data model is a great base, which upon that, you can build up many stories of calculations and analysis. A bad data model causes problems on every level that you add upon it, and might sometime cause the whole solution to collapse.Fortunately, data modeling is not rocket science. I explained the basic principles of the data modeling with examples in this book. Use this book as the learning path towards a better data model. Most of the tips mentioned in this book are product-agnostic (such as star-schema, dimension, and fact tables). However, this book is particularly designed and developed for a Power BI product user.This book is for you if you are building a Power BI solution. If your task is only visualizing the existing data, this book might not be needed for you. However, What I have seen in many cases, is that the requirement starts with just visualize the data, and then more data tables appear, and you get into the tunnel of data modeling without knowing the principles of it. This book is a guide for you through that tunnel.
  business intelligence data model: Analyzing Data with Power BI and Power Pivot for Excel Alberto Ferrari, Marco Russo, 2017-04-28 Renowned DAX experts Alberto Ferrari and Marco Russo teach you how to design data models for maximum efficiency and effectiveness. How can you use Excel and Power BI to gain real insights into your information? As you examine your data, how do you write a formula that provides the numbers you need? The answers to both of these questions lie with the data model. This book introduces the basic techniques for shaping data models in Excel and Power BI. It’s meant for readers who are new to data modeling as well as for experienced data modelers looking for tips from the experts. If you want to use Power BI or Excel to analyze data, the many real-world examples in this book will help you look at your reports in a different way–like experienced data modelers do. As you’ll soon see, with the right data model, the correct answer is always a simple one! By reading this book, you will: • Gain an understanding of the basics of data modeling, including tables, relationships, and keys • Familiarize yourself with star schemas, snowflakes, and common modeling techniques • Learn the importance of granularity • Discover how to use multiple fact tables, like sales and purchases, in a complex data model • Manage calendar-related calculations by using date tables • Track historical attributes, like previous addresses of customers or manager assignments • Use snapshots to compute quantity on hand • Work with multiple currencies in the most efficient way • Analyze events that have durations, including overlapping durations • Learn what data model you need to answer your specific business questions About This Book • For Excel and Power BI users who want to exploit the full power of their favorite tools • For BI professionals seeking new ideas for modeling data
  business intelligence data model: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.
  business intelligence data model: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2013-07-01 Updated new edition of Ralph Kimball's groundbreaking book on dimensional modeling for data warehousing and business intelligence! The first edition of Ralph Kimball's The Data Warehouse Toolkit introduced the industry to dimensional modeling, and now his books are considered the most authoritative guides in this space. This new third edition is a complete library of updated dimensional modeling techniques, the most comprehensive collection ever. It covers new and enhanced star schema dimensional modeling patterns, adds two new chapters on ETL techniques, includes new and expanded business matrices for 12 case studies, and more. Authored by Ralph Kimball and Margy Ross, known worldwide as educators, consultants, and influential thought leaders in data warehousing and business intelligence Begins with fundamental design recommendations and progresses through increasingly complex scenarios Presents unique modeling techniques for business applications such as inventory management, procurement, invoicing, accounting, customer relationship management, big data analytics, and more Draws real-world case studies from a variety of industries, including retail sales, financial services, telecommunications, education, health care, insurance, e-commerce, and more Design dimensional databases that are easy to understand and provide fast query response with The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.
  business intelligence data model: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration.
  business intelligence data model: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution.
  business intelligence data model: Business Intelligence David Loshin, 2012-11-27 Business Intelligence: The Savvy Managers Guide, Second Edition, discusses the objectives and practices for designing and deploying a business intelligence (BI) program. It looks at the basics of a BI program, from the value of information and the mechanics of planning for success to data model infrastructure, data preparation, data analysis, integration, knowledge discovery, and the actual use of discovered knowledge. Organized into 21 chapters, this book begins with an overview of the kind of knowledge that can be exposed and exploited through the use of BI. It then proceeds with a discussion of information use in the context of how value is created within an organization, how BI can improve the ways of doing business, and organizational preparedness for exploiting the results of a BI program. It also looks at some of the critical factors to be taken into account in the planning and execution of a successful BI program. In addition, the reader is introduced to considerations for developing the BI roadmap, the platforms for analysis such as data warehouses, and the concepts of business metadata. Other chapters focus on data preparation and data discovery, the business rules approach, and data mining techniques and predictive analytics. Finally, emerging technologies such as text analytics and sentiment analysis are considered. This book will be valuable to data management and BI professionals, including senior and middle-level managers, Chief Information Officers and Chief Data Officers, senior business executives and business staff members, database or software engineers, and business analysts. - Guides managers through developing, administering, or simply understanding business intelligence technology - Keeps pace with the changes in best practices, tools, methods and processes used to transform an organization's data into actionable knowledge - Contains a handy, quick-reference to technologies and terminology
  business intelligence data model: Business Intelligence Strategy and Big Data Analytics Steve Williams, 2016-04-08 Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like big data and big data analytics have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. - Provides ideas for improving the business performance of one's company or business functions - Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies - Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans
  business intelligence data model: Fundamentals of Business Intelligence Wilfried Grossmann, Stefanie Rinderle-Ma, 2015-06-02 This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples.
  business intelligence data model: The Nimble Elephant John Giles, 2012-08-01 “Get it done well and get it done fast” are twin, apparently opposing, demands. Data architects are increasingly expected to deliver quality data models in challenging timeframes, and agile developers are increasingly expected to ensure that their solutions can be easily integrated with the data assets of the overall organization. If you need to deliver quality solutions despite exacting schedules, “The Nimble Elephant” will help by describing proven techniques that leverage the libraries of published data model patterns to rapidly assemble extensible and robust designs. The three sections in the book provide guidelines for applying the lessons to your own situation, so that you can apply the techniques and patterns immediately to your current assignments. The first section, Foundations for Data Agility, addresses some perceived aspects of friction between “data” and “agile” practitioners. As a starting point for resolving the differences, pattern levels of granularity are classified, and their interdependencies exposed. A context of various types of models is established (e.g. conceptual / logical / physical, and industry / enterprise / project), and you will learn how to customize patterns within specific model types. The second section, Steps Towards Data Agility, shares guidelines on generalizing and specializing, with cautions on the dangers of going too far. Creativity in using patterns beyond their intended purpose is encouraged. The short-term “You Ain’t Gonna Need It” (YAGNI) philosophy of agile practitioners, and the longer-term strategic perspectives of architects, are compared and evaluated. Consideration is given to the potential of enterprise views contributing to project-specific models. Other topics include industry models, iterative modeling, creation of patterns when none exist, and patterns for rules-in-data. The section ends with a perspective on the modeler’s possible role in agile projects, followed by a case study. The final section, A Bridge to the Land of Object Orientation, provides a pathway for re-skilling traditional data modelers who want to expand their options by actively engaging with the ranks of object-oriented developers. I’m delighted to see that John has put his extensive experience and broad knowledge of data modeling into print! John’s ability to simplify the complex, and to share his knowledge and enthusiasm – and humor – with colleagues, comes through in this very useful and readable book. I recommend it to anyone working with data. — Monika Remenyi, Senior Data Architect, Telstra John Giles has written a compelling and engaging book about the importance of data modeling patterns in the world of agile computing. His book is clearly and simply written, and it is full of excellent examples drawn from his extensive experience as a practitioner. You will see the enthusiasm and passion that John clearly has for his work in data modeling. And you will see in his book that any interchange with John will always have its fair share of good humor and wisdom! — Professor Ron Weber, Dean, Faculty of IT, Monash University
  business intelligence data model: Hands-On Big Data Modeling James Lee, Tao Wei, Suresh Kumar Mukhiya, 2018-11-30 Solve all big data problems by learning how to create efficient data models Key FeaturesCreate effective models that get the most out of big dataApply your knowledge to datasets from Twitter and weather data to learn big dataTackle different data modeling challenges with expert techniques presented in this bookBook Description Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you’ll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you’ll work with structured and semi-structured data with the help of real-life examples. Once you’ve got to grips with the basics, you’ll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You’ll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you’ll be able to design and develop efficient data models for varying data sizes easily and efficiently. What you will learnGet insights into big data and discover various data modelsExplore conceptual, logical, and big data modelsUnderstand how to model data containing different file typesRun through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modelingCreate data models such as Graph Data and Vector SpaceModel structured and unstructured data using Python and RWho this book is for This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.
  business intelligence data model: Knight's Microsoft Business Intelligence 24-Hour Trainer Brian Knight, Devin Knight, Adam Jorgensen, Patrick LeBlanc, Mike Davis, 2011-11-30 A book-and-video introduction to Microsoft's Business Intelligence tools If you are just starting to get a handle on Microsoft Business Intelligence (BI) tools, this book and accompanying video provides you with the just the right amount of information to perform basic business analysis and reporting. You'll explore the components and related tools that comprise the Microsoft BI toolset as well as the new BI features of Office 2010. After a basic primer on BI and data modeling, the expert team of authors provides you with step-by-step lessons in the book and videos on the accompanying DVD on how to use SQL Server Integration Services, SQL Server Analysis Services, SQL Server Reporting Services, Excel BI (including PowerPivot), and SharePoint. Integrates instructional videos with each of the lessons found in the book to enhance your learning experience Explores the Microsoft Business Intelligence (BI) toolset as well as the new BI features of Office 2010 Encourages you to practice what you've learned in Try It Out sections Contains video demonstrations that walk you through how to tackle each lesson featured in the book With Knight's Microsoft Business Intelligence 24-Hour Trainer, veteran authors present you with an ideal introductory book-and-video package so that you can get started working with the BI toolset immediately! Note: As part of the print version of this title, video lessons are included on DVD. For e-book versions, video lessons can be accessed at wrox.com using a link provided in the interior of the e-book.
  business intelligence data model: Data Modeling Made Simple Steve Hoberman, 2009 Read today's business headlines and you will see that many issues stem from people not having the right data at the right time. Data issues don't always make the front page, yet they exist within every organisation. We need to improve how we manage data -- and the most valuable tool for explaining, vaildating and managing data is a data model. This book provides the business or IT professional with a practical working knowledge of data modelling concepts and best practices. This book is written in a conversational style that encourages you to read it from start to finish and master these ten objectives: Know when a data model is needed and which type of data model is most effective for each situation; Read a data model of any size and complexity with the same confidence as reading a book; Build a fully normalised relational data model, as well as an easily navigatable dimensional model; Apply techniques to turn a logical data model into an efficient physical design; Leverage several templates to make requirements gathering more efficient and accurate; Explain all ten categories of the Data Model Scorecard®; Learn strategies to improve your working relationships with others; Appreciate the impact unstructured data has, and will have, on our data modelling deliverables; Learn basic UML concepts; Put data modelling in context with XML, metadata, and agile development.
  business intelligence data model: Business Intelligence Guidebook Rick Sherman, 2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.
  business intelligence data model: The Microsoft Data Warehouse Toolkit Joy Mundy, Warren Thornthwaite, 2007-03-22 This groundbreaking book is the first in the Kimball Toolkit series to be product-specific. Microsoft’s BI toolset has undergone significant changes in the SQL Server 2005 development cycle. SQL Server 2005 is the first viable, full-functioned data warehouse and business intelligence platform to be offered at a price that will make data warehousing and business intelligence available to a broad set of organizations. This book is meant to offer practical techniques to guide those organizations through the myriad of challenges to true success as measured by contribution to business value. Building a data warehousing and business intelligence system is a complex business and engineering effort. While there are significant technical challenges to overcome in successfully deploying a data warehouse, the authors find that the most common reason for data warehouse project failure is insufficient focus on the business users and business problems. In an effort to help people gain success, this book takes the proven Business Dimensional Lifecycle approach first described in best selling The Data Warehouse Lifecycle Toolkit and applies it to the Microsoft SQL Server 2005 tool set. Beginning with a thorough description of how to gather business requirements, the book then works through the details of creating the target dimensional model, setting up the data warehouse infrastructure, creating the relational atomic database, creating the analysis services databases, designing and building the standard report set, implementing security, dealing with metadata, managing ongoing maintenance and growing the DW/BI system. All of these steps tie back to the business requirements. Each chapter describes the practical steps in the context of the SQL Server 2005 platform. Intended Audience The target audience for this book is the IT department or service provider (consultant) who is: Planning a small to mid-range data warehouse project; Evaluating or planning to use Microsoft technologies as the primary or exclusive data warehouse server technology; Familiar with the general concepts of data warehousing and business intelligence. The book will be directed primarily at the project leader and the warehouse developers, although everyone involved with a data warehouse project will find the book useful. Some of the book’s content will be more technical than the typical project leader will need; other chapters and sections will focus on business issues that are interesting to a database administrator or programmer as guiding information. The book is focused on the mass market, where the volume of data in a single application or data mart is less than 500 GB of raw data. While the book does discuss issues around handling larger warehouses in the Microsoft environment, it is not exclusively, or even primarily, concerned with the unusual challenges of extremely large datasets. About the Authors JOY MUNDY has focused on data warehousing and business intelligence since the early 1990s, specializing in business requirements analysis, dimensional modeling, and business intelligence systems architecture. Joy co-founded InfoDynamics LLC, a data warehouse consulting firm, then joined Microsoft WebTV to develop closed-loop analytic applications and a packaged data warehouse. Before returning to consulting with the Kimball Group in 2004, Joy worked in Microsoft SQL Server product development, managing a team that developed the best practices for building business intelligence systems on the Microsoft platform. Joy began her career as a business analyst in banking and finance. She graduated from Tufts University with a BA in Economics, and from Stanford with an MS in Engineering Economic Systems. WARREN THORNTHWAITE has been building data warehousing and business intelligence systems since 1980. Warren worked at Metaphor for eight years, where he managed the consulting organization and implemented many major data warehouse systems. After Metaphor, Warren managed the enterprise-wide data warehouse development at Stanford University. He then co-founded InfoDynamics LLC, a data warehouse consulting firm, with his co-author, Joy Mundy. Warren joined up with WebTV to help build a world class, multi-terabyte customer focused data warehouse before returning to consulting with the Kimball Group. In addition to designing data warehouses for a range of industries, Warren speaks at major industry conferences and for leading vendors, and is a long-time instructor for Kimball University. Warren holds an MBA in Decision Sciences from the University of Pennsylvania's Wharton School, and a BA in Communications Studies from the University of Michigan. RALPH KIMBALL, PH.D., has been a leading visionary in the data warehouse industry since 1982 and is one of today's most internationally well-known authors, speakers, consultants, and teachers on data warehousing. He writes the Data Warehouse Architect column for Intelligent Enterprise (formerly DBMS) magazine.
  business intelligence data model: The Definitive Guide to DAX Alberto Ferrari, Marco Russo, 2015-10-14 This comprehensive and authoritative guide will teach you the DAX language for business intelligence, data modeling, and analytics. Leading Microsoft BI consultants Marco Russo and Alberto Ferrari help you master everything from table functions through advanced code and model optimization. You’ll learn exactly what happens under the hood when you run a DAX expression, how DAX behaves differently from other languages, and how to use this knowledge to write fast, robust code. If you want to leverage all of DAX’s remarkable power and flexibility, this no-compromise “deep dive” is exactly what you need. Perform powerful data analysis with DAX for Microsoft SQL Server Analysis Services, Excel, and Power BI Master core DAX concepts, including calculated columns, measures, and error handling Understand evaluation contexts and the CALCULATE and CALCULATETABLE functions Perform time-based calculations: YTD, MTD, previous year, working days, and more Work with expanded tables, complex functions, and elaborate DAX expressions Perform calculations over hierarchies, including parent/child hierarchies Use DAX to express diverse and unusual relationships Measure DAX query performance with SQL Server Profiler and DAX Studio
  business intelligence data model: The Data Model Resource Book, Volume 1 Len Silverston, 2011-08-08 A quick and reliable way to build proven databases for core business functions Industry experts raved about The Data Model Resource Book when it was first published in March 1997 because it provided a simple, cost-effective way to design databases for core business functions. Len Silverston has now revised and updated the hugely successful 1st Edition, while adding a companion volume to take care of more specific requirements of different businesses. This updated volume provides a common set of data models for specific core functions shared by most businesses like human resources management, accounting, and project management. These models are standardized and are easily replicated by developers looking for ways to make corporate database development more efficient and cost effective. This guide is the perfect complement to The Data Model Resource CD-ROM, which is sold separately and provides the powerful design templates discussed in the book in a ready-to-use electronic format. A free demonstration CD-ROM is available with each copy of the print book to allow you to try before you buy the full CD-ROM.
  business intelligence data model: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.
  business intelligence data model: E-Business Robert M.X. Wu, Marinela Mircea, 2021-05-19 This book provides the latest viewpoints of scientific research in the field of e-business. It is organized into three sections: “Higher Education and Digital Economy Development”, “Artificial Intelligence in E-Business”, and “Business Intelligence Applications”. Chapters focus on China’s higher education in e-commerce, digital economy development, natural language processing applications in business, Information Technology Governance, Risk and Compliance (IT GRC), business intelligence, and more.
  business intelligence data model: Business Intelligence and Big Data Celina M. Olszak, 2020-11-17 The twenty-first century is a time of intensifying competition and progressive digitization. Individual employees, managers, and entire organizations are under increasing pressure to succeed. The questions facing us today are: What does success mean? Is success a matter of chance and luck or perhaps is success a category that can be planned and properly supported? Business Intelligence and Big Data: Drivers of Organizational Success examines how the success of an organization largely depends on the ability to anticipate and quickly respond to challenges from the market, customers, and other stakeholders. Success is also associated with the potential to process and analyze a variety of information and the means to use modern information and communication technologies (ICTs). Success also requires creative behaviors and organizational cleverness from an organization. The book discusses business intelligence (BI) and Big Data (BD) issues in the context of modern management paradigms and organizational success. It presents a theoretically and empirically grounded investigation into BI and BD application in organizations and examines such issues as: Analysis and interpretation of the essence of BI and BD Decision support Potential areas of BI and BD utilization in organizations Factors determining success with using BI and BD The role of BI and BD in value creation for organizations Identifying barriers and constraints related to BI and BD design and implementation The book presents arguments and evidence confirming that BI and BD may be a trigger for making more effective decisions, improving business processes and business performance, and creating new business. The book proposes a comprehensive framework on how to design and use BI and BD to provide organizational success.
  business intelligence data model: Semantic Modeling for Data Panos Alexopoulos, 2020-08-19 What value does semantic data modeling offer? As an information architect or data science professional, let’s say you have an abundance of the right data and the technology to extract business gold—but you still fail. The reason? Bad data semantics. In this practical and comprehensive field guide, author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft to increase the usability and value of your data and applications. You’ll also explore the pitfalls to avoid and dilemmas to overcome for building high-quality and valuable semantic representations of data. Understand the fundamental concepts, phenomena, and processes related to semantic data modeling Examine the quirks and challenges of semantic data modeling and learn how to effectively leverage the available frameworks and tools Avoid mistakes and bad practices that can undermine your efforts to create good data models Learn about model development dilemmas, including representation, expressiveness and content, development, and governance Organize and execute semantic data initiatives in your organization, tackling technical, strategic, and organizational challenges
  business intelligence data model: Data Model Scorecard Steve Hoberman, 2015-11-01 Data models are the main medium used to communicate data requirements from business to IT, and within IT from analysts, modelers, and architects, to database designers and developers. Therefore it’s essential to get the data model right. But how do you determine right? That’s where the Data Model Scorecard® comes in. The Data Model Scorecard is a data model quality scoring tool containing ten categories aimed at improving the quality of your organization’s data models. Many of my consulting assignments are dedicated to applying the Data Model Scorecard to my client’s data models – I will show you how to apply the Scorecard in this book. This book, written for people who build, use, or review data models, contains the Data Model Scorecard template and an explanation along with many examples of each of the ten Scorecard categories. There are three sections: In Section I, Data Modeling and the Need for Validation, receive a short data modeling primer in Chapter 1, understand why it is important to get the data model right in Chapter 2, and learn about the Data Model Scorecard in Chapter 3. In Section II, Data Model Scorecard Categories, we will explain each of the ten categories of the Data Model Scorecard. There are ten chapters in this section, each chapter dedicated to a specific Scorecard category: · Chapter 4: Correctness · Chapter 5: Completeness · Chapter 6: Scheme · Chapter 7: Structure · Chapter 8: Abstraction · Chapter 9: Standards · Chapter 10: Readability · Chapter 11: Definitions · Chapter 12: Consistency · Chapter 13: Data In Section III, Validating Data Models, we will prepare for the model review (Chapter 14), cover tips to help during the model review (Chapter 15), and then review a data model based upon an actual project (Chapter 16).
  business intelligence data model: Data Model Patterns David C. Hay, 2013
  business intelligence data model: The Data Warehouse Lifecycle Toolkit Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy, Bob Becker, 2008-01-10 A thorough update to the industry standard for designing, developing, and deploying data warehouse and business intelligence systems The world of data warehousing has changed remarkably since the first edition of The Data Warehouse Lifecycle Toolkit was published in 1998. In that time, the data warehouse industry has reached full maturity and acceptance, hardware and software have made staggering advances, and the techniques promoted in the premiere edition of this book have been adopted by nearly all data warehouse vendors and practitioners. In addition, the term business intelligence emerged to reflect the mission of the data warehouse: wrangling the data out of source systems, cleaning it, and delivering it to add value to the business. Ralph Kimball and his colleagues have refined the original set of Lifecycle methods and techniques based on their consulting and training experience. The authors understand first-hand that a data warehousing/business intelligence (DW/BI) system needs to change as fast as its surrounding organization evolves. To that end, they walk you through the detailed steps of designing, developing, and deploying a DW/BI system. You'll learn to create adaptable systems that deliver data and analyses to business users so they can make better business decisions.
  business intelligence data model: Data Virtualization for Business Intelligence Systems Rick van der Lans, 2012-07-25 Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
  business intelligence data model: Oracle Data Warehousing and Business Intelligence Solutions Robert Stackowiak, Joseph Rayman, Rick Greenwald, 2007-01-06 Up-to-date, comprehensive coverage of the Oracle database and business intelligence tools Written by a team of Oracle insiders, this authoritative book provides you with the most current coverage of the Oracle data warehousing platform as well as the full suite of business intelligence tools. You'll learn how to leverage Oracle features and how those features can be used to provide solutions to a variety of needs and demands. Plus, you'll get valuable tips and insight based on the authors' real-world experiences and their own implementations. Avoid many common pitfalls while learning best practices for: Leveraging Oracle technologies to design, build, and manage data warehouses Integrating specific database and business intelligence solutions from other vendors Using the new suite of Oracle business intelligence tools to analyze data for marketing, sales, and more Handling typical data warehouse performance challenges Uncovering initiatives by your business community, security business sponsorship, project staffing, and managing risk
  business intelligence data model: Practical Business Intelligence Ahmed Sherif, 2016-12-21 Learn to get the most out of your business data to optimize your business About This Book This book will enable and empower you to break free of the shackles of spreadsheets Learn to make informed decisions using the data at hand with this highly practical, comprehensive guide This book includes real-world use cases that teach you how analytics can be put to work to optimize your business Using a fictional transactional dataset in raw form, you'll work your way up to ultimately creating a fully-functional warehouse and a fleshed-out BI platform Who This Book Is For This book is for anyone who has wrangled with data to try to perform automated data analysis through visualizations for themselves or their customers. This highly-customized guide is for developers who know a bit about analytics but don't know how to make use of it in the field of business intelligence. What You Will Learn Create a BI environment that enables self-service reporting Understand SQL and the aggregation of data Develop a data model suitable for analytical reporting Connect a data warehouse to the analytic reporting tools Understand the specific benefits behind visualizations with D3.js, R, Tableau, QlikView, and Python Get to know the best practices to develop various reports and applications when using BI tools Explore the field of data analysis with all the data we will use for reporting In Detail Business Intelligence (BI) is at the crux of revolutionizing enterprise. Everyone wants to minimize losses and maximize profits. Thanks to Big Data and improved methodologies to analyze data, Data Analysts and Data Scientists are increasingly using data to make informed decisions. Just knowing how to analyze data is not enough, you need to start thinking how to use data as a business asset and then perform the right analysis to build an insightful BI solution. Efficient BI strives to achieve the automation of data for ease of reporting and analysis. Through this book, you will develop the ability to think along the right lines and use more than one tool to perform analysis depending on the needs of your business. We start off by preparing you for data analytics. We then move on to teach you a range of techniques to fetch important information from various databases, which can be used to optimize your business. The book aims to provide a full end-to-end solution for an environment setup that can help you make informed business decisions and deliver efficient and automated BI solutions to any company. It is a complete guide for implementing Business intelligence with the help of the most powerful tools like D3.js, R, Tableau, Qlikview and Python that are available on the market. Style and approach Packed with real-world examples, this pragmatic guide helps you polish your data and make informed decisions for your business. We cover both business and data analysis perspectives, blending theory and practical hands-on work so that you perceive data as a business asset.
  business intelligence data model: Developing High Quality Data Models Matthew West, 2011-02-07 Developing High Quality Data Models provides an introduction to the key principles of data modeling. It explains the purpose of data models in both developing an Enterprise Architecture and in supporting Information Quality; common problems in data model development; and how to develop high quality data models, in particular conceptual, integration, and enterprise data models. The book is organized into four parts. Part 1 provides an overview of data models and data modeling including the basics of data model notation; types and uses of data models; and the place of data models in enterprise architecture. Part 2 introduces some general principles for data models, including principles for developing ontologically based data models; and applications of the principles for attributes, relationship types, and entity types. Part 3 presents an ontological framework for developing consistent data models. Part 4 provides the full data model that has been in development throughout the book. The model was created using Jotne EPM Technologys EDMVisualExpress data modeling tool. This book was designed for all types of modelers: from those who understand data modeling basics but are just starting to learn about data modeling in practice, through to experienced data modelers seeking to expand their knowledge and skills and solve some of the more challenging problems of data modeling. - Uses a number of common data model patterns to explain how to develop data models over a wide scope in a way that is consistent and of high quality - Offers generic data model templates that are reusable in many applications and are fundamental for developing more specific templates - Develops ideas for creating consistent approaches to high quality data models
  business intelligence data model: Encyclopedia of Organizational Knowledge, Administration, and Technology Khosrow-Pour D.B.A., Mehdi, 2020-09-29 For any organization to be successful, it must operate in such a manner that knowledge and information, human resources, and technology are continually taken into consideration and managed effectively. Business concepts are always present regardless of the field or industry – in education, government, healthcare, not-for-profit, engineering, hospitality/tourism, among others. Maintaining organizational awareness and a strategic frame of mind is critical to meeting goals, gaining competitive advantage, and ultimately ensuring sustainability. The Encyclopedia of Organizational Knowledge, Administration, and Technology is an inaugural five-volume publication that offers 193 completely new and previously unpublished articles authored by leading experts on the latest concepts, issues, challenges, innovations, and opportunities covering all aspects of modern organizations. Moreover, it is comprised of content that highlights major breakthroughs, discoveries, and authoritative research results as they pertain to all aspects of organizational growth and development including methodologies that can help companies thrive and analytical tools that assess an organization’s internal health and performance. Insights are offered in key topics such as organizational structure, strategic leadership, information technology management, and business analytics, among others. The knowledge compiled in this publication is designed for entrepreneurs, managers, executives, investors, economic analysts, computer engineers, software programmers, human resource departments, and other industry professionals seeking to understand the latest tools to emerge from this field and who are looking to incorporate them in their practice. Additionally, academicians, researchers, and students in fields that include but are not limited to business, management science, organizational development, entrepreneurship, sociology, corporate psychology, computer science, and information technology will benefit from the research compiled within this publication.
  business intelligence data model: Business Intelligence Roadmap Larissa Terpeluk Moss, S. Atre, 2003 This software will enable the user to learn about business intelligence roadmap.
  business intelligence data model: Data Modeling for Quality Graham Witt, 2021-01-20 This book is for all data modelers, data architects, and database designers―be they novices who want to learn what's involved in data modeling, or experienced modelers who want to brush up their skills. A novice will not only gain an overview of data modeling, they will also learn how to follow the data modeling process, including the activities required for each step. The experienced practitioner will discover (or rediscover) techniques to ensure that data models accurately reflect business requirements. This book describes rigorous yet easily implemented approaches to: modeling of business information requirements for review by business stakeholders before development of the logical data model normalizing data, based on simple questions rather than the formal definitions which many modelers find intimidating naming and defining concepts and attributes modeling of time-variant data documenting business rules governing both the real world and data data modeling in an Agile project managing data model change in any type of project transforming a business information model to a logical data model against which developers can code implementing the logical data model in a traditional relational DBMS, an SQL:2003-compliant DBMS, an object-relational DBMS, or in XML. Part 1 describes business information models in-depth, including: the importance of modeling business information requirements before embarking on a logical data model business concepts (entity classes) attributes of business concepts attribute classes as an alternative to DBMS data types relationships between business concepts time-variant data generalization and specialization of business concepts naming and defining the components of the business information model business rules governing data, including a distinction between real-world rules and data rules. Part 2 journeys from requirements to a working data resource, covering: sourcing data requirements developing the business information model communicating it to business stakeholders for review, both as diagrams and verbally managing data model change transforming the business information model into a logical data model of stored data for implementation in a relational or object-relational DBMS attribute value representation and data constraints (important but often overlooked) modeling data vault, dimensional and XML data.
  business intelligence data model: Business Intelligence and Data Mining Anil Maheshwari, 2014-12-31 “This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.
  business intelligence data model: Business Analysis for Business Intelligence Bert Brijs, 2016-04-19 Aligning business intelligence (BI) infrastructure with strategy processes not only improves your organization's ability to respond to change, but also adds significant value to your BI infrastructure and development investments. Until now, there has been a need for a comprehensive book on business analysis for BI that starts with a macro view and
  business intelligence data model: Microsoft Excel 2013 Alberto Ferrari, Marco Russo, 2013 Transform your skills, data, and business and create your own BI solutions using software you already know and love: Microsoft Excel. Two business intelligence (BI) experts take you inside PowerPivot functionality for Excel® 2013, with a focus on real world scenarios, problem-solving, and data modeling. You'll learn how to quickly turn mass quantities of data into meaningful information and on-the-job results?no programming required!
BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys …

VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….

ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, …

INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the …

AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned …

BUSINESS | English meaning - Cambridge Dictionary
BUSINESS definition: 1. the activity of buying and selling goods and services: 2. a particular company that buys and….

VENTURE | English meaning - Cambridge Dictionary
VENTURE definition: 1. a new activity, usually in business, that involves risk or uncertainty: 2. to risk going….

ENTERPRISE | English meaning - Cambridge Dictionary
ENTERPRISE definition: 1. an organization, especially a business, or a difficult and important plan, especially one that….

INCUMBENT | English meaning - Cambridge Dictionary
INCUMBENT definition: 1. officially having the named position: 2. to be necessary for someone: 3. the person who has or….

AD HOC | English meaning - Cambridge Dictionary
AD HOC definition: 1. made or happening only for a particular purpose or need, not planned before it happens: 2. made….

LEVERAGE | English meaning - Cambridge Dictionary
LEVERAGE definition: 1. the action or advantage of using a lever: 2. power to influence people and get the results you….

ENTREPRENEUR | English meaning - Cambridge Dictionary
ENTREPRENEUR definition: 1. someone who starts their own business, especially when this involves seeing a new opportunity….

CULTIVATE | English meaning - Cambridge Dictionary
CULTIVATE definition: 1. to prepare land and grow crops on it, or to grow a particular crop: 2. to try to develop and….

EQUITY | English meaning - Cambridge Dictionary
EQUITY definition: 1. the value of a company, divided into many equal parts owned by the shareholders, or one of the….

LIAISE | English meaning - Cambridge Dictionary
LIAISE definition: 1. to speak to people in other organizations, etc. in order to work with them or exchange….