components of data management: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
components of data management: Component Database Systems Klaus R. Dittrich, Andreas Geppert, 2000-10-25 Component Database Systems is a collection of invited chapters by the researchers making the most influential contributions in the database industry's trend toward componentization This book represents the sometimes-divergent, sometimes-convergent approaches taken by leading database vendors as they seek to establish commercially viable componentization strategies. Together, these contributions form the first book devoted entirely to the technical and architectural design of component-based database systems. In addition to detailing the current state of their research, the authors also take up many of the issues affecting the likely future directions of component databases. If you have a stake in the evolution of any of today's leading database systems, this book will make fascinating reading. It will also help prepare you for the technology that is likely to become widely available over the next several years.* Is comprised of contributions from the field's most highly respected researchers, including key figures at IBM, Oracle, Informix, Microsoft, and POET.* Represents the entire spectrum of approaches taken by leading software companies working on DBMS componentization strategies.* Covers component-focused architectures, methods for hooking components into an overall system, and support for component development.* Examines the component technologies that are most valuable to Web-based and multimedia databases.* Presents a thorough classification and overview of component database systems. |
components of data management: Data Management at Scale Piethein Strengholt, 2020-07-29 As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata |
components of data management: Data Governance John Ladley, 2019-11-08 Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition |
components of data management: Data Governance and Data Management Rupa Mahanti, 2021-09-08 This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives. |
components of data management: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure |
components of data management: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve. |
components of data management: Universal Meta Data Models David Marco, Michael Jennings, 2004-03-25 * The heart of the book provides the complete set of models that will support most of an organization's core business functions, including universal meta models for enterprise-wide systems, business meta data and data stewardship, portfolio management, business rules, and XML, messaging, and transactions * Developers can directly adapt these models to their own businesses, saving countless hours of development time * Building effective meta data repositories is complicated and time-consuming, and few IT departments have the necessary expertise to do it right-which is why this book is sure to find a ready audience * Begins with a quick overview of the Meta Data Repository Environment and the business uses of meta data, then goes on to describe the technical architecture followed by the detailed models |
components of data management: The DAMA Dictionary of Data Management Dama International, 2011 A glossary of over 2,000 terms which provides a common data management vocabulary for IT and Business professionals, and is a companion to the DAMA Data Management Body of Knowledge (DAMA-DMBOK). Topics include: Analytics & Data Mining Architecture Artificial Intelligence Business Analysis DAMA & Professional Development Databases & Database Design Database Administration Data Governance & Stewardship Data Management Data Modeling Data Movement & Integration Data Quality Management Data Security Management Data Warehousing & Business Intelligence Document, Record & Content Management Finance & Accounting Geospatial Data Knowledge Management Marketing & Customer Relationship Management Meta-Data Management Multi-dimensional & OLAP Normalization Object-Orientation Parallel Database Processing Planning Process Management Project Management Reference & Master Data Management Semantic Modeling Software Development Standards Organizations Structured Query Language (SQL) XML Development |
components of data management: Data Mesh Zhamak Dehghani, 2022-03-08 Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh. |
components of data management: Field Screening Europe 2001 Wolfgang Breh, Johannes Gottlieb, Heinz Hötzl, Frieder Kern, Tanja Liesch, Reinhard Niessner, 2012-12-06 Field screening indicates field analytical tools, and (quick) methods and strategies for on-site or in-situ environmental analysis and assessment of contamination. Field screening includes not only field analytical methods, such as mobile laboratories, portable analyses, detectors, sensors, or noninvasive techniques, but also reconnaissance strategies and problems of measurement in heterogeneous media, using, among others, new geotechnical and geophysical instruments. This volume contains both oral and poster contributions to the Second International Conference on Strategies and Techniques for the Investigation and Monitoring of Contaminated Sites, Field Screening Europe 2001, held in Karlsruhe, May 14 - May 16, 2001. As an integrated study of environmental contamination, field screening has become a more and more important part of environmental monitoring and the assessment of chemical contaminations. Recent developments are presented in these proceedings. Audience: Environmental engineers, geo-scientists, chemists, biologists, soil scientists, hydrologists and geophysicists. |
components of data management: The "Orange" Model of Data Management Irina Steenbeek, 2019-10-21 *This book is a brief overview of the model and has only 24 pages.*Almost every data management professional, at some point in their career, has come across the following crucial questions:1. Which industry reference model should I use for the implementation of data managementfunctions?2. What are the key data management capabilities that are feasible and applicable to my company?3. How do I measure the maturity of the data management functions and compare that withthose of my peers in the industry4. What are the critical, logical steps in the implementation of data management?The Orange (meta)model of data management provides a collection of techniques and templates for the practical set up of data management through the design and implementation of the data and information value chain, enabled by a set of data management capabilities.This book is a toolkit for advanced data management professionals and consultants thatare involved in the data management function implementation.This book works together with the earlier published The Data Management Toolkit. The Orange model assists in specifying the feasible scope of data management capabilities, that fits company's business goals and resources. The Data Management Toolkit is a practical implementation guide of the chosen data management capabilities. |
components of data management: MASTER DATA MANAGEMENT AND DATA GOVERNANCE, 2/E Alex Berson, Larry Dubov, 2010-12-06 The latest techniques for building a customer-focused enterprise environment The authors have appreciated that MDM is a complex multidimensional area, and have set out to cover each of these dimensions in sufficient detail to provide adequate practical guidance to anyone implementing MDM. While this necessarily makes the book rather long, it means that the authors achieve a comprehensive treatment of MDM that is lacking in previous works. -- Malcolm Chisholm, Ph.D., President, AskGet.com Consulting, Inc. Regain control of your master data and maintain a master-entity-centric enterprise data framework using the detailed information in this authoritative guide. Master Data Management and Data Governance, Second Edition provides up-to-date coverage of the most current architecture and technology views and system development and management methods. Discover how to construct an MDM business case and roadmap, build accurate models, deploy data hubs, and implement layered security policies. Legacy system integration, cross-industry challenges, and regulatory compliance are also covered in this comprehensive volume. Plan and implement enterprise-scale MDM and Data Governance solutions Develop master data model Identify, match, and link master records for various domains through entity resolution Improve efficiency and maximize integration using SOA and Web services Ensure compliance with local, state, federal, and international regulations Handle security using authentication, authorization, roles, entitlements, and encryption Defend against identity theft, data compromise, spyware attack, and worm infection Synchronize components and test data quality and system performance |
components of data management: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration |
components of data management: Climate Data Records from Environmental Satellites National Research Council, Division on Earth and Life Studies, Board on Atmospheric Sciences and Climate, Committee on Climate Data Records from NOAA Operational Satellites, 2004-08-26 The report outlines key elements to consider in designing a program to create climate-quality data from satellites. It examines historical attempts to create climate data records, provides advice on steps for generating, re-analyzing, and storing satellite climate data, and discusses the importance of partnering between agencies, academia, and industry. NOAA will use this report-the first in a two-part study-to draft an implementation plan for climate data records. |
components of data management: Smarter Modeling of IBM InfoSphere Master Data Management Solutions Jan-Bernd Bracht, Joerg Rehr, Markus Siebert, Rouven Thimm, IBM Redbooks, 2012-08-09 This IBM® Redbooks® publication presents a development approach for master data management projects, and in particular, those projects based on IBM InfoSphere® MDM Server. The target audience for this book includes Enterprise Architects, Information, Integration and Solution Architects and Designers, Developers, and Product Managers. Master data management combines a set of processes and tools that defines and manages the non-transactional data entities of an organization. Master data management can provide processes for collecting, consolidating, persisting, and distributing this data throughout an organization. IBM InfoSphere Master Data Management Server creates trusted views of master data that can improve applications and business processes. You can use it to gain control over business information by managing and maintaining a complete and accurate view of master data. You also can use InfoSphere MDM Server to extract maximum value from master data by centralizing multiple data domains. InfoSphere MDM Server provides a comprehensive set of prebuilt business services that support a full range of master data management functionality. |
components of data management: Design Patterns for Cloud Native Applications Kasun Indrasiri, Sriskandarajah Suhothayan, 2021-05-17 With the immense cost savings and scalability the cloud provides, the rationale for building cloud native applications is no longer in question. The real issue is how. With this practical guide, developers will learn about the most commonly used design patterns for building cloud native applications using APIs, data, events, and streams in both greenfield and brownfield development. You'll learn how to incrementally design, develop, and deploy large and effective cloud native applications that you can manage and maintain at scale with minimal cost, time, and effort. Authors Kasun Indrasiri and Sriskandarajah Suhothayan highlight use cases that effectively demonstrate the challenges you might encounter at each step. Learn the fundamentals of cloud native applications Explore key cloud native communication, connectivity, and composition patterns Learn decentralized data management techniques Use event-driven architecture to build distributed and scalable cloud native applications Explore the most commonly used patterns for API management and consumption Examine some of the tools and technologies you'll need for building cloud native systems |
components of data management: Data Governance: The Definitive Guide Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, Jessi Ashdown, 2021-03-08 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness. |
components of data management: Quality Management and Accreditation in Hematopoietic Stem Cell Transplantation and Cellular Therapy Mahmoud Aljurf, John A. Snowden, Patrick Hayden, Kim H. Orchard, Eoin McGrath, 2021-02-19 This open access book provides a concise yet comprehensive overview on how to build a quality management program for hematopoietic stem cell transplantation (HSCT) and cellular therapy. The text reviews all the essential steps and elements necessary for establishing a quality management program and achieving accreditation in HSCT and cellular therapy. Specific areas of focus include document development and implementation, audits and validation, performance measurement, writing a quality management plan, the accreditation process, data management, and maintaining a quality management program. Written by experts in the field, Quality Management and Accreditation in Hematopoietic Stem Cell Transplantation and Cellular Therapy: A Practical Guide is a valuable resource for physicians, healthcare professionals, and laboratory staff involved in the creation and maintenance of a state-of-the-art HSCT and cellular therapy program. |
components of data management: Data Management: a gentle introduction Bas van Gils, 2020-03-03 The overall objective of this book is to show that data management is an exciting and valuable capability that is worth time and effort. More specifically it aims to achieve the following goals: 1. To give a “gentle” introduction to the field of DM by explaining and illustrating its core concepts, based on a mix of theory, practical frameworks such as TOGAF, ArchiMate, and DMBOK, as well as results from real-world assignments. 2. To offer guidance on how to build an effective DM capability in an organization.This is illustrated by various use cases, linked to the previously mentioned theoretical exploration as well as the stories of practitioners in the field. The primary target groups are: busy professionals who “are actively involved with managing data”. The book is also aimed at (Bachelor’s/ Master’s) students with an interest in data management. The book is industry-agnostic and should be applicable in different industries such as government, finance, telecommunications etc. Typical roles for which this book is intended: data governance office/ council, data owners, data stewards, people involved with data governance (data governance board), enterprise architects, data architects, process managers, business analysts and IT analysts. The book is divided into three main parts: theory, practice, and closing remarks. Furthermore, the chapters are as short and to the point as possible and also make a clear distinction between the main text and the examples. If the reader is already familiar with the topic of a chapter, he/she can easily skip it and move on to the next. |
components of data management: Big Data Governance and Perspectives in Knowledge Management Strydom, Sheryl Kruger, Strydom, Moses, 2018-11-16 The world is witnessing the growth of a global movement facilitated by technology and social media. Fueled by information, this movement contains enormous potential to create more accountable, efficient, responsive, and effective governments and businesses, as well as spurring economic growth. Big Data Governance and Perspectives in Knowledge Management is a collection of innovative research on the methods and applications of applying robust processes around data, and aligning organizations and skillsets around those processes. Highlighting a range of topics including data analytics, prediction analysis, and software development, this book is ideally designed for academicians, researchers, information science professionals, software developers, computer engineers, graduate-level computer science students, policymakers, and managers seeking current research on the convergence of big data and information governance as two major trends in information management. |
components of data management: Advanced Data Management Lena Wiese, 2015-10-29 Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market. |
components of data management: Managing Data in Motion April Reeve, 2013-02-26 Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the data in motion in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and big data applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of Big Data |
components of data management: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data. |
components of data management: Data Quality Rupa Mahanti, 2019-03-18 This is not the kind of book that youll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective. from the foreword by Thomas C. Redman, Ph.D., the Data Doc Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout. |
components of data management: Entity Information Life Cycle for Big Data John R. Talburt, Yinle Zhou, 2015-04-20 Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data's impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics. - Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems - Offers practical guidance to help you design and build an EIM system that will successfully handle big data - Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM - Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems - Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system - Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions |
components of data management: Graph Data Management George Fletcher, Jan Hidders, Josep Lluís Larriba-Pey, 2018-10-31 This book presents a comprehensive overview of fundamental issues and recent advances in graph data management. Its aim is to provide beginning researchers in the area of graph data management, or in fields that require graph data management, an overview of the latest developments in this area, both in applied and in fundamental subdomains. The topics covered range from a general introduction to graph data management, to more specialized topics like graph visualization, flexible queries of graph data, parallel processing, and benchmarking. The book will help researchers put their work in perspective and show them which types of tools, techniques and technologies are available, which ones could best suit their needs, and where there are still open issues and future research directions. The chapters are contributed by leading experts in the relevant areas, presenting a coherent overview of the state of the art in the field. Readers should have a basic knowledge of data management techniques as they are taught in computer science MSc programs. |
components of data management: How to Manage, Analyze, and Interpret Survey Data Arlene Fink, 2003 Shows how to manage survey data and become better users of statistical and qualitative survey information. This book explains the basic vocabulary of data management and statistics, and demonstrates the principles and logic behind the selection and interpretation of commonly used statistical and qualitative methods to analyze survey data. |
components of data management: Principles of Database Management Wilfried Lemahieu, Seppe vanden Broucke, Bart Baesens, 2018-07-12 Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science. |
components of data management: In-Memory Data Management Hasso Plattner, Alexander Zeier, 2011-03-08 In the last 50 years the world has been completely transformed through the use of IT. We have now reached a new inflection point. Here we present, for the first time, how in-memory computing is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Analytical data resides in warehouses, synchronized periodically with transactional systems. This separation makes flexible, real-time reporting on current data impossible. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. We describe techniques that allow analytical and transactional processing at the speed of thought and enable new ways of doing business. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes by leveraging in-memory computing. |
components of data management: Data Driven Thomas C. Redman, 2008-09-22 Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making. In Data Driven, Thomas Redman, the Data Doc, shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals: · The special properties that make data such a powerful asset · The hidden costs of flawed, outdated, or otherwise poor-quality data · How to improve data quality for competitive advantage · Strategies for exploiting your data to make better business decisions · The many ways to bring data to market · Ideas for dealing with political struggles over data and concerns about privacy rights Your company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that. |
components of data management: Relational Management and Display of Site Environmental Data David Rich, 2002-06-19 When your environmental project reaches the point where the amount of data seems overwhelming, you will need a robust tool to help you manage it. Written by a recognized expert and software author with over 25 years of industry experience, Relational Management and Display of Site Environmental Data begins with an overview of site data management c |
components of data management: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution. |
components of data management: Data Strategy in Colleges and Universities Kristina Powers, 2019-10-16 This valuable resource helps institutional leaders understand and implement a data strategy at their college or university that maximizes benefits to all creators and users of data. Exploring key considerations necessary for coordination of fragmented resources and the development of an effective, cohesive data strategy, this book brings together professionals from different higher education experiences and perspectives, including academic, administration, institutional research, information technology, and student affairs. Focusing on critical elements of data strategy and governance, each chapter in Data Strategy in Colleges and Universities helps higher education leaders address a frustrating problem with much-needed solutions for fostering a collaborative, data-driven strategy. |
components of data management: The Practitioner's Guide to Data Quality Improvement David Loshin, 2010-11-22 The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. |
components of data management: ADKAR Jeff Hiatt, 2006 In his first complete text on the ADKAR model, Jeff Hiatt explains the origin of the model and explores what drives each building block of ADKAR. Learn how to build awareness, create desire, develop knowledge, foster ability and reinforce changes in your organization. The ADKAR Model is changing how we think about managing the people side of change, and provides a powerful foundation to help you succeed at change. |
components of data management: The Data Management Toolkit: A Step-By-Step Implementation Guide for the Pioneers of Data Management Irina Steenbeek, 2019-03-09 Eight years ago, I joined a new company. My first challenge was to develop an automated management accounting reporting system. A deep analysis of the existing reports showed us the high necessity to implement a singular reporting platform, and we opted to implement a data warehouse. At the time, one of the consultants came to me and said, I heard that we might need data management. I don't know what it is. Check it out. So I started Googling Data management...This book is for professionals who are now in the same position I found myself in eight years ago and for those who want to become a data management pro of a medium sized company.It is a collection of hands-on knowledge, experience and observations on how to implement data management in an effective, feasible and to-the-point way. |
components of data management: Metadata Management with IBM InfoSphere Information Server Wei-Dong Zhu, Tuvia Alon, Gregory Arkus, Randy Duran, Marc Haber, Robert Liebke, Frank Morreale Jr., Itzhak Roth, Alan Sumano, IBM Redbooks, 2011-10-18 What do you know about your data? And how do you know what you know about your data? Information governance initiatives address corporate concerns about the quality and reliability of information in planning and decision-making processes. Metadata management refers to the tools, processes, and environment that are provided so that organizations can reliably and easily share, locate, and retrieve information from these systems. Enterprise-wide information integration projects integrate data from these systems to one location to generate required reports and analysis. During this type of implementation process, metadata management must be provided along each step to ensure that the final reports and analysis are from the right data sources, are complete, and have quality. This IBM® Redbooks® publication introduces the information governance initiative and highlights the immediate needs for metadata management. It explains how IBM InfoSphereTM Information Server provides a single unified platform and a collection of product modules and components so that organizations can understand, cleanse, transform, and deliver trustworthy and context-rich information. It describes a typical implementation process. It explains how InfoSphere Information Server provides the functions that are required to implement such a solution and, more importantly, to achieve metadata management. This book is for business leaders and IT architects with an overview of metadata management in information integration solution space. It also provides key technical details that IT professionals can use in a solution planning, design, and implementation process. |
components of data management: Current Trends in Data Management Technology Asuman Dogac, M. Tamer Özsu, Ozgur Ulusoy, 1999-01-01 Current Trends in Data Management Technology reports on the most recent, important advances in data management as it applies to diverse issues, such as Web information management, workflow systems, electronic commerce, reengineering business processes, object-oriented databases, and more. |
components of data management: Clinical Analytics and Data Management for the DNP Martha L. Sylvia, PhD, MBA, RN, Mary F. Terhaar, PhD, RN, ANEF, FAAN, 2023-01-18 Praise for the first edition: DNP students may struggle with data management, since their projects are not research but quality improvement, and this book covers the subject well. I recommend it for DNP students for use during their capstone projects. Score: 98, 5 Stars -- Doody's Medical Reviews This unique text and reference—the only book to address the full spectrum of clinical data management for the DNP student—instills a fundamental understanding of how clinical data is gathered, used, and analyzed, and how to incorporate this data into a quality DNP project. The new third edition is updated to reflect changes in national health policy such as quality measurements, bundled payments for specialty care, and Advances to the Affordable Care Act (ACA) and evolving programs through the Centers for Medicare and Medicaid Services (CMS). The third edition reflects the revision of 2021 AACN Essentials and provides data sets and other examples in Excel and SPSS format, along with several new chapters. This resource takes the DNP student step-by-step through the complete process of data management, from planning through presentation, clinical applications of data management that are discipline-specific, and customization of statistical techniques to address clinical data management goals. Chapters are brimming with descriptions, resources, and exemplars that are helpful to both faculty and students. Topics spotlight requisite competencies for DNP clinicians and leaders such as phases of clinical data management, statistics and analytics, assessment of clinical and economic outcomes, value-based care, quality improvement, benchmarking, and data visualization. A progressive case study highlights multiple techniques and methods throughout the text. New to the Third Edition: New Chapter: Using EMR Data for the DNP Project New chapter solidifies link between EBP and Analytics for the DNP project New chapter highlights use of workflow mapping to transition between current and future state, while simultaneously visualizing process measures needed to ensure success of the DNP project Includes more examples to provide practical application exercises for students Key Features: Disseminates robust strategies for using available data from everyday practice to support trustworthy evaluation of outcomes Uses multiple tools to meet data management objectives [SPSS, Excel®, Tableau] Presents case studies to illustrate multiple techniques and methods throughout chapters Includes specific examples of the application and utility of these techniques using software that is familiar to graduate nursing students Offers real world examples of completed DNP projects Provides Instructor’s Manual, PowerPoint slides, data sets in SPSS and Excel, and forms for completion of data management and evaluation plan |
英語「component」の意味・読み方・表現 | Weblio英和辞書
2. The computer has many different components.(そのコンピューターには多くの異なる部品がある。) 3. A balanced diet includes many components.(バランスの取れた食事には多くの …
componentsの意味・使い方・読み方 | Weblio英和辞書
componentsの意味や使い方 ***** Scholar, Entrez, Google, WikiPedia 成分, 構成成分, 構成要素, コンポーネント関連語building block, composition, cons... - 約489万語ある英和辞典・和英辞 …
electronic componentsの意味・使い方・読み方 | Weblio英和辞書
「electronic components」の意味・翻訳・日本語 - electronic component(電子部品)の複数形|Weblio英和・和英辞書
英和辞典・和英辞典 - Weblio辞書
約489万語収録の英和辞典・和英辞典。英語のイディオムや熟語も対応している他、英語の発音を音声でも提供。無料で使える日本最大級のオンライン英語辞書サービス。
英語「system」の意味・使い方・読み方 | Weblio英和辞書
A system is a group of components that work together to accomplish an objective システムとは,ある目的を遂行する ために 共に 機能を果す 構成要素の集まり である
aboveの意味・使い方・読み方・覚え方 | Weblio英和辞書
above【前】…より上に,…より高く,…の上に(出て),…の上流に,…の北の方に,(数量など)…を超える... fly above the trees:木の上を飛ぶ. - 研究社 新英和中辞典...【発音】əbˈʌv, əˈbʌv - …
英語「HYDRAULIC」の意味・読み方・表現 | Weblio英和辞書
a durability test of components receiving water pressure, called {hydraulic test}発音を聞く 例文帳に追加. 水圧試験という,水圧を受ける部品の耐久試験 - EDR日英対訳辞書
英語「FACTORY」の意味・使い方・読み方 | Weblio英和辞書
A server component that instantiates other server components. 出典元 索引 用語索引 ランキング コンピューター用語辞典での「FACTORY」の意味
英語「specify」の意味・使い方・読み方 | Weblio英和辞書
「specify」の意味・翻訳・日本語 - (…を)いちいち明示する、明細に言う、明示する、(…を)明細書に記入する、仕分けする|Weblio英和・和英辞書
英語「insulation」の意味・使い方・読み方 | Weblio英和辞書
「insulation」の意味・翻訳・日本語 - 隔離、孤立、絶縁、絶縁体、絶縁物、碍子(がいし)、(建物などの)断熱、遮音、断熱材|Weblio英和・和英辞書
英語「component」の意味・読み方・表現 | Weblio英和辞書
2. The computer has many different components.(そのコンピューターには多くの異なる部品がある。) 3. A balanced diet includes many components.(バランスの取れた食事には多くの …
componentsの意味・使い方・読み方 | Weblio英和辞書
componentsの意味や使い方 ***** Scholar, Entrez, Google, WikiPedia 成分, 構成成分, 構成要素, コンポーネント関連語building block, composition, cons... - 約489万語ある英和辞典・和英辞 …
electronic componentsの意味・使い方・読み方 | Weblio英和辞書
「electronic components」の意味・翻訳・日本語 - electronic component(電子部品)の複数形|Weblio英和・和英辞書
英和辞典・和英辞典 - Weblio辞書
約489万語収録の英和辞典・和英辞典。英語のイディオムや熟語も対応している他、英語の発音を音声でも提供。無料で使える日本最大級のオンライン英語辞書サービス。
英語「system」の意味・使い方・読み方 | Weblio英和辞書
A system is a group of components that work together to accomplish an objective システムとは,ある目的を遂行する ために 共に 機能を果す 構成要素の集まり である
aboveの意味・使い方・読み方・覚え方 | Weblio英和辞書
above【前】…より上に,…より高く,…の上に(出て),…の上流に,…の北の方に,(数量など)…を超える... fly above the trees:木の上を飛ぶ. - 研究社 新英和中辞典...【発音】əbˈʌv, əˈbʌv - …
英語「HYDRAULIC」の意味・読み方・表現 | Weblio英和辞書
a durability test of components receiving water pressure, called {hydraulic test}発音を聞く 例文帳に追加. 水圧試験という,水圧を受ける部品の耐久試験 - EDR日英対訳辞書
英語「FACTORY」の意味・使い方・読み方 | Weblio英和辞書
A server component that instantiates other server components. 出典元 索引 用語索引 ランキング コンピューター用語辞典での「FACTORY」の意味
英語「specify」の意味・使い方・読み方 | Weblio英和辞書
「specify」の意味・翻訳・日本語 - (…を)いちいち明示する、明細に言う、明示する、(…を)明細書に記入する、仕分けする|Weblio英和・和英辞書
英語「insulation」の意味・使い方・読み方 | Weblio英和辞書
「insulation」の意味・翻訳・日本語 - 隔離、孤立、絶縁、絶縁体、絶縁物、碍子(がいし)、(建物などの)断熱、遮音、断熱材|Weblio英和・和英辞書