Computer Science And Programming

Advertisement



  computer science and programming: Cambridge IGCSE® and O Level Computer Science Programming Book for Python Chris Roffey, 2017-02-02 This resource is written to follow the updated Cambridge IGCSE® Computer Science syllabus 0478 with examination from June and November 2016. Cambridge IGCSE® and O Level Computer Science Programming Book for Python accompanies the Cambridge IGCSE and O Level Computer Science coursebook, and is suitable for students and teachers wishing to use Python in their studies. It introduces and develops practical skills to guide students in developing coding solutions to the tasks presented in the book. Starting from simple skills and progressing to more complex challenges, this book shows how to approach a coding problem using Structure Diagrams and Flow Charts, explains programming logic using pseudocode, develops Python programming skills and gives full solutions to the tasks set.
  computer science and programming: Python Programming John M. Zelle, 2004 This book is suitable for use in a university-level first course in computing (CS1), as well as the increasingly popular course known as CS0. It is difficult for many students to master basic concepts in computer science and programming. A large portion of the confusion can be blamed on the complexity of the tools and materials that are traditionally used to teach CS1 and CS2. This textbook was written with a single overarching goal: to present the core concepts of computer science as simply as possible without being simplistic.
  computer science and programming: C Programming for Engineering and Computer Science H. H. Tan, T. B. D'Orazio, 1999
  computer science and programming: Classic Computer Science Problems in Java David Kopec, 2020-12-21 Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. Summary Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. You’ll work through a series of exercises based in computer science fundamentals that are designed to improve your software development abilities, improve your understanding of artificial intelligence, and even prepare you to ace an interview. As you work through examples in search, clustering, graphs, and more, you'll remember important things you've forgotten and discover classic solutions to your new problems! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Whatever software development problem you’re facing, odds are someone has already uncovered a solution. This book collects the most useful solutions devised, guiding you through a variety of challenges and tried-and-true problem-solving techniques. The principles and algorithms presented here are guaranteed to save you countless hours in project after project. About the book Classic Computer Science Problems in Java is a master class in computer programming designed around 55 exercises that have been used in computer science classrooms for years. You’ll work through hands-on examples as you explore core algorithms, constraint problems, AI applications, and much more. What's inside Recursion, memoization, and bit manipulation Search, graph, and genetic algorithms Constraint-satisfaction problems K-means clustering, neural networks, and adversarial search About the reader For intermediate Java programmers. About the author David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. Table of Contents 1 Small problems 2 Search problems 3 Constraint-satisfaction problems 4 Graph problems 5 Genetic algorithms 6 K-means clustering 7 Fairly simple neural networks 8 Adversarial search 9 Miscellaneous problems 10 Interview with Brian Goetz
  computer science and programming: Explorations in Computing John S. Conery, 2014-09-24 An Active Learning Approach to Teaching the Main Ideas in Computing Explorations in Computing: An Introduction to Computer Science and Python Programming teaches computer science students how to use programming skills to explore fundamental concepts and computational approaches to solving problems. Tbook gives beginning students an introduction to
  computer science and programming: A Programmer's Guide to Computer Science William M Springer II, 2020-01-03 You know how to code..but is it enough? Do you feel left out when other programmers talk about asymptotic bounds? Have you failed a job interview because you don't know computer science? The author, a senior developer at a major software company with a PhD in computer science, takes you through what you would have learned while earning a four-year computer science degree. Volume one covers the most frequently referenced topics, including algorithms and data structures, graphs, problem-solving techniques, and complexity theory. When you finish this book, you'll have the tools you need to hold your own with people who have - or expect you to have - a computer science degree.
  computer science and programming: Introduction to Programming and Computer Science Anthony Ralston, 1978
  computer science and programming: Practical Programming Paul Gries, Jennifer Campbell, Jason Montojo, 2017-12-06 Classroom-tested by tens of thousands of students, this new edition of the bestselling intro to programming book is for anyone who wants to understand computer science. Learn about design, algorithms, testing, and debugging. Discover the fundamentals of programming with Python 3.6--a language that's used in millions of devices. Write programs to solve real-world problems, and come away with everything you need to produce quality code. This edition has been updated to use the new language features in Python 3.6.
  computer science and programming: The Science of Programming David Gries, 2012-12-06 Describes basic programming principles and their step-by- step applications.Numerous examples are included.
  computer science and programming: Everything You Need to Ace Computer Science and Coding in One Big Fat Notebook Workman Publishing, 2020-04-28 From the editors of Brain Quest, America’s #1 educational bestseller! This Big Fat Notebook makes it all “sink in” with key concepts, mnemonic devices, definitions, diagrams, and doodles to help you understand computer science. Including: Computing systems Binary code Algorithms Computational thinking Loops, events, and procedures Programming in Scratch and Python Boolean Expressions Web development Cybersecurity HTML CSS …and more! The Big Fat Notebook series is built on a simple and irresistible conceit—borrowing the notes from the smartest kid in class. Each book in the series meets Common Core State Standards, Next Generation Science Standards, and state history standards, and are vetted by National and State Teacher of the Year Award–winning teachers. They make learning fun and are the perfect next step for every kid who grew up on Brain Quest.
  computer science and programming: Structure and Interpretation of Computer Programs Harold Abelson, Gerald Jay Sussman, 2022-05-03 A new version of the classic and widely used text adapted for the JavaScript programming language. Since the publication of its first edition in 1984 and its second edition in 1996, Structure and Interpretation of Computer Programs (SICP) has influenced computer science curricula around the world. Widely adopted as a textbook, the book has its origins in a popular entry-level computer science course taught by Harold Abelson and Gerald Jay Sussman at MIT. SICP introduces the reader to central ideas of computation by establishing a series of mental models for computation. Earlier editions used the programming language Scheme in their program examples. This new version of the second edition has been adapted for JavaScript. The first three chapters of SICP cover programming concepts that are common to all modern high-level programming languages. Chapters four and five, which used Scheme to formulate language processors for Scheme, required significant revision. Chapter four offers new material, in particular an introduction to the notion of program parsing. The evaluator and compiler in chapter five introduce a subtle stack discipline to support return statements (a prominent feature of statement-oriented languages) without sacrificing tail recursion. The JavaScript programs included in the book run in any implementation of the language that complies with the ECMAScript 2020 specification, using the JavaScript package sicp provided by the MIT Press website.
  computer science and programming: Computer Programming for Absolute Beginners Joakim Wassberg, 2020-07-31 Get to grips with the building blocks of programming languages and get started on your programming journey without a computer science degree Key FeaturesUnderstand the fundamentals of a computer program and apply the concepts you learn to different programming languagesGain the confidence to write your first computer programExplore tips, techniques, and best practices to start coding like a professional programmerBook Description Learning how to code has many advantages, and gaining the right programming skills can have a massive impact on what you can do with your current skill set and the way you advance in your career. This book will be your guide to learning computer programming easily, helping you overcome the difficulties in understanding the major constructs in any mainstream programming language. Computer Programming for Absolute Beginners starts by taking you through the building blocks of any programming language with thorough explanations and relevant examples in pseudocode. You'll understand the relationship between computer programs and programming languages and how code is executed on the computer. The book then focuses on the different types of applications that you can create with your programming knowledge. You'll delve into programming constructs, learning all about statements, operators, variables, and data types. As you advance, you'll see how to control the flow of your programs using control structures and reuse your code using functions. Finally, you'll explore best practices that will help you write code like a pro. By the end of this book, you'll be prepared to learn any programming language and take control of your career by adding coding to your skill set. What you will learnGet to grips with basic programming language concepts such as variables, loops, selection and functionsUnderstand what a program is and how the computer executes itExplore different programming languages and learn about the relationship between source code and executable codeSolve problems using various paradigms such as procedural programming, object oriented programming, and functional programmingWrite high-quality code using several coding conventions and best practicesBecome well-versed with how to track and fix bugs in your programsWho this book is for This book is for beginners who have never programmed before and are looking to enter the world of programming. This includes anyone who is about to start studying programming and wants a head start, or simply wants to learn how to program on their own.
  computer science and programming: Scientific Programming and Computer Architecture Divakar Viswanath, 2017-07-28 A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to get under the hood, and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
  computer science and programming: Cambridge IGCSE® Computer Science Programming Book Richard Morgan, 2015-08-06 This resource is written to follow the updated Cambridge IGCSE® Computer Science syllabus 0478 with examination from June and November 2016.
  computer science and programming: Introduction to Computation and Programming Using Python, second edition John V. Guttag, 2016-08-12 The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.
  computer science and programming: Discovering Computer Science Jessen Havill, 2020-10-12 Havill's problem-driven approach introduces algorithmic concepts in context and motivates students with a wide range of interests and backgrounds. -- Janet Davis, Associate Professor and Microsoft Chair of Computer Science, Whitman College This book looks really great and takes exactly the approach I think should be used for a CS 1 course. I think it really fills a need in the textbook landscape. -- Marie desJardins, Dean of the College of Organizational, Computational, and Information Sciences, Simmons University Discovering Computer Science is a refreshing departure from introductory programming texts, offering students a much more sincere introduction to the breadth and complexity of this ever-growing field. -- James Deverick, Senior Lecturer, The College of William and Mary This unique introduction to the science of computing guides students through broad and universal approaches to problem solving in a variety of contexts and their ultimate implementation as computer programs. -- Daniel Kaplan, DeWitt Wallace Professor, Macalester College Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming is a problem-oriented introduction to computational problem solving and programming in Python, appropriate for a first course for computer science majors, a more targeted disciplinary computing course or, at a slower pace, any introductory computer science course for a general audience. Realizing that an organization around language features only resonates with a narrow audience, this textbook instead connects programming to students’ prior interests using a range of authentic problems from the natural and social sciences and the digital humanities. The presentation begins with an introduction to the problem-solving process, contextualizing programming as an essential component. Then, as the book progresses, each chapter guides students through solutions to increasingly complex problems, using a spiral approach to introduce Python language features. The text also places programming in the context of fundamental computer science principles, such as abstraction, efficiency, testing, and algorithmic techniques, offering glimpses of topics that are traditionally put off until later courses. This book contains 30 well-developed independent projects that encourage students to explore questions across disciplinary boundaries, over 750 homework exercises, and 300 integrated reflection questions engage students in problem solving and active reading. The accompanying website — https://www.discoveringcs.net — includes more advanced content, solutions to selected exercises, sample code and data files, and pointers for further exploration.
  computer science and programming: Computer Science in K-12 Shuchi Grover, 2020-04 Coding teaches our students the essence of logical thinking and problem solving while also preparing them for a world in which computing is becoming increasingly pervasive. While there's excitement and enthusiasm about programming becoming an intrinsic part of K-12 curricula the world over, there's also growing anxiety about preparing teachers to teach effectively at all grade levels.This book strives to be an essential, enduring, practical guide for every K-12 teacher anywhere who is either teaching or planning to teach computer science and programming at any grade level. To this end, readers will discover:? An A-to-Z organization that affords comprehensive insight into teaching introductory programming.? 26 chapters that cover foundational concepts, practices and well-researched pedagogies related to teaching introductory programming as an integral part of K-12 computer science. Cumulatively these chapters address the two salient building blocks of effective teaching of introductory programming-what content to teach (concepts and practices) and how to teach (pedagogy).? Concrete ideas and rich grade-appropriate examples inspired by practice and research for classroom use.? Perspectives and experiences shared by educators and scholars who are actively practicing and/or examiningthe teaching of computer science and programming in K-12 classrooms.
  computer science and programming: Problem Solving with Computers Paul Calter, 1973
  computer science and programming: Computer Science Programming Basics in Ruby Ophir Frieder, Gideon Frieder, David Grossman, 2013-04-18 If you know basic high-school math, you can quickly learn and apply the core concepts of computer science with this concise, hands-on book. Led by a team of experts, you’ll quickly understand the difference between computer science and computer programming, and you’ll learn how algorithms help you solve computing problems. Each chapter builds on material introduced earlier in the book, so you can master one core building block before moving on to the next. You’ll explore fundamental topics such as loops, arrays, objects, and classes, using the easy-to-learn Ruby programming language. Then you’ll put everything together in the last chapter by programming a simple game of tic-tac-toe. Learn how to write algorithms to solve real-world problems Understand the basics of computer architecture Examine the basic tools of a programming language Explore sequential, conditional, and loop programming structures Understand how the array data structure organizes storage Use searching techniques and comparison-based sorting algorithms Learn about objects, including how to build your own Discover how objects can be created from other objects Manipulate files and use their data in your software
  computer science and programming: An Introduction to the Analysis of Algorithms Robert Sedgewick, Philippe Flajolet, 2013-01-18 Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field. Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for predicting algorithm performance and for comparing different algorithms on the basis of performance. Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of algorithms that are playing a critical role in the evolution of our modern computational infrastructure. Improvements and additions in this new edition include Upgraded figures and code An all-new chapter introducing analytic combinatorics Simplified derivations via analytic combinatorics throughout The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s The Art of Computer Programming books—and provide the background they need to keep abreast of new research. [Sedgewick and Flajolet] are not only worldwide leaders of the field, they also are masters of exposition. I am sure that every serious computer scientist will find this book rewarding in many ways. —From the Foreword by Donald E. Knuth
  computer science and programming: Computation Structures Stephen A. Ward, Robert H. Halstead, 1990 Computer Systems Organization -- general.
  computer science and programming: Think Java Allen B. Downey, Chris Mayfield, 2016-05-06 Currently used at many colleges, universities, and high schools, this hands-on introduction to computer science is ideal for people with little or no programming experience. The goal of this concise book is not just to teach you Java, but to help you think like a computer scientist. You’ll learn how to program—a useful skill by itself—but you’ll also discover how to use programming as a means to an end. Authors Allen Downey and Chris Mayfield start with the most basic concepts and gradually move into topics that are more complex, such as recursion and object-oriented programming. Each brief chapter covers the material for one week of a college course and includes exercises to help you practice what you’ve learned. Learn one concept at a time: tackle complex topics in a series of small steps with examples Understand how to formulate problems, think creatively about solutions, and write programs clearly and accurately Determine which development techniques work best for you, and practice the important skill of debugging Learn relationships among input and output, decisions and loops, classes and methods, strings and arrays Work on exercises involving word games, graphics, puzzles, and playing cards
  computer science and programming: Introduction to Programming in Python Robert Sedgewick, Kevin Wayne, Robert Dondero, 2015-05-27 Today, anyone in a scientific or technical discipline needs programming skills. Python is an ideal first programming language, and Introduction to Programming in Python is the best guide to learning it. Princeton University’s Robert Sedgewick, Kevin Wayne, and Robert Dondero have crafted an accessible, interdisciplinary introduction to programming in Python that emphasizes important and engaging applications, not toy problems. The authors supply the tools needed for students to learn that programming is a natural, satisfying, and creative experience. This example-driven guide focuses on Python’s most useful features and brings programming to life for every student in the sciences, engineering, and computer science. Coverage includes Basic elements of programming: variables, assignment statements, built-in data types, conditionals, loops, arrays, and I/O, including graphics and sound Functions, modules, and libraries: organizing programs into components that can be independently debugged, maintained, and reused Object-oriented programming and data abstraction: objects, modularity, encapsulation, and more Algorithms and data structures: sort/search algorithms, stacks, queues, and symbol tables Examples from applied math, physics, chemistry, biology, and computer science—all compatible with Python 2 and 3 Drawing on their extensive classroom experience, the authors provide Q&As, exercises, and opportunities for creative practice throughout. An extensive amount of supplementary information is available at introcs.cs.princeton.edu/python. With source code, I/O libraries, solutions to selected exercises, and much more, this companion website empowers people to use their own computers to teach and learn the material.
  computer science and programming: Introduction to Computer Science: Coding Kathleen M. Austin, Lorraine N. Bergkvist, 2017-08-16 Learn the basics of computer science through coding with Scratch, App Inventor, Alice, and HTML.
  computer science and programming: Essential Computer Science Paul D. Crutcher, Neeraj Kumar Singh, Peter Tiegs, 2021-06-26 Understand essential computer science concepts and skills. This book focuses on the foundational and fundamental concepts upon which expertise in specific areas can be developed, including computer architecture, programming language, algorithm and data structure, operating systems, computer networks, distributed systems, security, and more. According to code.org, there are 500,000 open programming positions available in the US— compared to an annual crop of just 50,000 graduating computer science majors. The US Department of Labor predicted that there will be almost a million and a half computer science jobs in the very near future, but only enough programmers to fill roughly one third of these jobs. To bridge the gap, many people not formally trained in computer science are employed in programming jobs. Although they are able to start programming and coding quickly, it often takes them time to acquire the necessary understanding to gain the requisite skills to become an efficient computer engineer or advanced developer. What You Will Learn The fundamentals of how a computer works The basics of computer programming and programming paradigms How to write efficient programs How the hardware and software work together to provide a good user experience and enhance the usability of the system How computers can talk to each other How to ensure the security of the system The fundamentals of cloud offerings, implications/trade-offs, and deployment/adoption configurations The fundamentals of machine learning Who This Book Is For Computer programmers lacking a formal education in computer science, and anyone with a formal education in computer science, looking to develop a general understanding of computer science fundamentals
  computer science and programming: Coding the Matrix Philip N. Klein, 2013-07 An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by doing, writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant xkcd comics. Chapters: The Function, The Field, The Vector, The Vector Space, The Matrix, The Basis, Dimension, Gaussian Elimination, The Inner Product, Special Bases, The Singular Value Decomposition, The Eigenvector, The Linear Program A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.
  computer science and programming: The Elements of Computing Systems Noam Nisan, Shimon Schocken, 2008 This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system.
  computer science and programming: Computer Systems Randal E.. Bryant, David Richard O'Hallaron, 2013-07-23 For Computer Systems, Computer Organization and Architecture courses in CS, EE, and ECE departments. Few students studying computer science or computer engineering will ever have the opportunity to build a computer system. On the other hand, most students will be required to use and program computers on a near daily basis. Computer Systems: A Programmer's Perspective introduces the important and enduring concepts that underlie computer systems by showing how these ideas affect the correctness, performance, and utility of application programs. The text's hands-on approach (including a comprehensive set of labs) helps students understand the under-the-hood operation of a modern computer system and prepares them for future courses in systems topics such as compilers, computer architecture, operating systems, and networking.
  computer science and programming: Computer Engineering for Babies Chase Roberts, 2021-10-20 An introduction to computer engineering for babies. Learn basic logic gates with hands on examples of buttons and an output LED.
  computer science and programming: The Cambridge Handbook of Computing Education Research Sally A. Fincher, Anthony V. Robins, 2019-02-13 This is an authoritative introduction to Computing Education research written by over 50 leading researchers from academia and the industry.
  computer science and programming: Introduction to Computer Science Douglas W. Nance, Thomas L. Naps, 1992
  computer science and programming: Code Charles Petzold, 2022-08-02 The classic guide to how computers work, updated with new chapters and interactive graphics For me, Code was a revelation. It was the first book about programming that spoke to me. It started with a story, and it built up, layer by layer, analogy by analogy, until I understood not just the Code, but the System. Code is a book that is as much about Systems Thinking and abstractions as it is about code and programming. Code teaches us how many unseen layers there are between the computer systems that we as users look at every day and the magical silicon rocks that we infused with lightning and taught to think. - Scott Hanselman, Partner Program Director, Microsoft, and host of Hanselminutes Computers are everywhere, most obviously in our laptops and smartphones, but also our cars, televisions, microwave ovens, alarm clocks, robot vacuum cleaners, and other smart appliances. Have you ever wondered what goes on inside these devices to make our lives easier but occasionally more infuriating? For more than 20 years, readers have delighted in Charles Petzold's illuminating story of the secret inner life of computers, and now he has revised it for this new age of computing. Cleverly illustrated and easy to understand, this is the book that cracks the mystery. You'll discover what flashlights, black cats, seesaws, and the ride of Paul Revere can teach you about computing, and how human ingenuity and our compulsion to communicate have shaped every electronic device we use. This new expanded edition explores more deeply the bit-by-bit and gate-by-gate construction of the heart of every smart device, the central processing unit that combines the simplest of basic operations to perform the most complex of feats. Petzold's companion website, CodeHiddenLanguage.com, uses animated graphics of key circuits in the book to make computers even easier to comprehend. In addition to substantially revised and updated content, new chapters include: Chapter 18: Let's Build a Clock! Chapter 21: The Arithmetic Logic Unit Chapter 22: Registers and Busses Chapter 23: CPU Control Signals Chapter 24: Jumps, Loops, and Calls Chapter 28: The World Brain From the simple ticking of clocks to the worldwide hum of the internet, Code reveals the essence of the digital revolution.
  computer science and programming: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  computer science and programming: HT THINK LIKE A COMPUTER SCIEN Jeffrey Elkner, Allen B. Downey, Chris Meyers, 2016-10-04 The goal of this book is to teach you to think like a computer scientist. This way of thinking combines some of the best features of mathematics, engineering, and natural science. Like mathematicians, computer scientists use formal languages to denote ideas (specifically computations). Like engineers, they design things, assembling components into systems and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of complex systems, form hypotheses, and test predictions. The single most important skill for a computer scientist is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills. That's why this chapter is called, The way of the program. On one level, you will be learning to program, a useful skill by itself. On another level, you will use programming as a means to an end. As we go along, that end will become clearer.
  computer science and programming: The Psychology of Computer Programming Gerald M. Weinberg, 1998 Discover or Revisit One of the Most Popular Books in Computing This landmark 1971 classic is reprinted with a new preface, chapter-by-chapter commentary, and straight-from-the-heart observations on topics that affect the professional life of programmers. Long regarded as one of the first books to pioneer a people-oriented approach to computing, The Psychology of Computer Programming endures as a penetrating analysis of the intelligence, skill, teamwork, and problem-solving power of the computer programmer. Finding the chapters strikingly relevant to today's issues in programming, Gerald M. Weinberg adds new insights and highlights the similarities and differences between now and then. Using a conversational style that invites the reader to join him, Weinberg reunites with some of his most insightful writings on the human side of software engineering. Topics include egoless programming, intelligence, psychological measurement, personality factors, motivation, training, social problems on large projects, problem-solving ability, programming language design, team formation, the programming environment, and much more. Dorset House Publishing is proud to make this important text available to new generations of programmers--and to encourage readers of the first edition to return to its valuable lessons.
  computer science and programming: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  computer science and programming: Everything You Need to Ace Computer Science and Coding in One Big Fat Notebook - UK Edition Grant Smith, Workman Publishing, 2020-04 The newest addition to the wildly successful Big Fat Notebook series, with 3.99 million copies in print: a lively, information-packed, and fully illustrated guide to Computer Science and Coding for upper middle-grade readers.
  computer science and programming: Programming for Computations - Python Svein Linge, Hans Petter Langtangen, 2016-07-25 This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
  computer science and programming: The Pragmatic Programmer Andrew Hunt, David Thomas, 1999-10-20 What others in the trenches say about The Pragmatic Programmer... “The cool thing about this book is that it’s great for keeping the programming process fresh. The book helps you to continue to grow and clearly comes from people who have been there.” — Kent Beck, author of Extreme Programming Explained: Embrace Change “I found this book to be a great mix of solid advice and wonderful analogies!” — Martin Fowler, author of Refactoring and UML Distilled “I would buy a copy, read it twice, then tell all my colleagues to run out and grab a copy. This is a book I would never loan because I would worry about it being lost.” — Kevin Ruland, Management Science, MSG-Logistics “The wisdom and practical experience of the authors is obvious. The topics presented are relevant and useful.... By far its greatest strength for me has been the outstanding analogies—tracer bullets, broken windows, and the fabulous helicopter-based explanation of the need for orthogonality, especially in a crisis situation. I have little doubt that this book will eventually become an excellent source of useful information for journeymen programmers and expert mentors alike.” — John Lakos, author of Large-Scale C++ Software Design “This is the sort of book I will buy a dozen copies of when it comes out so I can give it to my clients.” — Eric Vought, Software Engineer “Most modern books on software development fail to cover the basics of what makes a great software developer, instead spending their time on syntax or technology where in reality the greatest leverage possible for any software team is in having talented developers who really know their craft well. An excellent book.” — Pete McBreen, Independent Consultant “Since reading this book, I have implemented many of the practical suggestions and tips it contains. Across the board, they have saved my company time and money while helping me get my job done quicker! This should be a desktop reference for everyone who works with code for a living.” — Jared Richardson, Senior Software Developer, iRenaissance, Inc. “I would like to see this issued to every new employee at my company....” — Chris Cleeland, Senior Software Engineer, Object Computing, Inc. “If I’m putting together a project, it’s the authors of this book that I want. . . . And failing that I’d settle for people who’ve read their book.” — Ward Cunningham Straight from the programming trenches, The Pragmatic Programmer cuts through the increasing specialization and technicalities of modern software development to examine the core process--taking a requirement and producing working, maintainable code that delights its users. It covers topics ranging from personal responsibility and career development to architectural techniques for keeping your code flexible and easy to adapt and reuse. Read this book, and you'll learn how to Fight software rot; Avoid the trap of duplicating knowledge; Write flexible, dynamic, and adaptable code; Avoid programming by coincidence; Bullet-proof your code with contracts, assertions, and exceptions; Capture real requirements; Test ruthlessly and effectively; Delight your users; Build teams of pragmatic programmers; and Make your developments more precise with automation. Written as a series of self-contained sections and filled with entertaining anecdotes, thoughtful examples, and interesting analogies, The Pragmatic Programmer illustrates the best practices and major pitfalls of many different aspects of software development. Whether you're a new coder, an experienced programmer, or a manager responsible for software projects, use these lessons daily, and you'll quickly see improvements in personal productivity, accuracy, and job satisfaction. You'll learn skills and develop habits and attitudes that form the foundation for long-term success in your career. You'll become a Pragmatic Programmer.
  computer science and programming: Computer Science Robert Sedgewick, Kevin Wayne, 2016-06-17 Named a Notable Book in the 21st Annual Best of Computing list by the ACM! Robert Sedgewick and Kevin Wayne’s Computer Science: An Interdisciplinary Approach is the ideal modern introduction to computer science with Java programming for both students and professionals. Taking a broad, applications-based approach, Sedgewick and Wayne teach through important examples from science, mathematics, engineering, finance, and commercial computing. The book demystifies computation, explains its intellectual underpinnings, and covers the essential elements of programming and computational problem solving in today’s environments. The authors begin by introducing basic programming elements such as variables, conditionals, loops, arrays, and I/O. Next, they turn to functions, introducing key modular programming concepts, including components and reuse. They present a modern introduction to object-oriented programming, covering current programming paradigms and approaches to data abstraction. Building on this foundation, Sedgewick and Wayne widen their focus to the broader discipline of computer science. They introduce classical sorting and searching algorithms, fundamental data structures and their application, and scientific techniques for assessing an implementation’s performance. Using abstract models, readers learn to answer basic questions about computation, gaining insight for practical application. Finally, the authors show how machine architecture links the theory of computing to real computers, and to the field’s history and evolution. For each concept, the authors present all the information readers need to build confidence, together with examples that solve intriguing problems. Each chapter contains question-and-answer sections, self-study drills, and challenging problems that demand creative solutions. Companion web site (introcs.cs.princeton.edu/java) contains Extensive supplementary information, including suggested approaches to programming assignments, checklists, and FAQs Graphics and sound libraries Links to program code and test data Solutions to selected exercises Chapter summaries Detailed instructions for installing a Java programming environment Detailed problem sets and projects Companion 20-part series of video lectures is available at informit.com/title/9780134493831
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …

Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …

What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …

Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …

Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.

What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …

Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top …

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform …