computer biology and medicine: Analyzing Network Data in Biology and Medicine Nataša Pržulj, 2019-03-28 Introduces biological concepts and biotechnologies producing the data, graph and network theory, cluster analysis and machine learning, using real-world biological and medical examples. |
computer biology and medicine: Regenerative Biology and Medicine David L. Stocum, 2012-06-07 Regenerative Biology and Medicine, Second Edition — Winner of a 2013 Highly Commended BMA Medical Book Award for Medicine — discusses the fundamentals of regenerative biology and medicine. It provides a comprehensive overview, which integrates old and new data into an ever-clearer global picture. The book is organized into three parts. Part I discusses the mechanisms and the basic biology of regeneration, while Part II deals with the strategies of regenerative medicine developed for restoring tissue, organ, and appendage structures. Part III reflects on the achievements of regenerative biology and medicine; future challenges; bioethical issues that need to be addressed; and the most promising developments in regenerative medicine. The book is designed for multiple audiences: undergraduate students, graduate students, medical students and postdoctoral fellows, and research investigators interested in an overall synthesis of this field. It will also appeal to investigators from fields not directly related to regenerative biology and medicine, such as chemistry, informatics, computer science, mathematics, physics, and engineering. - Highly Commended 2013 BMA Medical Book Award for Medicine - Includes coverage of skin, hair, teeth, cornea, and central neural tissues - Provides description of regenetive medicine in digestive, respiratory, urogenital, musculoskeletal, and cardiovascular systems - Includes amphibians as powerful research models with discussion of appendage regeneration in amphibians and mammals |
computer biology and medicine: Artificial Intelligence in Medicine David Riaño, Szymon Wilk, Annette ten Teije, 2019-06-19 This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning. |
computer biology and medicine: Computational Systems Biology of Cancer Emmanuel Barillot, Laurence Calzone, Philippe Hupe, Jean-Philippe Vert, Andrei Zinovyev, 2012-08-25 The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net. |
computer biology and medicine: Advanced Imaging in Biology and Medicine Ch.W. Sensen, Benedikt Hallgrimsson, 2008-12-03 A picture says more than a thousand words. This is something that we all know to be true. Imaging has been important since the early days of medicine and bi- ogy, as seen in the anatomical studies of Leonardo Da Vinci or Andreas Vesalius. More than 100 years ago, the ?rst noninvasive imaging technologies, such as K- rad Roentgen’s X-ray technology,were applied to the medical ?eld—and while still crude—revolutionized medical diagnosis. Today, every patient will be exposed to some kind of advanced imaging technology such as medical resonance imaging, computed tomography or four-dimensional ultrasound during their lifetime. Many diseases, such as brain tumors, are initially diagnosed solely by imaging, and most of the surgical planning relies on the patient imagery. 4D ultrasound is available to expecting parents who wish to create unique early memories of the new baby, and it may soon be used for the morphometric diagnosis of malformations that may one day be treatable—inutero! Light and electron microscopy are unequal brethren, which have contributed to most of our knowledge about the existence and organization of cells, tissues and microorganisms. Every student of biology or medicine is introduced to the fascinating images of the microcosm. New advances have converted these im- ing technologies, which were considered by many to be antiquated, into powerful tools for research in systems biology and related ?elds. |
computer biology and medicine: Modeling in Computational Biology and Biomedicine Frédéric Cazals, Pierre Kornprobst, 2012-11-06 Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines. Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience. |
computer biology and medicine: Biomedical Computing Joseph A. November, 2012-06-01 Winner of the Computer History Museum Prize of the Special Interest Group: Computers, Information, and Society Imagine biology and medicine today without computers. What would laboratory work be like if electronic databases and statistical software did not exist? Would disciplines like genomics even be feasible if we lacked the means to manage and manipulate huge volumes of digital data? How would patients fare in a world absent CT scans, programmable pacemakers, and computerized medical records? Today, computers are a critical component of almost all research in biology and medicine. Yet, just fifty years ago, the study of life was by far the least digitized field of science, its living subject matter thought too complex and dynamic to be meaningfully analyzed by logic-driven computers. In this long-overdue study, historian Joseph November explores the early attempts, in the 1950s and 1960s, to computerize biomedical research in the United States. Computers and biomedical research are now so intimately connected that it is difficult to imagine when such critical work was offline. Biomedical Computing transports readers back to such a time and investigates how computers first appeared in the research lab and doctor's office. November examines the conditions that made possible the computerization of biology—including strong technological, institutional, and political support from the National Institutes of Health—and shows not only how digital technology transformed the life sciences but also how the intersection of the two led to important developments in computer architecture and software design. The history of this phenomenon has been only vaguely understood. November's thoroughly researched and lively study makes clear for readers the motives behind computerizing the study of life and how that technology profoundly affects biomedical research today. |
computer biology and medicine: Applied Computing in Medicine and Health Dhiya Al-Jumeily, Abir Hussain, Conor Mallucci, Carol Oliver, 2015-08-21 Applied Computing in Medicine and Health is a comprehensive presentation of on-going investigations into current applied computing challenges and advances, with a focus on a particular class of applications, primarily artificial intelligence methods and techniques in medicine and health. Applied computing is the use of practical computer science knowledge to enable use of the latest technology and techniques in a variety of different fields ranging from business to scientific research. One of the most important and relevant areas in applied computing is the use of artificial intelligence (AI) in health and medicine. Artificial intelligence in health and medicine (AIHM) is assuming the challenge of creating and distributing tools that can support medical doctors and specialists in new endeavors. The material included covers a wide variety of interdisciplinary perspectives concerning the theory and practice of applied computing in medicine, human biology, and health care. Particular attention is given to AI-based clinical decision-making, medical knowledge engineering, knowledge-based systems in medical education and research, intelligent medical information systems, intelligent databases, intelligent devices and instruments, medical AI tools, reasoning and metareasoning in medicine, and methodological, philosophical, ethical, and intelligent medical data analysis. - Discusses applications of artificial intelligence in medical data analysis and classifications - Provides an overview of mobile health and telemedicine with specific examples and case studies - Explains how behavioral intervention technologies use smart phones to support a patient centered approach - Covers the design and implementation of medical decision support systems in clinical practice using an applied case study approach |
computer biology and medicine: Computational Biology Scott T. Kelley, Dennis Didulo, 2018-01-01 This textbook is for anyone who needs to learn the basics of bioinformatics—the use of computational methods to better understand biological systems. Computational Biology covers the principles and applications of the computational methods used to study DNA, RNA, and proteins, including using biological databases such as NCBI and UniProt; performing BLAST, sequence alignments, and structural predictions; and creating phylogenetic trees. It includes a primer that can be used as a jumping off point for learning computer programming for bioinformatics. This text can be used as a self-study guide, as a course focused on computational methods in biology/bioinformatics, or to supplement general courses that touch on topics included within the book. Computational Biology's robust interactive online components “gamify” the study of bioinformatics, allowing the reader to practice randomly generated problems on their own time to build confidence and skill and gain practical real-world experience. The online component also assures that the content being taught is up to date and accurately reflects the ever-changing landscape of bioinformatics web-based programs. |
computer biology and medicine: Biomedical Informatics Edward H. Shortliffe, James J. Cimino, 2013-12-02 The practice of modern medicine and biomedical research requires sophisticated information technologies with which to manage patient information, plan diagnostic procedures, interpret laboratory results, and carry out investigations. Biomedical Informatics provides both a conceptual framework and a practical inspiration for this swiftly emerging scientific discipline at the intersection of computer science, decision science, information science, cognitive science, and biomedicine. Now revised and in its third edition, this text meets the growing demand by practitioners, researchers, and students for a comprehensive introduction to key topics in the field. Authored by leaders in medical informatics and extensively tested in their courses, the chapters in this volume constitute an effective textbook for students of medical informatics and its areas of application. The book is also a useful reference work for individual readers needing to understand the role that computers can play in the provision of clinical services and the pursuit of biological questions. The volume is organized so as first to explain basic concepts and then to illustrate them with specific systems and technologies. |
computer biology and medicine: Handbook of Research on Computational and Systems Biology Limin Angela Liu, Dongqing Wei, Yixue Li, 2011 This book offers information on the state-of-the-art development in the fields of computational biology and systems biology, presenting methods, tools, and applications of these fields by many leading experts around the globe--Provided by publisher. |
computer biology and medicine: Biomedical Informatics Edward H. Shortliffe, James J. Cimino, 2006-12-02 This book focuses on the role of computers in the provision of medical services. It provides both a conceptual framework and a practical approach for the implementation and management of IT used to improve the delivery of health care. Inspired by a Stanford University training program, it fills the need for a high quality text in computers and medicine. It meets the growing demand by practitioners, researchers, and students for a comprehensive introduction to key topics in the field. Completely revised and expanded, this work includes several new chapters filled with brand new material. |
computer biology and medicine: Introduction to Computer-Intensive Methods of Data Analysis in Biology Derek A. Roff, 2006-05-25 Publisher Description |
computer biology and medicine: Intelligence-Based Medicine Anthony C. Chang, 2020-06-27 Intelligence-Based Medicine: Data Science, Artificial Intelligence, and Human Cognition in Clinical Medicine and Healthcare provides a multidisciplinary and comprehensive survey of artificial intelligence concepts and methodologies with real life applications in healthcare and medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and the data science domains that is symmetric and balanced. The content consists of basic concepts of artificial intelligence and its real-life applications in a myriad of medical areas as well as medical and surgical subspecialties. It brings section summaries to emphasize key concepts delineated in each section; mini-topics authored by world-renowned experts in the respective key areas for their personal perspective; and a compendium of practical resources, such as glossary, references, best articles, and top companies. The goal of the book is to inspire clinicians to embrace the artificial intelligence methodologies as well as to educate data scientists about the medical ecosystem, in order to create a transformational paradigm for healthcare and medicine by using this emerging new technology. - Covers a wide range of relevant topics from cloud computing, intelligent agents, to deep reinforcement learning and internet of everything - Presents the concepts of artificial intelligence and its applications in an easy-to-understand format accessible to clinicians and data scientists - Discusses how artificial intelligence can be utilized in a myriad of subspecialties and imagined of the future - Delineates the necessary elements for successful implementation of artificial intelligence in medicine and healthcare |
computer biology and medicine: Computational Systems Biology Andres Kriete, Roland Eils, 2013-11-26 This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function. |
computer biology and medicine: Current Topics in Computational Molecular Biology Tao Jiang, Ying Xu, Michael Q. Zhang, 2002 A survey of current topics in computational molecular biology. Computational molecular biology, or bioinformatics, draws on the disciplines of biology, mathematics, statistics, physics, chemistry, computer science, and engineering. It provides the computational support for functional genomics, which links the behavior of cells, organisms, and populations to the information encoded in the genomes, as well as for structural genomics. At the heart of all large-scale and high-throughput biotechnologies, it has a growing impact on health and medicine. This survey of computational molecular biology covers traditional topics such as protein structure modeling and sequence alignment, and more recent ones such as expression data analysis and comparative genomics. It combines algorithmic, statistical, database, and AI-based methods for studying biological problems. The book also contains an introductory chapter, as well as one on general statistical modeling and computational techniques in molecular biology. Each chapter presents a self-contained review of a specific subject. Not for sale in China, including Hong Kong. |
computer biology and medicine: Computational Genome Analysis Richard C. Deonier, Simon Tavaré, Michael S. Waterman, 2005-12-27 This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters. |
computer biology and medicine: Visual Computing for Medicine Bernhard Preim, Charl P Botha, 2013-11-07 Visual Computing for Medicine, Second Edition, offers cutting-edge visualization techniques and their applications in medical diagnosis, education, and treatment. The book includes algorithms, applications, and ideas on achieving reliability of results and clinical evaluation of the techniques covered. Preim and Botha illustrate visualization techniques from research, but also cover the information required to solve practical clinical problems. They base the book on several years of combined teaching and research experience. This new edition includes six new chapters on treatment planning, guidance and training; an updated appendix on software support for visual computing for medicine; and a new global structure that better classifies and explains the major lines of work in the field. - Complete guide to visual computing in medicine, fully revamped and updated with new developments in the field - Illustrated in full color - Includes a companion website offering additional content for professors, source code, algorithms, tutorials, videos, exercises, lessons, and more |
computer biology and medicine: Cancer Systems Biology Edwin Wang, 2010-05-04 The unprecedented amount of data produced with high-throughput experimentation forces biologists to employ mathematical representation and computation to glean meaningful information in systems-level biology. Applying this approach to the underlying molecular mechanisms of tumorgenesis, cancer research is enjoying a series of new discoveries and biological insights. Unique in its dualistic approach, this book introduces the concepts and theories of systems biology and their applications in cancer research. It presents basic cancer biology and cutting-edge topics of cancer research for computational biologists alongside systems biology analysis tools for experimental biologists. |
computer biology and medicine: Computer Simulation and Data Analysis in Molecular Biology and Biophysics Victor Bloomfield, 2009-06-05 This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive. |
computer biology and medicine: Computational Network Analysis with R Matthias Dehmer, Yongtang Shi, Frank Emmert-Streib, 2016-12-12 This new title in the well-established Quantitative Network Biology series includes innovative and existing methods for analyzing network data in such areas as network biology and chemoinformatics. With its easy-to-follow introduction to the theoretical background and application-oriented chapters, the book demonstrates that R is a powerful language for statistically analyzing networks and for solving such large-scale phenomena as network sampling and bootstrapping. Written by editors and authors with an excellent track record in the field, this is the ultimate reference for R in Network Analysis. |
computer biology and medicine: Systemic Approaches in Bioinformatics and Computational Systems Biology Paola Lecca, Dan Tulpan, Kanagasabai Rajaraman, 2012 This book presents new techniques that have resulted from the application of computer science methods to the organization and interpretation of biological data, covering three subject areas: bioinformatics, computational biology, and computational systems biology-- |
computer biology and medicine: Guide for the Care and Use of Laboratory Animals National Research Council, Division on Earth and Life Studies, Institute for Laboratory Animal Research, Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 2011-01-27 A respected resource for decades, the Guide for the Care and Use of Laboratory Animals has been updated by a committee of experts, taking into consideration input from the scientific and laboratory animal communities and the public at large. The Guide incorporates new scientific information on common laboratory animals, including aquatic species, and includes extensive references. It is organized around major components of animal use: Key concepts of animal care and use. The Guide sets the framework for the humane care and use of laboratory animals. Animal care and use program. The Guide discusses the concept of a broad Program of Animal Care and Use, including roles and responsibilities of the Institutional Official, Attending Veterinarian and the Institutional Animal Care and Use Committee. Animal environment, husbandry, and management. A chapter on this topic is now divided into sections on terrestrial and aquatic animals and provides recommendations for housing and environment, husbandry, behavioral and population management, and more. Veterinary care. The Guide discusses veterinary care and the responsibilities of the Attending Veterinarian. It includes recommendations on animal procurement and transportation, preventive medicine (including animal biosecurity), and clinical care and management. The Guide addresses distress and pain recognition and relief, and issues surrounding euthanasia. Physical plant. The Guide identifies design issues, providing construction guidelines for functional areas; considerations such as drainage, vibration and noise control, and environmental monitoring; and specialized facilities for animal housing and research needs. The Guide for the Care and Use of Laboratory Animals provides a framework for the judgments required in the management of animal facilities. This updated and expanded resource of proven value will be important to scientists and researchers, veterinarians, animal care personnel, facilities managers, institutional administrators, policy makers involved in research issues, and animal welfare advocates. |
computer biology and medicine: Computational Cancer Biology Mathukumalli Vidyasagar, 2012-11-28 This brief introduces people with a basic background in probability theory to various problems in cancer biology that are amenable to analysis using methods of probability theory and statistics. The title mentions “cancer biology” and the specific illustrative applications reference cancer data but the methods themselves are more broadly applicable to all aspects of computational biology. Aside from providing a self-contained introduction to basic biology and to cancer, the brief describes four specific problems in cancer biology that are amenable to the application of probability-based methods. The application of these methods is illustrated by applying each of them to actual data from the biology literature. After reading the brief, engineers and mathematicians should be able to collaborate fruitfully with their biologist colleagues on a wide variety of problems. |
computer biology and medicine: Use of Computers in Biology and Medicine Robert Steven Ledley, 1965 |
computer biology and medicine: Artificial Neural Networks in Medicine and Biology H. Malmgren, Magnus Borga, 2000-04-12 This volume comprises a selection of papers presented at ANNIMAB-1, the first conference to focus specifically on the topics of ANNs in medicine and biology. It covers three main areas: The medical applications of ANNs, such as in diagnosis and outcome prediction, medical image analysis, and medical signal processing; The uses of ANNs in biology outside clinical medicine, such as in data analysis, in molecular biology, and in simulations of biological systems; The theoretical aspects of ANNs, examining recent developments in learning algorithms and the possible role of ANNs in the medical decision process. Summarising the state-of-the-art and analysing the relationship between ANN techniques and other available methods, it also points to possible future biological and medical uses of ANNs. Essential reading for all neural network theorists, it will also be of interest to biologists and physicians with an interest in modelling and advanced statistical techniques. |
computer biology and medicine: Data Acquisition and Processing in Biology and Medicine Kurt Enslein, 1962 |
computer biology and medicine: Bioinformatics Basics Lukas K. Buehler, Hooman H. Rashidi, 2005-06-23 Every researcher in genomics and proteomics now has access to public domain databases containing literally billions of data entries. However, without the right analytical tools, and an understanding of the biological significance of the data, cataloging and interpreting the molecular evolutionary processes buried in those databases is difficult, if |
computer biology and medicine: Bioinformatics and Computational Biology Basant K. Tiwary, 2021-11-23 This textbook introduces fundamental concepts of bioinformatics and computational biology to the students and researchers in biology, medicine, veterinary science, agriculture, and bioengineering . The respective chapters provide detailed information on biological databases, sequence alignment, molecular evolution, next-generation sequencing, systems biology, and statistical computing using R. The book also presents a case-based discussion on clinical, veterinary, agricultural bioinformatics, and computational bioengineering for application-based learning in the respective fields. Further, it offers readers guidance on reconstructing and analysing biological networks and highlights computational methods used in systems medicine and genome-wide association mapping of diseases. Given its scope, this textbook offers an essential introductory book on bioinformatics and computational biology for undergraduate and graduate students in the life sciences, botany, zoology, physiology, biotechnology, bioinformatics, and genomic science as well as systems biology, bioengineering and the agricultural, and veterinary sciences. |
computer biology and medicine: Perl Programming for Medicine and Biology Jules J. Berman, 2007 Written for biomedical professionals and hospital practitioners interested in creating their own programs, Perl Programming for Medicine and Biology, discusses and reviews biomedical data resources, data standards, data organization, medicolegal and ethical conduct for data miners, and grants-related data sharing responsibilities. It teaches readers the basic Perl programming skills necessary for collecting, analyzing, and distributing biomedical data and provides solutions to in-depth problems that face researchers and healthcare professionals. Non-technical Background sections open each chapter to help non-programmers easily comprehend programming procedures. Explanations are provided for the biomedical issues underlying the Perl scripts that follow, and examples of real-world implementation are provided. Perl Programming for Medicine and Biology will show you how to transform, merge, and examine large and complex databases with ease. |
computer biology and medicine: Encyclopedia of Bioinformatics and Computational Biology , 2018-08-21 Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases |
computer biology and medicine: Methods in Computational Biology Ross Carlson, Herbert Sauro, 2019-07-03 Modern biology is rapidly becoming a study of large sets of data. Understanding these data sets is a major challenge for most life sciences, including the medical, environmental, and bioprocess fields. Computational biology approaches are essential for leveraging this ongoing revolution in omics data. A primary goal of this Special Issue, entitled “Methods in Computational Biology”, is the communication of computational biology methods, which can extract biological design principles from complex data sets, described in enough detail to permit the reproduction of the results. This issue integrates interdisciplinary researchers such as biologists, computer scientists, engineers, and mathematicians to advance biological systems analysis. The Special Issue contains the following sections: • Reviews of Computational Methods • Computational Analysis of Biological Dynamics: From Molecular to Cellular to Tissue/Consortia Levels • The Interface of Biotic and Abiotic Processes • Processing of Large Data Sets for Enhanced Analysis • Parameter Optimization and Measurement |
computer biology and medicine: Bioinformatics and Computational Biology Hamid R. Arabnia, Fernando G. Tinetti, Quoc-Nam Tran, 2020-03-13 Proceedings of the 2019 International Conference on Bioinformatics & Computational Biology (BIOCOMP'19) held July 29th - August 1st, 2019 in Las Vegas, Nevada. |
computer biology and medicine: The Computer-Based Patient Record Committee on Improving the Patient Record, Institute of Medicine, 1997-10-28 Most industries have plunged into data automation, but health care organizations have lagged in moving patients' medical records from paper to computers. In its first edition, this book presented a blueprint for introducing the computer-based patient record (CPR). The revised edition adds new information to the original book. One section describes recent developments, including the creation of a computer-based patient record institute. An international chapter highlights what is new in this still-emerging technology. An expert committee explores the potential of machine-readable CPRs to improve diagnostic and care decisions, provide a database for policymaking, and much more, addressing these key questions: Who uses patient records? What technology is available and what further research is necessary to meet users' needs? What should government, medical organizations, and others do to make the transition to CPRs? The volume also explores such issues as privacy and confidentiality, costs, the need for training, legal barriers to CPRs, and other key topics. |
computer biology and medicine: Medical Image Analysis Alejandro Frangi, Jerry Prince, Milan Sonka, 2023-09-20 Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing |
computer biology and medicine: Computational Genomics with R Altuna Akalin, 2020-12-16 Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015. |
computer biology and medicine: Catalyzing Inquiry at the Interface of Computing and Biology National Research Council, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Committee on Frontiers at the Interface of Computing and Biology, 2006-01-01 Advances in computer science and technology and in biology over the last several years have opened up the possibility for computing to help answer fundamental questions in biology and for biology to help with new approaches to computing. Making the most of the research opportunities at the interface of computing and biology requires the active participation of people from both fields. While past attempts have been made in this direction, circumstances today appear to be much more favorable for progress. To help take advantage of these opportunities, this study was requested of the NRC by the National Science Foundation, the Department of Defense, the National Institutes of Health, and the Department of Energy. The report provides the basis for establishing cross-disciplinary collaboration between biology and computing including an analysis of potential impediments and strategies for overcoming them. The report also presents a wealth of examples that should encourage students in the biological sciences to look for ways to enable them to be more effective users of computing in their studies. |
computer biology and medicine: Mathematics and Computer Science in Biology and Medicine Conference on Mathematics and Computer Science in Biology and Medicine. Oxford, Medical Research Council (Great Britain), 1965 |
computer biology and medicine: Ontologies for Bioinformatics Kenneth Baclawski, Tianhua Niu, 2006 Ontologies as a critical framework for the vast amounts of data in the postgenomic era: an introduction to the basic concepts and applications of ontologies and ontology languages for the life sciences. Recent advances in biotechnology, spurred by the Human Genome Project, have resulted in the accumulation of vast amounts of new data. Ontologies--computer-readable, precise formulations of concepts (and the relationship among them) in a given field--are a critical framework for coping with the exponential growth of valuable biological data generated by high-output technologies. This book introduces the key concepts and applications of ontologies and ontology languages in bioinformatics and will be an essential guide for bioinformaticists, computer scientists, and life science researchers.The three parts of Ontologies for Bioinformatics ask, and answer, three pivotal questions: what ontologies are; how ontologies are used; and what ontologies could be (which focuses on how ontologies could be used for reasoning with uncertainty). The authors first introduce the notion of an ontology, from hierarchically organized ontologies to more general network organizations, and survey the best-known ontologies in biology and medicine. They show how to construct and use ontologies, classifying uses into three categories: querying, viewing, and transforming data to serve diverse purposes. Contrasting deductive, or Boolean, logic with inductive reasoning, they describe the goal of a synthesis that supports both styles of reasoning. They discuss Bayesian networks as a way of expressing uncertainty, describe data fusion, and propose that the World Wide Web can be extended to support reasoning with uncertainty. They call this inductive reasoning web the Bayesian web. |
computer biology and medicine: Biomedical Informatics Edward H. Shortliffe, James J. Cimino, 2021-05-31 This 5th edition of this essential textbook continues to meet the growing demand of practitioners, researchers, educators, and students for a comprehensive introduction to key topics in biomedical informatics and the underlying scientific issues that sit at the intersection of biomedical science, patient care, public health and information technology (IT). Emphasizing the conceptual basis of the field rather than technical details, it provides the tools for study required for readers to comprehend, assess, and utilize biomedical informatics and health IT. It focuses on practical examples, a guide to additional literature, chapter summaries and a comprehensive glossary with concise definitions of recurring terms for self-study or classroom use. Biomedical Informatics: Computer Applications in Health Care and Biomedicine reflects the remarkable changes in both computing and health care that continue to occur and the exploding interest in the role that IT must play in care coordination and the melding of genomics with innovations in clinical practice and treatment. New and heavily revised chapters have been introduced on human-computer interaction, mHealth, personal health informatics and precision medicine, while the structure of the other chapters has undergone extensive revisions to reflect the developments in the area. The organization and philosophy remain unchanged, focusing on the science of information and knowledge management, and the role of computers and communications in modern biomedical research, health and health care. |
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top …
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components …