Advertisement
computation examples in math: Introduction To Computational Mathematics (2nd Edition) Xin-she Yang, 2014-11-26 This unique book provides a comprehensive introduction to computational mathematics, which forms an essential part of contemporary numerical algorithms, scientific computing and optimization. It uses a theorem-free approach with just the right balance between mathematics and numerical algorithms. This edition covers all major topics in computational mathematics with a wide range of carefully selected numerical algorithms, ranging from the root-finding algorithm, numerical integration, numerical methods of partial differential equations, finite element methods, optimization algorithms, stochastic models, nonlinear curve-fitting to data modelling, bio-inspired algorithms and swarm intelligence. This book is especially suitable for both undergraduates and graduates in computational mathematics, numerical algorithms, scientific computing, mathematical programming, artificial intelligence and engineering optimization. Thus, it can be used as a textbook and/or reference book. |
computation examples in math: Mathematics and Computation Avi Wigderson, 2019-10-29 From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography |
computation examples in math: Think Like A Maths Genius Michael Shermer, Arthur Benjamin, 2011-09-01 Did you know that it's easier to add and subtract from left to right, rather than the other way round? And that you can be taught to square a three-digit number in seconds? In Think Like A Maths Genius, two mathematicians offer tips and tricks for doing tricky maths the easy way. With their help, you can learn how to perform lightning calculations in your head, discover methods of incredible memorisation and other feats of mental agility. Learn maths secrets for the real world, from adding up your shopping and calculating a restaurant tip, to figuring out gambling odds (or how much you've won) and how to solve sudoku faster. |
computation examples in math: Number Talks Sherry Parrish, 2010 A multimedia professional learning resource--Cover. |
computation examples in math: Good Math Mark C. Chu-Carroll, 2013-07-18 Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular Good Math blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you. |
computation examples in math: An Introduction to Modern Mathematical Computing Jonathan M. Borwein, Matthew P. Skerritt, 2012-08-07 Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an experimental mathematician while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation. |
computation examples in math: Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes Cornelis W Oosterlee, Lech A Grzelak, 2019-10-29 This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry. |
computation examples in math: A Primer on Scientific Programming with Python Hans Petter Langtangen, 2016-07-28 The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches Matlab-style and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015 |
computation examples in math: Experimentation in Mathematics Jonathan M. Borwein, David H. Bailey, Roland Girgensohn, 2004-04-12 New mathematical insights and rigorous results are often gained through extensive experimentation using numerical examples or graphical images and analyzing them. Today computer experiments are an integral part of doing mathematics. This allows for a more systematic approach to conducting and replicating experiments. The authors address the role of |
computation examples in math: Computational Mathematics with SageMath P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, N. M. Thi?ry, E. Bray, J. Cremona, M. Forets, A. Ghitza, H. Thomas, 2018-12-10 This fantastic and deep book about how to use Sage for learning and doing mathematics at all levels perfectly complements the existing Sage documentation. It is filled with many carefully thought through examples and exercises, and great care has been taken to put computational functionality into proper mathematical context. Flip to almost any random page in this amazing book, and you will learn how to play with and visualize some beautiful part of mathematics. --- William A. Stein, CEO, SageMath, and professor of mathematics, University of Washington SageMath, or Sage for short, is an open-source mathematical software system based on the Python language and developed by an international community comprising hundreds of teachers and researchers, whose aim is to provide an alternative to the commercial products Magma, Maple, Mathematica, and MATLAB. To achieve this, Sage relies on many open-source programs, including GAP, Maxima, PARI, and various scientific libraries for Python, to which thousands of new functions have been added. Sage is freely available and is supported by all modern operating systems. Sage provides a wonderful scientific and graphical calculator for high school students, and it efficiently supports undergraduates in their computations in analysis, linear algebra, calculus, etc. For graduate students, researchers, and engineers in various mathematical specialties, Sage provides the most recent algorithms and tools, which is why several universities around the world already use Sage at the undergraduate level. |
computation examples in math: Street-Fighting Mathematics Sanjoy Mahajan, 2010-03-05 An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license. |
computation examples in math: Helping Children Learn Mathematics National Research Council, Division of Behavioral and Social Sciences and Education, Center for Education, Mathematics Learning Study Committee, 2002-07-31 Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society. |
computation examples in math: Foundations of Computation Carol Critchlow, David Eck, 2011 Foundations of Computation is a free textbook for a one-semester course in theoretical computer science. It has been used for several years in a course at Hobart and William Smith Colleges. The course has no prerequisites other than introductory computer programming. The first half of the course covers material on logic, sets, and functions that would often be taught in a course in discrete mathematics. The second part covers material on automata, formal languages and grammar that would ordinarily be encountered in an upper level course in theoretical computer science. |
computation examples in math: Mathematical Theory of Computation Zohar Manna, 2003 With the objective of making into a science the art of verifying computer programs (debugging), the author addresses both practical and theoretical aspects of the process. A classic of sequential program verification, this volume has been translated into almost a dozen other languages and is much in demand among graduate and advanced undergraduate computer science students. Subjects include computability (with discussions of finite automata and Turing machines); predicate calculus (basic notions, natural deduction, and the resolution method); verification of programs (both flowchart and algol-like programs); flowchart schemas (basic notions, decision problems, formalization in predicate calculus, and translation programs); and the fixpoint theory of programs (functions and functionals, recursive programs, and verification programs). The treamtent is self-contained, and each chapter concludes with bibliographic remarks, references, and problems. |
computation examples in math: Computation of Integers Paul J. Riccomini, Bradley S. Witzel, 2009 This practical new text will empower those educators responsible for math instruction to successfully teach students in grades six through eight, as well as other students, to master computation of integers. Integration of picture-led, step-by-step instruction with accompanying dialogue will aid educators to deliver the exact vocabulary and stepwise procedures necessary for success--that of their students learning the mathematical process to computing integers. Written for math educators including elementary, middle school, special education teachers, tutors and home school teachers, this accessible guide will improve instructors' ability to teach integers, and the confidence in their students to master the subject matter. Special pedagogical features include: Student Work Pages for every lesson! Scripted, step-by-step examples outline how to teach each stage using hands-on, pictorial and abstract approaches. Concrete to Representational to Abstract sequence of instruction (CRA) in each section of the book and materials. Instructional lessons with assessment matching inform both the student and the teacher what learning occurred and where to start in order to master the skill. Cumulative reviews to help eachstudent successfully retain information. |
computation examples in math: Mathematize It! [Grades K-2] Kimberly Morrow-Leong, Sara Delano Moore, Linda M. Gojak, 2020-04-23 This book is a must-have for anyone who has faced the challenge of teaching problem solving. The ideas to be learned are supported with a noticeably rich collection of classroom-ready problems, examples of student thinking, and videos. Problem solving is at the center of learning and doing mathematics. And so, Mathematize It! should be at the center of every teacher’s collection of instructional resources. John SanGiovanni Coordinator, Elementary Mathematics Howard County Public School System, Ellicott City, MD Help students reveal the math behind the words I don’t get what I’m supposed to do! This is a common refrain from students when asked to solve word problems. Solving problems is about more than computation. Students must understand the mathematics of a situation to know what computation will lead to an appropriate solution. Many students often pluck numbers from the problem and plug them into an equation using the first operation they can think of (or the last one they practiced). Students also tend to choose an operation by solely relying on key words that they believe will help them arrive at an answer, which without careful consideration of what the problem is actually asking of them. Mathematize It! Going Beyond Key Words to Make Sense of Word Problems, Grades K-2 shares a reasoning approach that helps students dig into the problem to uncover the underlying mathematics, deeply consider the problem’s context, and employ strong operation sense to solve it. Through the process of mathematizing, the authors provide an explanation of a consistent method—and specific instructional strategies—to take the initial focus off specific numbers and computations and put it on the actions and relationships expressed in the problem. Sure to enhance teachers’ own operation sense, this user-friendly resource for Grades K-2 · Offers a systematic mathematizing process for students to use when solving word problems · Gives practice opportunities and dozens of problems to leverage in the classroom · Provides specific examples of questions and explorations for addition and subtraction of whole numbers as well as early thinking for multiplication and division · Demonstrates the use of concrete manipulatives to model problems with dozens of short videos · Includes end-of-chapter activities and reflection questions How can you help your students understand what is happening mathematically when solving word problems? Mathematize it! |
computation examples in math: Schools for All Kinds of Minds Mary-Dean Barringer, Craig Pohlman, Michele Robinson, 2010-03-29 This book shows how schools can--and must--develop expertise in learning variation (understanding how different kinds of minds learn) and apply this knowledge to classroom instruction in order to address the chronic learning challenges and achievement gap faced by millions of students. Barringer shows how using what we know about learning variation with a focus on discovering learning strengths, not just deficits, can help schools create plans for success for those students who often find it elusive. The book specifically addresses how school leaders can incorporate this knowledge into instructional practice and school-level policy through various professional development strategies. Schools for All Kinds of Minds: Provides a readable synthesis of the latest research from neuroscience, cognitive science, and child and adolescent development as it relates to understanding learning and its many variations. Links this information to strategies for understanding struggling learners and adapting school practices to accommodate a wider array of learning differences in a classroom. Demonstrates how this understanding of learning variation can change the way teachers and others help students succeed in various academic and content areas and acquire necessary 21st century skills. Includes discussion questions and facilitator guidelines for staff developers and teacher education programs; downloadable forms that accompany exercises from within the book; an action plan for schools to implement the ideas found in the book; and more. |
computation examples in math: Scientific Computing Michael T. Heath, 2018-11-14 This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems. |
computation examples in math: Secrets of Mental Math Arthur Benjamin, Michael Shermer, 2008-06-03 These simple math secrets and tricks will forever change how you look at the world of numbers. Secrets of Mental Math will have you thinking like a math genius in no time. Get ready to amaze your friends—and yourself—with incredible calculations you never thought you could master, as renowned “mathemagician” Arthur Benjamin shares his techniques for lightning-quick calculations and amazing number tricks. This book will teach you to do math in your head faster than you ever thought possible, dramatically improve your memory for numbers, and—maybe for the first time—make mathematics fun. Yes, even you can learn to do seemingly complex equations in your head; all you need to learn are a few tricks. You’ll be able to quickly multiply and divide triple digits, compute with fractions, and determine squares, cubes, and roots without blinking an eye. No matter what your age or current math ability, Secrets of Mental Math will allow you to perform fantastic feats of the mind effortlessly. This is the math they never taught you in school. |
computation examples in math: Computational Mathematics Robert E. White, 2003-09-17 Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a black box, you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white. This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether used as an undergraduate textbook, for self-study, or for reference, it builds the foundation you need to make numerical modeling and simulation integral parts of your investigational toolbox. |
computation examples in math: Fundamentals of Numerical Computation Tobin A. Driscoll, Richard J. Braun, 2017-12-21 Fundamentals of Numerical Computation?is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. The authors have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book. The book is intended for advanced undergraduates in math, applied math, engineering, or science disciplines, as well as for researchers and professionals looking for an introduction to a subject they missed or overlooked in their education.? |
computation examples in math: Mathematics and Computation Avi Wigderson, 2019-10-29 From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography |
computation examples in math: Mathematics for Electrical Engineering and Computing Mary P Attenborough, 2003-06-30 Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering |
computation examples in math: Quantifying Life Dmitry A. Kondrashov, 2016-08-04 Since the time of Isaac Newton, physicists have used mathematics to describe the behavior of matter of all sizes, from subatomic particles to galaxies. In the past three decades, as advances in molecular biology have produced an avalanche of data, computational and mathematical techniques have also become necessary tools in the arsenal of biologists. But while quantitative approaches are now providing fundamental insights into biological systems, the college curriculum for biologists has not caught up, and most biology majors are never exposed to the computational and probabilistic mathematical approaches that dominate in biological research. With Quantifying Life, Dmitry A. Kondrashov offers an accessible introduction to the breadth of mathematical modeling used in biology today. Assuming only a foundation in high school mathematics, Quantifying Life takes an innovative computational approach to developing mathematical skills and intuition. Through lessons illustrated with copious examples, mathematical and programming exercises, literature discussion questions, and computational projects of various degrees of difficulty, students build and analyze models based on current research papers and learn to implement them in the R programming language. This interplay of mathematical ideas, systematically developed programming skills, and a broad selection of biological research topics makes Quantifying Life an invaluable guide for seasoned life scientists and the next generation of biologists alike. |
computation examples in math: Principles of Algebraic Geometry Phillip Griffiths, Joseph Harris, 2014-08-21 A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds. |
computation examples in math: Computation and Applied Mathematics , 2002 |
computation examples in math: An Introduction to Abstract Mathematics Robert J. Bond, William J. Keane, 2007-08-24 Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments. |
computation examples in math: Principles and Standards for School Mathematics , 2000 This easy-to-read summary is an excellent tool for introducing others to the messages contained in Principles and Standards. |
computation examples in math: Error Patterns in Computation Robert B. Ashlock, 2002 This book is the only one of its kind that instructs teachers to identify typical error patterns, to receive feedback on their diagnosis, and to gain insight regarding why a child may have adopted an incorrect procedure. Revised to link content to the new NCTM Standards, this new edition emphasizes the meaning of operations and using the appropriate method of computation. As in previous editions, it retains its focus on placing paper-and pencil instructional activities within the context of problem solving. Chapter topics cover diagnosing misconceptions and error patterns in computation, providing needed instruction in computation, and helping students who have learned error patterns. For mathematics teachers of special education classes or at the middle school level. |
computation examples in math: Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers P.M. Gadea, J. Muñoz Masqué, 2009-12-12 A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task. |
computation examples in math: Mathematize It! [Grades 6-8] Kimberly Morrow-Leong, Sara Delano Moore, Linda M. Gojak, 2020-08-21 Help students reveal the math behind the words I don’t get what I’m supposed to do! This is a common refrain from students when asked to solve word problems. Solving problems is about more than computation. Students must understand the mathematics of a situation to know what computation will lead to an appropriate solution. Many students often pluck numbers from the problem and plug them into an equation using the first operation they can think of (or the last one they practiced). Students also tend to choose an operation by solely relying on key words that they believe will help them arrive at an answer, without careful consideration of what the problem is actually asking of them. Mathematize It! Going Beyond Key Words to Make Sense of Word Problems, Grades 6–8 shares a reasoning approach that helps students dig into the problem to uncover the underlying mathematics, deeply consider the problem’s context, and employ strong operation sense to solve it. Through the process of mathematizing, the authors provide an explanation of a consistent method—and specific instructional strategies—to take the initial focus off specific numbers and computations and put it on the actions and relationships expressed in the problem. Sure to enhance teachers’ own operation sense, this user-friendly resource for Grades 6–8: · Offers a systematic mathematizing process for students to use when solving word problems · Gives practice opportunities and dozens of problems to leverage in the classroom · Provides specific examples of questions and explorations for multiplication and division, fractions and decimals, as well as operations with rational numbers · Demonstrates the use of visual representations to model problems with dozens of short videos · Includes end-of-chapter activities and reflection questions How can you help your students understand what is happening mathematically when solving word problems? Mathematize it! |
computation examples in math: Basic Algebraic Geometry 2 Igor Rostislavovich Shafarevich, 1994 The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics. |
computation examples in math: Computer Algebra and Symbolic Computation Joel S. Cohen, 2002-07-19 This book provides a systematic approach for the algorithmic formulation and implementation of mathematical operations in computer algebra programming languages. The viewpoint is that mathematical expressions, represented by expression trees, are the data objects of computer algebra programs, and by using a few primitive operations that analyze and |
computation examples in math: Differential Forms Steven H. Weintraub, 2014-02-19 Differential forms are a powerful mathematical technique to help students, researchers, and engineers solve problems in geometry and analysis, and their applications. They both unify and simplify results in concrete settings, and allow them to be clearly and effectively generalized to more abstract settings. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems. Differential Forms, Second Edition, is a solid resource for students and professionals needing a general understanding of the mathematical theory and to be able to apply that theory into practice. - Provides a solid theoretical basis of how to develop and apply differential forms to real research problems - Includes computational methods to enable the reader to effectively use differential forms - Introduces theoretical concepts in an accessible manner |
computation examples in math: Computation and Applied Mathematics , 2002 |
computation examples in math: Computation and Applied Mathematics , 1999 |
computation examples in math: Mathematics of Computation , 1989 Original articles on all aspects of numerical mathematics, book reviews, mathematical tables, and technical notes. Covers advances in numerical analysis, application of computer methods, high speed calculating, and other aids to computation. |
computation examples in math: Mathematics for Computing C. A. Whitehead, 1992-01-01 |
computation examples in math: Computer Algebra and Symbolic Computation Joel S. Cohen, 2003-01-03 Mathematica, Maple, and similar software packages provide programs that carry out sophisticated mathematical operations. Applying the ideas introduced in Computer Algebra and Symbolic Computation: Elementary Algorithms, this book explores the application of algorithms to such methods as automatic simplification, polynomial decomposition, and polyno |
computation examples in math: Computation and Applied Mathematics , 2002 |
Computation - Wikipedia
A computation is any type of arithmetic or non-arithmetic calculation that is well-defined. [1] [2] Common examples of computation are mathematical equation solving and the execution of …
COMPUTATION Definition & Meaning - Merriam-Webster
The meaning of COMPUTATION is the act or action of computing : calculation. How to use computation in a sentence.
COMPUTATION | English meaning - Cambridge Dictionary
COMPUTATION definition: 1. the act or process of calculating an answer or amount by using a machine: 2. the act or process…. Learn more.
Computation|Definition & Meaning - The Story of Mathematics
Computation is the process of performing mathematical operations such as addition, subtraction, multiplication, and division to obtain a numerical result. The process of computation can be …
Computation - Definition, Meaning & Synonyms - Vocabulary.com
Computation is what you do when you calculate something, like a simple math problem or something involving quantum mechanics or — worse — even your taxes.
COMPUTATION Definition & Meaning - Dictionary.com
Computation definition: an act, process, or method of computing; compute; calculation.. See examples of COMPUTATION used in a sentence.
Introduction to Theory of Computation - GeeksforGeeks
Jan 28, 2025 · Automata theory, also known as the Theory of Computation, is a field within computer science and mathematics that focuses on studying abstract machines to understand …
Lecture 1: What is Computation? - MIT OpenCourseWare
Lecture 1: What is Computation? Description: In this lecture, Dr. Bell introduces the theory of computation and explains some aspects of computational thinking. Programming languages …
Computation | mathematics | Britannica
Computation is another important measurement process, in which measurement signals are manipulated mathematically, typically by some form of analog or digital computer. Computers …
computation noun - Definition, pictures, pronunciation and usage …
Definition of computation noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Computation - Wikipedia
A computation is any type of arithmetic or non-arithmetic calculation that is well-defined. [1] [2] Common examples of computation are mathematical equation solving and the execution of computer algorithms. Mechanical or electronic …
COMPUTATION Definition & Meaning - Merriam-Webster
The meaning of COMPUTATION is the act or action of computing : calculation. How to use computation in a sentence.
COMPUTATION | English meaning - Cambridge Dictionary
COMPUTATION definition: 1. the act or process of calculating an answer or amount by using a machine: 2. the act or process…. Learn more.
Computation|Definition & Meaning - The Story of Mathematics
Computation is the process of performing mathematical operations such as addition, subtraction, multiplication, and division to obtain a numerical result. The process of computation can be carried out manually, with the …
Computation - Definition, Meaning & Synonyms - Vocabulary.com
Computation is what you do when you calculate something, like a simple math problem or something involving quantum mechanics or — worse — even your taxes.