Advertisement
computer science course syllabus: Introduction to Computation and Programming Using Python, second edition John V. Guttag, 2016-08-12 The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics. |
computer science course syllabus: Multimedia Information Systems V.S. Subrahmanian, Satish K. Tripathi, 1998-06-30 Multimedia Information Systems brings together in one place important contributions and up-to-date research results in this fast moving area. Multimedia Information Systems serves as an excellent reference, providing insight into some of the most challenging research issues in the field. |
computer science course syllabus: Princeton Review AP Computer Science A Prep, 2022 The Princeton Review, 2021-08-31 Make sure you’re studying with the most up-to-date prep materials! Look for the newest edition of this title, The Princeton Review AP Computer Science A Prep, 2023 (ISBN: 9780593450727, on-sale September 2020). Publisher's Note: Products purchased from third-party sellers are not guaranteed by the publisher for quality or authenticity, and may not include access to online tests or materials included with the original product. |
computer science course syllabus: Introduction to Programming in Java: An Interdisciplinary Approach Robert Sedgewick, Kevin Wayne, 2013-07-31 By emphasizing the application of computer programming not only in success stories in the software industry but also in familiar scenarios in physical and biological science, engineering, and applied mathematics, Introduction to Programming in Java takes an interdisciplinary approach to teaching programming with the Java(TM) programming language. Interesting applications in these fields foster a foundation of computer science concepts and programming skills that students can use in later courses while demonstrating that computation is an integral part of the modern world. Ten years in development, this book thoroughly covers the field and is ideal for traditional introductory programming courses. It can also be used as a supplement or a main text for courses that integrate programming with mathematics, science, or engineering. |
computer science course syllabus: CS for All Christine Alvarado, Ran Libeskind-Hadas, Geoffrey H. Kuenning, Zachary Dodds, 2019 Provides an introduction to computer science with an emphasis on concepts and problem-solving over syntax and programming language features-- |
computer science course syllabus: Understanding by Design Grant P. Wiggins, Jay McTighe, 2005 What is understanding and how does it differ from knowledge? How can we determine the big ideas worth understanding? Why is understanding an important teaching goal, and how do we know when students have attained it? How can we create a rigorous and engaging curriculum that focuses on understanding and leads to improved student performance in today's high-stakes, standards-based environment? Authors Grant Wiggins and Jay McTighe answer these and many other questions in this second edition of Understanding by Design. Drawing on feedback from thousands of educators around the world who have used the UbD framework since its introduction in 1998, the authors have greatly revised and expanded their original work to guide educators across the K-16 spectrum in the design of curriculum, assessment, and instruction. With an improved UbD Template at its core, the book explains the rationale of backward design and explores in greater depth the meaning of such key ideas as essential questions and transfer tasks. Readers will learn why the familiar coverage- and activity-based approaches to curriculum design fall short, and how a focus on the six facets of understanding can enrich student learning. With an expanded array of practical strategies, tools, and examples from all subject areas, the book demonstrates how the research-based principles of Understanding by Design apply to district frameworks as well as to individual units of curriculum. Combining provocative ideas, thoughtful analysis, and tested approaches, this new edition of Understanding by Design offers teacher-designers a clear path to the creation of curriculum that ensures better learning and a more stimulating experience for students and teachers alike. |
computer science course syllabus: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success. |
computer science course syllabus: Blown to Bits Harold Abelson, Ken Ledeen, Harry R. Lewis, 2008 'Blown to Bits' is about how the digital explosion is changing everything. The text explains the technology, why it creates so many surprises and why things often don't work the way we expect them to. It is also about things the information explosion is destroying: old assumptions about who is really in control of our lives. |
computer science course syllabus: Computer Science Robert Sedgewick, Kevin Wayne, 2016-06-17 Named a Notable Book in the 21st Annual Best of Computing list by the ACM! Robert Sedgewick and Kevin Wayne’s Computer Science: An Interdisciplinary Approach is the ideal modern introduction to computer science with Java programming for both students and professionals. Taking a broad, applications-based approach, Sedgewick and Wayne teach through important examples from science, mathematics, engineering, finance, and commercial computing. The book demystifies computation, explains its intellectual underpinnings, and covers the essential elements of programming and computational problem solving in today’s environments. The authors begin by introducing basic programming elements such as variables, conditionals, loops, arrays, and I/O. Next, they turn to functions, introducing key modular programming concepts, including components and reuse. They present a modern introduction to object-oriented programming, covering current programming paradigms and approaches to data abstraction. Building on this foundation, Sedgewick and Wayne widen their focus to the broader discipline of computer science. They introduce classical sorting and searching algorithms, fundamental data structures and their application, and scientific techniques for assessing an implementation’s performance. Using abstract models, readers learn to answer basic questions about computation, gaining insight for practical application. Finally, the authors show how machine architecture links the theory of computing to real computers, and to the field’s history and evolution. For each concept, the authors present all the information readers need to build confidence, together with examples that solve intriguing problems. Each chapter contains question-and-answer sections, self-study drills, and challenging problems that demand creative solutions. Companion web site (introcs.cs.princeton.edu/java) contains Extensive supplementary information, including suggested approaches to programming assignments, checklists, and FAQs Graphics and sound libraries Links to program code and test data Solutions to selected exercises Chapter summaries Detailed instructions for installing a Java programming environment Detailed problem sets and projects Companion 20-part series of video lectures is available at informit.com/title/9780134493831 |
computer science course syllabus: Getting Started with Processing.py Allison Parrish, Ben Fry, Casey Reas, 2016-05-11 Processing opened up the world of programming to artists, designers, educators, and beginners. The Processing.py Python implementation of Processing reinterprets it for today's web. This short book gently introduces the core concepts of computer programming and working with Processing. Written by the co-founders of the Processing project, Reas and Fry, along with co-author Allison Parrish, Getting Started with Processing.py is your fast track to using Python's Processing mode. |
computer science course syllabus: How to Design Programs, second edition Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, 2018-05-25 A completely revised edition, offering new design recipes for interactive programs and support for images as plain values, testing, event-driven programming, and even distributed programming. This introduction to programming places computer science at the core of a liberal arts education. Unlike other introductory books, it focuses on the program design process, presenting program design guidelines that show the reader how to analyze a problem statement, how to formulate concise goals, how to make up examples, how to develop an outline of the solution, how to finish the program, and how to test it. Because learning to design programs is about the study of principles and the acquisition of transferable skills, the text does not use an off-the-shelf industrial language but presents a tailor-made teaching language. For the same reason, it offers DrRacket, a programming environment for novices that supports playful, feedback-oriented learning. The environment grows with readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks. This second edition has been completely revised. While the book continues to teach a systematic approach to program design, the second edition introduces different design recipes for interactive programs with graphical interfaces and batch programs. It also enriches its design recipes for functions with numerous new hints. Finally, the teaching languages and their IDE now come with support for images as plain values, testing, event-driven programming, and even distributed programming. |
computer science course syllabus: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. |
computer science course syllabus: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
computer science course syllabus: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
computer science course syllabus: App Inventor 2 David Wolber, Hal Abelson, Ellen Spertus, Liz Looney, 2014-10-13 Yes, you can create your own apps for Android devices—and it’s easy to do. This extraordinary book introduces you to App Inventor 2, a powerful visual tool that lets anyone build apps. Learn App Inventor basics hands-on with step-by-step instructions for building more than a dozen fun projects, including a text answering machine app, a quiz app, and an app for finding your parked car! The second half of the book features an Inventor’s Manual to help you understand the fundamentals of app building and computer science. App Inventor 2 makes an excellent textbook for beginners and experienced developers alike. Use programming blocks to build apps—like working on a puzzle Create custom multi-media quizzes and study guides Design games and other apps with 2D graphics and animation Make a custom tour of your city, school, or workplace Control a LEGO® MINDSTORMS® NXT robot with your phone Build location-aware apps by working with your phone’s sensors Explore apps that incorporate information from the Web |
computer science course syllabus: The Elements of Computing Systems Noam Nisan, Shimon Schocken, 2008 This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system. |
computer science course syllabus: Introduction To Algorithms Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, 2001 An extensively revised edition of a mathematically rigorous yet accessible introduction to algorithms. |
computer science course syllabus: Structure and Interpretation of Computer Programs Harold Abelson, Gerald Jay Sussman, 2022-05-03 A new version of the classic and widely used text adapted for the JavaScript programming language. Since the publication of its first edition in 1984 and its second edition in 1996, Structure and Interpretation of Computer Programs (SICP) has influenced computer science curricula around the world. Widely adopted as a textbook, the book has its origins in a popular entry-level computer science course taught by Harold Abelson and Gerald Jay Sussman at MIT. SICP introduces the reader to central ideas of computation by establishing a series of mental models for computation. Earlier editions used the programming language Scheme in their program examples. This new version of the second edition has been adapted for JavaScript. The first three chapters of SICP cover programming concepts that are common to all modern high-level programming languages. Chapters four and five, which used Scheme to formulate language processors for Scheme, required significant revision. Chapter four offers new material, in particular an introduction to the notion of program parsing. The evaluator and compiler in chapter five introduce a subtle stack discipline to support return statements (a prominent feature of statement-oriented languages) without sacrificing tail recursion. The JavaScript programs included in the book run in any implementation of the language that complies with the ECMAScript 2020 specification, using the JavaScript package sicp provided by the MIT Press website. |
computer science course syllabus: The Carnegie-Mellon Curriculum for Undergraduate Computer Science Mary Shaw, 1985 This curriculum and its description were developed during the period 1981 - 1984 |
computer science course syllabus: Numerical Methods in Engineering with Python 3 Jaan Kiusalaas, 2013-01-21 Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language. |
computer science course syllabus: Probability, Statistics, and Queueing Theory Arnold O. Allen, 1990-08-28 This is a textbook on applied probability and statistics with computer science applications for students at the upper undergraduate level. It may also be used as a self study book for the practicing computer science professional. The successful first edition of this book proved extremely useful to students who need to use probability, statistics and queueing theory to solve problems in other fields, such as engineering, physics, operations research, and management science. The book has also been successfully used for courses in queueing theory for operations research students. This second edition includes a new chapter on regression as well as more than twice as many exercises at the end of each chapter. While the emphasis is the same as in the first edition, this new book makes more extensive use of available personal computer software, such as Minitab and Mathematica. |
computer science course syllabus: Computer Systems Randal E.. Bryant, David Richard O'Hallaron, 2013-07-23 For Computer Systems, Computer Organization and Architecture courses in CS, EE, and ECE departments. Few students studying computer science or computer engineering will ever have the opportunity to build a computer system. On the other hand, most students will be required to use and program computers on a near daily basis. Computer Systems: A Programmer's Perspective introduces the important and enduring concepts that underlie computer systems by showing how these ideas affect the correctness, performance, and utility of application programs. The text's hands-on approach (including a comprehensive set of labs) helps students understand the under-the-hood operation of a modern computer system and prepares them for future courses in systems topics such as compilers, computer architecture, operating systems, and networking. |
computer science course syllabus: Computer Science Handbook Allen B. Tucker, 2004-06-28 When you think about how far and fast computer science has progressed in recent years, it's not hard to conclude that a seven-year old handbook may fall a little short of the kind of reference today's computer scientists, software engineers, and IT professionals need. With a broadened scope, more emphasis on applied computing, and more than 70 chap |
computer science course syllabus: The Science of Reading Margaret J. Snowling, Charles Hulme, 2008-04-15 The Science of Reading: A Handbook brings together state-of-the-art reviews of reading research from leading names in the field, to create a highly authoritative, multidisciplinary overview of contemporary knowledge about reading and related skills. Provides comprehensive coverage of the subject, including theoretical approaches, reading processes, stage models of reading, cross-linguistic studies of reading, reading difficulties, the biology of reading, and reading instruction Divided into seven sections:Word Recognition Processes in Reading; Learning to Read and Spell; Reading Comprehension; Reading in Different Languages; Disorders of Reading and Spelling; Biological Bases of Reading; Teaching Reading Edited by well-respected senior figures in the field |
computer science course syllabus: Computer Science Illuminated Nell B. Dale, John Lewis, 2013 Revised and updated with the latest information in the field, the Fifth Edition of best-selling Computer Science Illuminated continues to provide students with an engaging breadth-first overview of computer science principles and provides a solid foundation for those continuing their study in this dynamic and exciting discipline. Authored by two of today's most respected computer science educators, Nell Dale and John Lewis, the text carefully unfolds the many layers of computing from a language-neutral perspective, beginning with the information layer, progressing through the hardware, programming, operating systems, application, and communication layers, and ending with a discussion on the limitations of computing. Separate program language chapters are available as bundle items for instructors who would like to explore a particular programming language with their students. Ideal for introductory computing and computer science courses, the fifth edition's thorough presentation of computing systems provides computer science majors with a solid foundation for further study, and offers non-majors a comprehensive and complete introduction to computing. New Features of the Fifth Edition: - Includes a NEW chapter on computer security (chapter 17) to provide readers with the latest information, including discussions on preventing unauthorized access and guidelines for creating effective passwords, types of malware anti-virus software, problems created by poor programming, protecting your online information including data collection issues with Facebook, Google, etc., and security issues with mobile and portable devices. - A NEW section on cloud computing (chapter 15) offers readers an overview of the latest way in which businesses and users interact with computers and mobile devices. - The section on social networks (moved to chapter 16) has been rewritten to include up-to-date information, including new data on Google+ and Facebook. - The sections covering HTML have been updated to include HTML5. - Includes revised and updated Did You Know callouts in the chapter margins. - The updated Ethical Issues at the end of each chapter have been revised to tie the content to the recently introduced tenth strand recommended by the ACM stressing the importance of computer ethics. Instructor Resources: -Answers to the end of chapter exercises -Answers to the lab exercises -PowerPoint Lecture Outlines -PowerPoint Image Bank -Test Bank Every new copy is packaged with a free access code to the robust Student Companion Website featuring: Animated Flashcards; Relevant Web Links; Crossword Puzzles; Interactive Glossary; Step by step tutorial on web page development; Digital Lab Manual; R. Mark Meyer's labs, Explorations in Computer Science; Additional programming chapters, including Alice, C++, Java, JavaScript, Pascal, Perl, Python, Ruby, SQL, and VB.NET; C++ Language Essentials labs; Java Language Essentials labs; Link to Download Pep/8 |
computer science course syllabus: Python for Everybody Charles R. Severance, 2016-04-09 Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet.Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software.This book uses the Python 3 language. The earlier Python 2 version of this book is titled Python for Informatics: Exploring Information.There are free downloadable electronic copies of this book in various formats and supporting materials for the book at www.pythonlearn.com. The course materials are available to you under a Creative Commons License so you can adapt them to teach your own Python course. |
computer science course syllabus: Computer Networking: A Top-Down Approach Featuring the Internet, 3/e James F. Kurose, 2005 |
computer science course syllabus: Goal-based Decision Making Stephen Slade, 2013-06-17 This work presents a goal-based model of decision making in which the relative priorities of goals drive the decision process -- a psychological alternative to traditional decision analysis. Building on the work of Schank and Abelson, the author uses goals as the basis for a model of interpersonal relations which permits decisions to incorporate personal and adopted goals in a uniform manner. The theory is modelled on the VOTE computer program which simulates Congressional roll-call voting decisions. The VOTE program expands traditional decision making and simulation models by providing not only a choice, but also a natural language explanation, in either English or French. It simulates real members of Congress voting on real bills, and producing reasonable explanations. The program is consistent with much of the descriptive political science literature on Congressional decision making and provides an explicit model of political issues, relationships, and strategies that converge in voting behavior. In developing the VOTE program, the author draws on his own practical experience in politics from four presidential campaigns and the White House. Given the underlying psychological basis of the program, VOTE can be extended to other decision making domains different from politics. Another use for the program is to simulate business decisions such as securities analysis, as well as mundane decision making such as choosing a college or deciding whether to get a Mohawk haircut. |
computer science course syllabus: Data Structures and Algorithm Analysis in Java, Third Edition Clifford A. Shaffer, 2012-09-06 Comprehensive treatment focuses on creation of efficient data structures and algorithms and selection or design of data structure best suited to specific problems. This edition uses Java as the programming language. |
computer science course syllabus: Data Structures and Algorithms in Java Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, 2014-01-28 The design and analysis of efficient data structures has long been recognized as a key component of the Computer Science curriculum. Goodrich, Tomassia and Goldwasser's approach to this classic topic is based on the object-oriented paradigm as the framework of choice for the design of data structures. For each ADT presented in the text, the authors provide an associated Java interface. Concrete data structures realizing the ADTs are provided as Java classes implementing the interfaces. The Java code implementing fundamental data structures in this book is organized in a single Java package, net.datastructures. This package forms a coherent library of data structures and algorithms in Java specifically designed for educational purposes in a way that is complimentary with the Java Collections Framework. |
computer science course syllabus: Guide to Teaching Computer Science Orit Hazzan, Noa Ragonis, Tami Lapidot, 2020-08-05 This concise yet thorough textbook presents an active-learning model for the teaching of computer science. Offering both a conceptual framework and detailed implementation guidelines, the work is designed to support a Methods of Teaching Computer Science (MTCS) course, but may be applied to the teaching of any area of computer science at any level, from elementary school to university. This text is not limited to any specific curriculum or programming language, but instead suggests various options for lesson and syllabus organization. Fully updated and revised, the third edition features more than 40 new activities, bringing the total to more than 150, together with new chapters on computational thinking, data science, and soft concepts and soft skills. This edition also introduces new conceptual frameworks for teaching such as the MERge model, and new formats for the professional development of computer science educators. Topics and features: includes an extensive set of activities, to further support the pedagogical principles outlined in each chapter; discusses educational approaches to computational thinking, how to address soft concepts and skills in a MTCS course, and the pedagogy of data science (NEW); focuses on teaching methods, lab-based teaching, and research in computer science education, as well as on problem-solving strategies; examines how to recognize and address learners’ misconceptions, and the different types of questions teachers can use to vary their teaching methods; provides coverage of assessment, teaching planning, and designing a MTCS course; reviews high school teacher preparation programs, and how prospective teachers can gain experience in teaching computer science. This easy-to-follow textbook and teaching guide will prove invaluable to computer science educators within all frameworks, including university instructors and high school teachers, as well as to instructors of computer science teacher preparation programs. |
computer science course syllabus: National Educational Technology Standards for Students International Society for Technology in Education, 2007 This booklet includes the full text of the ISTE Standards for Students, along with the Essential Conditions, profiles and scenarios. |
computer science course syllabus: CompTIA A+ Complete Practice Tests Jeff T. Parker, Quentin Docter, 2019-07-18 Test your knowledge and know what to expect on A+ exam day CompTIA A+ Complete Practice Tests, Second Edition enables you to hone your test-taking skills, focus on challenging areas, and be thoroughly prepared to ace the exam and earn your A+ certification. This essential component of your overall study plan presents nine unique practice tests—and two 90-question bonus tests—covering 100% of the objective domains for both the 220-1001 and 220-1002 exams. Comprehensive coverage of every essential exam topic ensures that you will know what to expect on exam day and maximize your chances for success. Over 1200 practice questions on topics including hardware, networking, mobile devices, operating systems and procedures, troubleshooting, and more, lets you assess your performance and gain the confidence you need to pass the exam with flying colors. This second edition has been fully updated to reflect the latest best practices and updated exam objectives you will see on the big day. A+ certification is a crucial step in your IT career. Many businesses require this accreditation when hiring computer technicians or validating the skills of current employees. This collection of practice tests allows you to: Access the test bank in the Sybex interactive learning environment Understand the subject matter through clear and accurate answers and explanations of exam objectives Evaluate your exam knowledge and concentrate on problem areas Integrate practice tests with other Sybex review and study guides, including the CompTIA A+ Complete Study Guide and the CompTIA A+ Complete Deluxe Study Guide Practice tests are an effective way to increase comprehension, strengthen retention, and measure overall knowledge. The CompTIA A+ Complete Practice Tests, Second Edition is an indispensable part of any study plan for A+ certification. |
computer science course syllabus: Algorithms Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh Virkumar Vazirani, 2006 This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include:The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated. Carefully chosen advanced topics that can be skipped in a standard one-semester course but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text DasGupta also offers a Solutions Manual which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel it is a joy to read. Tim Roughgarden Stanford University |
computer science course syllabus: Murach's Beginning Java 2 Andrea Steelman, 2001 An exciting, new approach to Java instruction that includes the latest Java releases (1.3.1 and 1.4). In just twenty chapters, you grow from beginner to entry-level professional. Along the way, you learn how to develop GUIs with Swing components; how to work with files; how to use JDBC to work with databases; how to develop applets that are run from Internet browsers; how to work with threads; and much more. It's all there in the unique Murach style that has been training professional programmers for more than 25 years. Includes CD-Rom. |
computer science course syllabus: Higher Education Opportunity Act United States, 2008 |
computer science course syllabus: Learn Prolog Now! Patrick Blackburn, Johannes Bos, Kristina Striegnitz, 2006 Prolog is a programming language, but a rather unusual one. Prolog'' is short for Programming with Logic'', and the link with logic gives Prolog its special character. At the heart of Prolog lies a surprising idea: don't tell the computer what to do. Instead, describe situations of interest, and compute by asking questions. Prolog will logically deduce new facts about the situations and give its deductions back to us as answers. Why learn Prolog? For a start, its say what the problem is, rather than how to solve it'' stance, means that it is a very high level language, good for knowledge rich applications such as artificial intelligence, natural language processing, and the semantic web. So by studying Prolog, you gain insight into how sophisticated tasks can be handled computationally. Moreover, Prolog requires a different mindset. You have to learn to see problems from a new perspective, declaratively rather than procedurally. Acquiring this mindset, and learning to appreciate the links between logic and programming, makes the study of Prolog both challenging and rewarding. Learn Prolog Now! is a practical introduction to this fascinating language. Freely available as a web-book since 2002 (see www.learnprolognow.org) Learn Prolog Now! has became one of the most popular introductions to the Prolog programming language, an introduction prized for its clarity and down-to-earth approach. It is widely used as a textbook at university departments around the world, and even more widely used for self study. College Publications is proud to present here the first hard-copy version of this online classic. Carefully revised in the light of reader's feedback, and now with answers to all the exercises, here you will find the essential material required to help you learn Prolog now. |
computer science course syllabus: Computer Science J. Glenn Brookshear, 2012 Computer Science: An Overview uses broad coverage and clear exposition to present a complete picture of the dynamic computer science field. Accessible to students from all backgrounds, Glenn Brookshear uses a language-independent context to encourage the development of a practical, realistic understanding of the field. An overview of each of the important areas of Computer Science (e.g. Networking, OS, Computer Architecture, Algorithms) provides students with a general level of proficiency for future courses. The Eleventh Edition features two new contributing authors (David Smith -- Indiana University of PA; Dennis Brylow -- Marquette University), new, modern examples, and updated coverage based on current technology. |
computer science course syllabus: Invitation to Computer Science G. Michael Schneider, Judith L. Gersting, 2006 This new edition of Invitation to Computer Science follows the breadth-first guidelines recommended by CC2001 to teach computer science topics from the ground up. The authors begin by showing that computer science is the study of algorithms, the central theme of the book, then move up the next five levels of the hierarchy: hardware, virtual machine, software, applications, and ethics. Utilizing rich pedagogy and a consistently engaging writing style, Schneider and Gersting provide students with a solid grounding in theoretical concepts, as well as important applications of computing and information technology. A laboratory manual and accompanying software is available as an optional bundle with this text. |
computer science course syllabus: Operating Systems Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, 2018-09 This book is organized around three concepts fundamental to OS construction: virtualization (of CPU and memory), concurrency (locks and condition variables), and persistence (disks, RAIDS, and file systems--Back cover. |
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can perform …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent parts, …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) who …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including desktops, …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …