Computer Engineering And Software Engineering Which Is Better

Advertisement



  computer engineering and software engineering which is better: Software Engineering Education Lionel E. Deimel, 1990-04-06
  computer engineering and software engineering which is better: Software Engineering at Google Titus Winters, Tom Manshreck, Hyrum Wright, 2020-02-28 Today, software engineers need to know not only how to program effectively but also how to develop proper engineering practices to make their codebase sustainable and healthy. This book emphasizes this difference between programming and software engineering. How can software engineers manage a living codebase that evolves and responds to changing requirements and demands over the length of its life? Based on their experience at Google, software engineers Titus Winters and Hyrum Wright, along with technical writer Tom Manshreck, present a candid and insightful look at how some of the worldâ??s leading practitioners construct and maintain software. This book covers Googleâ??s unique engineering culture, processes, and tools and how these aspects contribute to the effectiveness of an engineering organization. Youâ??ll explore three fundamental principles that software organizations should keep in mind when designing, architecting, writing, and maintaining code: How time affects the sustainability of software and how to make your code resilient over time How scale affects the viability of software practices within an engineering organization What trade-offs a typical engineer needs to make when evaluating design and development decisions
  computer engineering and software engineering which is better: The Productive Programmer Neal Ford, 2008-07-03 Anyone who develops software for a living needs a proven way to produce it better, faster, and cheaper. The Productive Programmer offers critical timesaving and productivity tools that you can adopt right away, no matter what platform you use. Master developer Neal Ford not only offers advice on the mechanics of productivity-how to work smarter, spurn interruptions, get the most out your computer, and avoid repetition-he also details valuable practices that will help you elude common traps, improve your code, and become more valuable to your team. You'll learn to: Write the test before you write the code Manage the lifecycle of your objects fastidiously Build only what you need now, not what you might need later Apply ancient philosophies to software development Question authority, rather than blindly adhere to standards Make hard things easier and impossible things possible through meta-programming Be sure all code within a method is at the same level of abstraction Pick the right editor and assemble the best tools for the job This isn't theory, but the fruits of Ford's real-world experience as an Application Architect at the global IT consultancy ThoughtWorks. Whether you're a beginner or a pro with years of experience, you'll improve your work and your career with the simple and straightforward principles in The Productive Programmer.
  computer engineering and software engineering which is better: The Leprechauns of Software Engineering Laurent Bossavit, 2015-06-28 The software profession has a problem, widely recognized but which nobody seems willing to do anything about; a variant of the well known telephone game, where some trivial rumor is repeated from one person to the next until it has become distorted beyond recognition and blown up out of all proportion. Unfortunately, the objects of this telephone game are generally considered cornerstone truths of the discipline, to the point that their acceptance now seems to hinder further progress. This book takes a look at some of those ground truths the claimed 10x variation in productivity between developers; the software crisis; the cost-of-change curve; the cone of uncertainty; and more. It assesses the real weight of the evidence behind these ideas - and confronts the scary prospect of moving the state of the art forward in a discipline that has had the ground kicked from under it.
  computer engineering and software engineering which is better: Modern Software Engineering David Farley, 2021-11-16 Improve Your Creativity, Effectiveness, and Ultimately, Your Code In Modern Software Engineering, continuous delivery pioneer David Farley helps software professionals think about their work more effectively, manage it more successfully, and genuinely improve the quality of their applications, their lives, and the lives of their colleagues. Writing for programmers, managers, and technical leads at all levels of experience, Farley illuminates durable principles at the heart of effective software development. He distills the discipline into two core exercises: learning and exploration and managing complexity. For each, he defines principles that can help you improve everything from your mindset to the quality of your code, and describes approaches proven to promote success. Farley's ideas and techniques cohere into a unified, scientific, and foundational approach to solving practical software development problems within realistic economic constraints. This general, durable, and pervasive approach to software engineering can help you solve problems you haven't encountered yet, using today's technologies and tomorrow's. It offers you deeper insight into what you do every day, helping you create better software, faster, with more pleasure and personal fulfillment. Clarify what you're trying to accomplish Choose your tools based on sensible criteria Organize work and systems to facilitate continuing incremental progress Evaluate your progress toward thriving systems, not just more legacy code Gain more value from experimentation and empiricism Stay in control as systems grow more complex Achieve rigor without too much rigidity Learn from history and experience Distinguish good new software development ideas from bad ones Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
  computer engineering and software engineering which is better: Computer Engineering for Babies Chase Roberts, 2021-10-20 An introduction to computer engineering for babies. Learn basic logic gates with hands on examples of buttons and an output LED.
  computer engineering and software engineering which is better: Software Engineering: Effective Teaching and Learning Approaches and Practices Ellis, Heidi J.C., Demurjian, Steven A., Naveda, J. Fernando, 2008-10-31 Over the past decade, software engineering has developed into a highly respected field. Though computing and software engineering education continues to emerge as a prominent interest area of study, few books specifically focus on software engineering education itself. Software Engineering: Effective Teaching and Learning Approaches and Practices presents the latest developments in software engineering education, drawing contributions from over 20 software engineering educators from around the globe. Encompassing areas such as student assessment and learning, innovative teaching methods, and educational technology, this much-needed book greatly enhances libraries with its unique research content.
  computer engineering and software engineering which is better: Product Marketing, Simplified Srini Sekaran, 2020-07-19 A comprehensive guide to product marketing — from messaging to influencing the product roadmap. Learn how to launch products, deliver value to the right customer, and grow your business. Whether you're looking to become a product marketer, a product manager, or an entrepreneur, this is the handbook you need to learn how to deliver value and take a product to market the right way.
  computer engineering and software engineering which is better: Facts and Fallacies of Software Engineering Robert L. Glass, 2003 Regarding the controversial and thought-provoking assessments in this handbook, many software professionals might disagree with the authors, but all will embrace the debate. Glass identifies many of the key problems hampering success in this field. Each fact is supported by insightful discussion and detailed references.
  computer engineering and software engineering which is better: Computer Games and Software Engineering Kendra M. L. Cooper, Walt Scacchi, 2015-05-08 Computer games represent a significant software application domain for innovative research in software engineering techniques and technologies. Game developers, whether focusing on entertainment-market opportunities or game-based applications in non-entertainment domains, thus share a common interest with software engineers and developers on how to
  computer engineering and software engineering which is better: A Philosophy of Software Design John K. Ousterhout, 2021 This book addresses the topic of software design: how to decompose complex software systems into modules (such as classes and methods) that can be implemented relatively independently. The book first introduces the fundamental problem in software design, which is managing complexity. It then discusses philosophical issues about how to approach the software design process and it presents a collection of design principles to apply during software design. The book also introduces a set of red flags that identify design problems. You can apply the ideas in this book to minimize the complexity of large software systems, so that you can write software more quickly and cheaply.--Amazon.
  computer engineering and software engineering which is better: Software Engineering for Science Jeffrey C. Carver, Neil P. Chue Hong, George K. Thiruvathukal, 2016-11-03 Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.
  computer engineering and software engineering which is better: Computer, Network, Software, and Hardware Engineering with Applications Norman F. Schneidewind, 2012-03-27 There are many books on computers, networks, and software engineering but none that integrate the three with applications. Integration is important because, increasingly, software dominates the performance, reliability, maintainability, and availability of complex computer and systems. Books on software engineering typically portray software as if it exists in a vacuum with no relationship to the wider system. This is wrong because a system is more than software. It is comprised of people, organizations, processes, hardware, and software. All of these components must be considered in an integrative fashion when designing systems. On the other hand, books on computers and networks do not demonstrate a deep understanding of the intricacies of developing software. In this book you will learn, for example, how to quantitatively analyze the performance, reliability, maintainability, and availability of computers, networks, and software in relation to the total system. Furthermore, you will learn how to evaluate and mitigate the risk of deploying integrated systems. You will learn how to apply many models dealing with the optimization of systems. Numerous quantitative examples are provided to help you understand and interpret model results. This book can be used as a first year graduate course in computer, network, and software engineering; as an on-the-job reference for computer, network, and software engineers; and as a reference for these disciplines.
  computer engineering and software engineering which is better: Software Engineering Richard W. Selby, 2007-06-04 This is the most authoritative archive of Barry Boehm's contributions to software engineering. Featuring 42 reprinted articles, along with an introduction and chapter summaries to provide context, it serves as a how-to reference manual for software engineering best practices. It provides convenient access to Boehm's landmark work on product development and management processes. The book concludes with an insightful look to the future by Dr. Boehm.
  computer engineering and software engineering which is better: Guide to the Software Engineering Body of Knowledge (Swebok(r)) IEEE Computer Society, 2014 In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)).
  computer engineering and software engineering which is better: What Every Engineer Should Know about Software Engineering Philip A. Laplante, 2007-04-25 Do you Use a computer to perform analysis or simulations in your daily work? Write short scripts or record macros to perform repetitive tasks? Need to integrate off-the-shelf software into your systems or require multiple applications to work together? Find yourself spending too much time working the kink
  computer engineering and software engineering which is better: Computers: Systems & Applications P. Sudharshan & J. Jeyabalan, 2004 Computers: Systems & Applications has been designed for the course on Fundamentals/Introduction of Computers for both undergraduate and postgraduate students of all universities in India. It integrates all the basic concepts and latest information about computers. The contents of the book are student-friendly and give a complete coverage of computers, and the latest advancements in the field of information technology.
  computer engineering and software engineering which is better: SOFTWARE ENGINEERING: AN ENGINEERING APPROACH Peters, 2007-03 Market_Desc: · Programmers· Software Engineers· Requirements Engineers· Software Quality Engineers Special Features: · Offers detailed coverage of software measures. Exposes students to quantitative methods of identifying important features of software products and processes· Complete Case Study. Through an air traffic control study, students can trace the application of methods and practices in each chapter· Problems. A broad range of problems and references follow each chapter· Glossary of technical terms and acronyms facilitate review of basic ideas· Example code given in C++ and Java· References to related web pages make it easier for students to expand horizons About The Book: This book is the first comprehensive study of a quantitative approach to software engineering, outlining prescribed software design practices and measures necessary to assess software quality, cost, and reliability. It also introduces Computational Intelligence, which can be applied to the development of software systems.
  computer engineering and software engineering which is better: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  computer engineering and software engineering which is better: Machine Learning in VLSI Computer-Aided Design Ibrahim (Abe) M. Elfadel, Duane S. Boning, Xin Li, 2019-03-15 This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
  computer engineering and software engineering which is better: Software Engineering and Computer Games Rudy von Bitter Rucker, 2003 This book solves the dilemma of wanting to learn Windows-based sorfware engineering without knowing Windows programming. The basics in Windows programming are explained alongside ideas of object-oriented sortware engineering. (Midwest).
  computer engineering and software engineering which is better: Hackers & Painters Paul Graham, 2004-05-18 The author examines issues such as the rightness of web-based applications, the programming language renaissance, spam filtering, the Open Source Movement, Internet startups and more. He also tells important stories about the kinds of people behind technical innovations, revealing their character and their craft.
  computer engineering and software engineering which is better: Software Engineering and Testing B. B. Agarwal, S. P. Tayal, Mahesh Gupta, 2010 This book is designed for use as an introductory software engineering course or as a reference for programmers. Up-to-date text uses both theory applications to design reliable, error-free software. Includes a companion CD-ROM with source code third-party software engineering applications.
  computer engineering and software engineering which is better: Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2017-12-01 Professionals in the interdisciplinary field of computer science focus on the design, operation, and maintenance of computational systems and software. Methodologies and tools of engineering are utilized alongside computer applications to develop efficient and precise information databases. Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications is a comprehensive reference source for the latest scholarly material on trends, techniques, and uses of various technology applications and examines the benefits and challenges of these computational developments. Highlighting a range of pertinent topics such as utility computing, computer security, and information systems applications, this multi-volume book is ideally designed for academicians, researchers, students, web designers, software developers, and practitioners interested in computer systems and software engineering.
  computer engineering and software engineering which is better: Rethinking Productivity in Software Engineering Caitlin Sadowski, Thomas Zimmermann, 2019-05-07 Get the most out of this foundational reference and improve the productivity of your software teams. This open access book collects the wisdom of the 2017 Dagstuhl seminar on productivity in software engineering, a meeting of community leaders, who came together with the goal of rethinking traditional definitions and measures of productivity. The results of their work, Rethinking Productivity in Software Engineering, includes chapters covering definitions and core concepts related to productivity, guidelines for measuring productivity in specific contexts, best practices and pitfalls, and theories and open questions on productivity. You'll benefit from the many short chapters, each offering a focused discussion on one aspect of productivity in software engineering. Readers in many fields and industries will benefit from their collected work. Developers wanting to improve their personal productivity, will learn effective strategies for overcoming common issues that interfere with progress. Organizations thinking about building internal programs for measuring productivity of programmers and teams will learn best practices from industry and researchers in measuring productivity. And researchers can leverage the conceptual frameworks and rich body of literature in the book to effectively pursue new research directions. What You'll LearnReview the definitions and dimensions of software productivity See how time management is having the opposite of the intended effect Develop valuable dashboards Understand the impact of sensors on productivity Avoid software development waste Work with human-centered methods to measure productivity Look at the intersection of neuroscience and productivity Manage interruptions and context-switching Who Book Is For Industry developers and those responsible for seminar-style courses that include a segment on software developer productivity. Chapters are written for a generalist audience, without excessive use of technical terminology.
  computer engineering and software engineering which is better: Optimized C++ Kurt Guntheroth, 2016-04-27 In today’s fast and competitive world, a program’s performance is just as important to customers as the features it provides. This practical guide teaches developers performance-tuning principles that enable optimization in C++. You’ll learn how to make code that already embodies best practices of C++ design run faster and consume fewer resources on any computer—whether it’s a watch, phone, workstation, supercomputer, or globe-spanning network of servers. Author Kurt Guntheroth provides several running examples that demonstrate how to apply these principles incrementally to improve existing code so it meets customer requirements for responsiveness and throughput. The advice in this book will prove itself the first time you hear a colleague exclaim, “Wow, that was fast. Who fixed something?” Locate performance hot spots using the profiler and software timers Learn to perform repeatable experiments to measure performance of code changes Optimize use of dynamically allocated variables Improve performance of hot loops and functions Speed up string handling functions Recognize efficient algorithms and optimization patterns Learn the strengths—and weaknesses—of C++ container classes View searching and sorting through an optimizer’s eye Make efficient use of C++ streaming I/O functions Use C++ thread-based concurrency features effectively
  computer engineering and software engineering which is better: Model-Driven Software Engineering in Practice Marco Brambilla, Jordi Cabot, Manuel Wimmer, 2017-03-30 This book discusses how model-based approaches can improve the daily practice of software professionals. This is known as Model-Driven Software Engineering (MDSE) or, simply, Model-Driven Engineering (MDE). MDSE practices have proved to increase efficiency and effectiveness in software development, as demonstrated by various quantitative and qualitative studies. MDSE adoption in the software industry is foreseen to grow exponentially in the near future, e.g., due to the convergence of software development and business analysis. The aim of this book is to provide you with an agile and flexible tool to introduce you to the MDSE world, thus allowing you to quickly understand its basic principles and techniques and to choose the right set of MDSE instruments for your needs so that you can start to benefit from MDSE right away. The book is organized into two main parts. The first part discusses the foundations of MDSE in terms of basic concepts (i.e., models and transformations), driving principles, application scenarios, and current standards, like the well-known MDA initiative proposed by OMG (Object Management Group) as well as the practices on how to integrate MDSE in existing development processes. The second part deals with the technical aspects of MDSE, spanning from the basics on when and how to build a domain-specific modeling language, to the description of Model-to-Text and Model-to-Model transformations, and the tools that support the management of MDSE projects. The second edition of the book features: a set of completely new topics, including: full example of the creation of a new modeling language (IFML), discussion of modeling issues and approaches in specific domains, like business process modeling, user interaction modeling, and enterprise architecture complete revision of examples, figures, and text, for improving readability, understandability, and coherence better formulation of definitions, dependencies between concepts and ideas addition of a complete index of book content In addition to the contents of the book, more resources are provided on the book's website http://www.mdse-book.com, including the examples presented in the book.
  computer engineering and software engineering which is better: Become an Effective Software Engineering Manager James Stanier, 2020-06-09 Software startups make global headlines every day. As technology companies succeed and grow, so do their engineering departments. In your career, you'll may suddenly get the opportunity to lead teams: to become a manager. But this is often uncharted territory. How can you decide whether this career move is right for you? And if you do, what do you need to learn to succeed? Where do you start? How do you know that you're doing it right? What does it even mean? And isn't management a dirty word? This book will share the secrets you need to know to manage engineers successfully. Going from engineer to manager doesn't have to be intimidating. Engineers can be managers, and fantastic ones at that. Cast aside the rhetoric and focus on practical, hands-on techniques and tools. You'll become an effective and supportive team leader that your staff will look up to. Start with your transition to being a manager and see how that compares to being an engineer. Learn how to better organize information, feel productive, and delegate, but not micromanage. Discover how to manage your own boss, hire and fire, do performance and salary reviews, and build a great team. You'll also learn the psychology: how to ship while keeping staff happy, coach and mentor, deal with deadline pressure, handle sensitive information, and navigate workplace politics. Consider your whole department. How can you work with other teams to ensure best practice? How do you help form guilds and committees and communicate effectively? How can you create career tracks for individual contributors and managers? How can you support flexible and remote working? How can you improve diversity in the industry through your own actions? This book will show you how. Great managers can make the world a better place. Join us.
  computer engineering and software engineering which is better: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolu­tion, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wear­able sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manu­facturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individu­als. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frame­works that advance progress.
  computer engineering and software engineering which is better: Categories for Software Engineering Jose Luiz Fiadeiro, 2010-10-13 Demonstrates how category theory can be used for formal software development. The mathematical toolbox for the Software Engineering in the new age of complex interactive systems.
  computer engineering and software engineering which is better: Engineering Software as a Service Armando Fox, David A. Patterson, 2016 (NOTE: this Beta Edition may contain errors. See http://saasbook.info for details.) A one-semester college course in software engineering focusing on cloud computing, software as a service (SaaS), and Agile development using Extreme Programming (XP). This book is neither a step-by-step tutorial nor a reference book. Instead, our goal is to bring a diverse set of software engineering topics together into a single narrative, help readers understand the most important ideas through concrete examples and a learn-by-doing approach, and teach readers enough about each topic to get them started in the field. Courseware for doing the work in the book is available as a virtual machine image that can be downloaded or deployed in the cloud. A free MOOC (massively open online course) at saas-class.org follows the book's content and adds programming assignments and quizzes. See http://saasbook.info for details.(NOTE: this Beta Edition may contain errors. See http://saasbook.info for details.) A one-semester college course in software engineering focusing on cloud computing, software as a service (SaaS), and Agile development using Extreme Programming (XP). This book is neither a step-by-step tutorial nor a reference book. Instead, our goal is to bring a diverse set of software engineering topics together into a single narrative, help readers understand the most important ideas through concrete examples and a learn-by-doing approach, and teach readers enough about each topic to get them started in the field. Courseware for doing the work in the book is available as a virtual machine image that can be downloaded or deployed in the cloud. A free MOOC (massively open online course) at saas-class.org follows the book's content and adds programming assignments and quizzes. See http://saasbook.info for details.
  computer engineering and software engineering which is better: GPU Programming in MATLAB Nikolaos Ploskas, Nikolaos Samaras, 2016-08-25 GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. - Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes - Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language - Presents case studies illustrating key concepts across multiple fields - Includes source code, sample datasets, and lecture slides
  computer engineering and software engineering which is better: Beginning Software Engineering Rod Stephens, 2022-10-14 Discover the foundations of software engineering with this easy and intuitive guide In the newly updated second edition of Beginning Software Engineering, expert programmer and tech educator Rod Stephens delivers an instructive and intuitive introduction to the fundamentals of software engineering. In the book, you’ll learn to create well-constructed software applications that meet the needs of users while developing the practical, hands-on skills needed to build robust, efficient, and reliable software. The author skips the unnecessary jargon and sticks to simple and straightforward English to help you understand the concepts and ideas discussed within. He also offers you real-world tested methods you can apply to any programming language. You’ll also get: Practical tips for preparing for programming job interviews, which often include questions about software engineering practices A no-nonsense guide to requirements gathering, system modeling, design, implementation, testing, and debugging Brand-new coverage of user interface design, algorithms, and programming language choices Beginning Software Engineering doesn’t assume any experience with programming, development, or management. It’s plentiful figures and graphics help to explain the foundational concepts and every chapter offers several case examples, Try It Out, and How It Works explanatory sections. For anyone interested in a new career in software development, or simply curious about the software engineering process, Beginning Software Engineering, Second Edition is the handbook you’ve been waiting for.
  computer engineering and software engineering which is better: Rapid Development Steve McConnell, 1996-07-02 Corporate and commercial software-development teams all want solutions for one important problem—how to get their high-pressure development schedules under control. In RAPID DEVELOPMENT, author Steve McConnell addresses that concern head-on with overall strategies, specific best practices, and valuable tips that help shrink and control development schedules and keep projects moving. Inside, you’ll find: A rapid-development strategy that can be applied to any project and the best practices to make that strategy work Candid discussions of great and not-so-great rapid-development practices—estimation, prototyping, forced overtime, motivation, teamwork, rapid-development languages, risk management, and many others A list of classic mistakes to avoid for rapid-development projects, including creeping requirements, shortchanged quality, and silver-bullet syndrome Case studies that vividly illustrate what can go wrong, what can go right, and how to tell which direction your project is going RAPID DEVELOPMENT is the real-world guide to more efficient applications development.
  computer engineering and software engineering which is better: The Algorithm Design Manual Steven S Skiena, 2009-04-05 This newly expanded and updated second edition of the best-selling classic continues to take the mystery out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW war stories relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java
  computer engineering and software engineering which is better: Software Engineering Best Practices Capers Jones, 2009-11-05 Proven techniques for software engineering success This in-depth volume examines software engineering topics that are not covered elsewhere: the question of why software engineering has developed more than 2,500 programming languages; problems with traditional definitions of software quality; and problems with common metrics, lines of code, and cost per defect that violate standard economic assumptions. The book notes that a majority of new projects are actually replacements for legacy applications, illustrating that data mining for lost requirements should be a standard practice. Difficult social engineering issues are also covered, such as how to minimize harm from layoffs and downsizing. Software Engineering Best Practices explains how to effectively plan, size, schedule, and manage software projects of all types, using solid engineering procedures. It details proven methods, from initial requirements through 20 years of maintenance. Portions of the book have been extensively reviewed by key engineers from top companies, including IBM, Microsoft, Unisys, and Sony. Manage Agile, hierarchical, matrix, and virtual software development teams Optimize software quality using JAD, OFD, TSP, static analysis, inspections, and other methods with proven success records Use high-speed functional metrics to assess productivity and quality levels Plan optimal organization, from small teams through more than 1,000 personnel
  computer engineering and software engineering which is better: Understanding Software Max Kanat-Alexander, 2017-09-29 Software legend Max Kanat-Alexander shows you how to succeed as a developer by embracing simplicity, with forty-three essays that will help you really understand the software you work with. About This Book Read and enjoy the superlative writing and insights of the legendary Max Kanat-Alexander Learn and reflect with Max on how to bring simplicity to your software design principles Discover the secrets of rockstar programmers and how to also just suck less as a programmer Who This Book Is For Understanding Software is for every programmer, or anyone who works with programmers. If life is feeling more complex than it should be, and you need to touch base with some clear thinking again, this book is for you. If you need some inspiration and a reminder of how to approach your work as a programmer by embracing some simplicity in your work again, this book is for you. If you're one of Max's followers already, this book is a collection of Max's thoughts selected and curated for you to enjoy and reflect on. If you're new to Max's work, and ready to connect with the power of simplicity again, this book is for you! What You Will Learn See how to bring simplicity and success to your programming world Clues to complexity - and how to build excellent software Simplicity and software design Principles for programmers The secrets of rockstar programmers Max's views and interpretation of the Software industry Why Programmers suck and how to suck less as a programmer Software design in two sentences What is a bug? Go deep into debugging In Detail In Understanding Software, Max Kanat-Alexander, Technical Lead for Code Health at Google, shows you how to bring simplicity back to computer programming. Max explains to you why programmers suck, and how to suck less as a programmer. There's just too much complex stuff in the world. Complex stuff can't be used, and it breaks too easily. Complexity is stupid. Simplicity is smart. Understanding Software covers many areas of programming, from how to write simple code to profound insights into programming, and then how to suck less at what you do! You'll discover the problems with software complexity, the root of its causes, and how to use simplicity to create great software. You'll examine debugging like you've never done before, and how to get a handle on being happy while working in teams. Max brings a selection of carefully crafted essays, thoughts, and advice about working and succeeding in the software industry, from his legendary blog Code Simplicity. Max has crafted forty-three essays which have the power to help you avoid complexity and embrace simplicity, so you can be a happier and more successful developer. Max's technical knowledge, insight, and kindness, has earned him code guru status, and his ideas will inspire you and help refresh your approach to the challenges of being a developer. Style and approach Understanding Software is a new selection of carefully chosen and crafted essays from Max Kanat-Alexander's legendary blog call Code Simplicity. Max's writing and thoughts are great to sit and read cover to cover, or if you prefer you can drop in and see what you discover new every single time!
  computer engineering and software engineering which is better: Women in Cybersecurity Jane LeClair, Denise Pheils, 2016-07-11 Provides a basic overview of the employment status of women in the cybersecurity field.
  computer engineering and software engineering which is better: Python Crash Course Eric Matthes, 2015-11-01 Python Crash Course is a fast-paced, thorough introduction to Python that will have you writing programs, solving problems, and making things that work in no time. In the first half of the book, you’ll learn about basic programming concepts, such as lists, dictionaries, classes, and loops, and practice writing clean and readable code with exercises for each topic. You’ll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you’ll put your new knowledge into practice with three substantial projects: a Space Invaders–inspired arcade game, data visualizations with Python’s super-handy libraries, and a simple web app you can deploy online. As you work through Python Crash Course you’ll learn how to: –Use powerful Python libraries and tools, including matplotlib, NumPy, and Pygal –Make 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progresses –Work with data to generate interactive visualizations –Create and customize Web apps and deploy them safely online –Deal with mistakes and errors so you can solve your own programming problems If you’ve been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code! Uses Python 2 and 3
  computer engineering and software engineering which is better: The Effective Engineer Edmond Lau, 2015-03-19 Introducing The Effective Engineer--the only book designed specifically for today's software engineers, based on extensive interviews with engineering leaders at top tech companies, and packed with hundreds of techniques to accelerate your career.
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …

Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …

What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …

Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …

Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.

What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …

Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic …

Computer | Definition, History, Operating Systems, & Facts | Brita…
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and …

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central …