Computational Optimization And Applications



  computational optimization and applications: Computational Optimization and Applications in Engineering and Industry Xin-She Yang, Slawomir Koziel, 2011-06-19 Contemporary design in engineering and industry relies heavily on computer simulation and efficient algorithms to reduce the cost and to maximize the performance and sustainability as well as profits and energy efficiency. Solving an optimization problem correctly and efficiently requires not only the right choice of optimization algorithms and simulation methods, but also the proper implementation and insight into the problem of interest. This book consists of ten self-contained, detailed case studies of real-world optimization problems, selected from a wide range of applications and contributed from worldwide experts who are working in these exciting areas. Optimization topics and applications include gas and water supply networks, oil field production optimization, microwave engineering, aerodynamic shape design, environmental emergence modelling, structural engineering, waveform design for radar and communication systems, parameter estimation in laser experiment and measurement, engineering materials and network scheduling. These case studies have been solved using a wide range of optimization techniques, including particle swarm optimization, genetic algorithms, artificial bee colony, harmony search, adaptive error control, derivative-free pattern search, surrogate-based optimization, variable-fidelity modelling, as well as various other methods and approaches. This book is a practical guide to help graduates and researchers to carry out optimization for real-world applications. More advanced readers will also find it a helpful reference and aide memoire.
  computational optimization and applications: Computational Optimization, Methods and Algorithms Slawomir Koziel, Xin-She Yang, 2011-06-17 Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
  computational optimization and applications: Intelligent Computational Optimization in Engineering Mario Koeppen, Gerald Schaefer, Ajith Abraham, 2011-07-15 We often come across computational optimization virtually in all branches of engineering and industry. Many engineering problems involve heuristic search and optimization, and, once discretized, may become combinatorial in nature, which gives rise to certain difficulties in terms of solution procedure. Some of these problems have enormous search spaces, are NP-hard and hence require heuristic solution techniques. Another difficulty is the lack of ability of classical solution techniques to determine appropriate optima of non-convex problems. Under these conditions, recent advances in computational optimization techniques have been shown to be advantageous and successful compared to classical approaches. This Volume presents some of the latest developments with a focus on the design of algorithms for computational optimization and their applications in practice. Through the chapters of this book, researchers and practitioners share their experience and newest methodologies with regard to intelligent optimization and provide various case studies of the application of intelligent optimization techniques in real-world applications.This book can serve as an excellent reference for researchers and graduate students in computer science, various engineering disciplines and the industry.
  computational optimization and applications: Handbook of Machine Learning for Computational Optimization Vishal Jain, Sapna Juneja, Abhinav Juneja, Ramani Kannan, 2021-11-02 Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.
  computational optimization and applications: Computational Intelligence in Optimization Yoel Tenne, Chi-Keong Goh, 2010-06-30 This collection of recent studies spans a range of computational intelligence applications, emphasizing their application to challenging real-world problems. Covers Intelligent agent-based algorithms, Hybrid intelligent systems, Machine learning and more.
  computational optimization and applications: Computational Optimization Techniques and Applications Muhammad Sarfraz, Samsul Ariffin Abdul Karim, 2021-08-25 Computational optimization is an active and important area of study, practice, and research today. It covers a wide range of applications in engineering, science, and industry. It provides solutions to a variety of real-life problems in the fields of health, business, government, military, politics, security, education, and many more. This book compiles original and innovative findings on all aspects of computational optimization. It presents various examples of optimization including cost, energy, profits, outputs, performance, and efficiency. It also discusses different types of optimization problems like nonlinearity, multimodality, discontinuity, and uncertainty. Over thirteen chapters, the book provides researchers, practitioners, academicians, military professionals, government officials, and other industry professionals with an in-depth discussion of the latest advances in the field.
  computational optimization and applications: Computational Optimization in Engineering Hossein Peyvandi, 2017-04-26 The purpose of optimization is to maximize the quality of lives, productivity in time, as well as interests. Therefore, optimization is an ongoing challenge for selecting the best possible among many other inferior designs. For a hundred years in the past, as optimization has been essential to human life, several techniques have been developed and utilized. Such a development has been one of the long-lasting challenges in engineering and science, and it is now clear that the optimization goals in many of real-life problems are unlikely to be achieved without resource for computational techniques. The history of such a development in the optimization techniques starts from the early 1950s and is still in progress. Since then, the efforts behind this development dedicated by many distinguished scientists, mathematicians, and engineers have brought us today a level of quality of lives. This book concerns with the computational optimization in engineering and techniques to resolve the underlying problems in real life. The current book contains studies from scientists and researchers around the world from North America to Europe and from Asia to Australia.
  computational optimization and applications: State of the Art in Global Optimization Christodoulos A. Floudas, Panos M. Pardalos, 2013-12-01 Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solving large classes of problems from diverse areas such as engineering design and control, computational chemistry and biology, structural optimization, computer science, operations research, and economics. This book contains refereed invited papers presented at the conference on State of the Art in Global Optimization: Computational Methods and Applications held at Princeton University, April 28-30, 1995. The conference presented current re search on global optimization and related applications in science and engineering. The papers included in this book cover a wide spectrum of approaches for solving global optimization problems and applications.
  computational optimization and applications: Computational Optimization of Internal Combustion Engines Yu Shi, Hai-Wen Ge, Rolf D. Reitz, 2011-06-22 Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.
  computational optimization and applications: Feasibility and Infeasibility in Optimization: John W. Chinneck, 2007-10-25 Written by a world leader in the field and aimed at researchers in applied and engineering sciences, this brilliant text has as its main goal imparting an understanding of the methods so that practitioners can make immediate use of existing algorithms and software, and so that researchers can extend the state of the art and find new applications. It includes algorithms on seeking feasibility and analyzing infeasibility, as well as describing new and surprising applications.
  computational optimization and applications: Optimization and Computational Fluid Dynamics Dominique Thévenin, Gábor Janiga, 2008-01-08 The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.
  computational optimization and applications: Optimization Theory with Applications Donald A. Pierre, 2012-07-12 Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.
  computational optimization and applications: Optimization in Computational Chemistry and Molecular Biology Christodoulos A. Floudas, Panos M. Pardalos, 2000-02-29 Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimization techniques for addressing several computational chemistry and biology problems. A tantalizing problem that cuts across the fields of computational chemistry, biology, medicine, engineering and applied mathematics is how proteins fold. Global and local optimization provide a systematic framework of conformational searches for the prediction of three-dimensional protein structures that represent the global minimum free energy, as well as low-energy biomolecular conformations. Each contribution in the book is essentially expository in nature, but of scholarly treatment. The topics covered include advances in local and global optimization approaches for molecular dynamics and modeling, distance geometry, protein folding, molecular structure refinement, protein and drug design, and molecular and peptide docking. Audience: The book is addressed not only to researchers in mathematical programming, but to all scientists in various disciplines who use optimization methods in solving problems in computational chemistry and biology.
  computational optimization and applications: Computational Combinatorial Optimization Michael Jünger, Denis Naddef, 2001-11-21 This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.
  computational optimization and applications: Handbook of Machine Learning for Computational Optimization Vishal Jain, Sapna Juneja, Abhinav Juneja, Ramani Kannan, 2021-11-02 Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.
  computational optimization and applications: Multi-Objective Optimization in Computational Intelligence: Theory and Practice Thu Bui, Lam, Alam, Sameer, 2008-05-31 Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.
  computational optimization and applications: Computational Mathematics and Variational Analysis Nicholas J. Daras, Themistocles M. Rassias, 2020-06-06 This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.
  computational optimization and applications: Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications Modestus O. Okwu, Lagouge K. Tartibu, 2020-11-13 This book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.
  computational optimization and applications: Practical Augmented Lagrangian Methods for Constrained Optimization Ernesto G. Birgin, JosŸ Mario Martinez, 2014-04-30 This book focuses on Augmented Lagrangian techniques for solving practical constrained optimization problems. The authors rigorously delineate mathematical convergence theory based on sequential optimality conditions and novel constraint qualifications. They also orient the book to practitioners by giving priority to results that provide insight on the practical behavior of algorithms and by providing geometrical and algorithmic interpretations of every mathematical result, and they fully describe a freely available computational package for constrained optimization and illustrate its usefulness with applications.
  computational optimization and applications: Global Optimization Marco Locatelli, Fabio Schoen, 2013-10-16 This volume contains a thorough overview of the rapidly growing field of global optimization, with chapters on key topics such as complexity, heuristic methods, derivation of lower bounds for minimization problems, and branch-and-bound methods and convergence. The final chapter offers both benchmark test problems and applications of global optimization, such as finding the conformation of a molecule or planning an optimal trajectory for interplanetary space travel. An appendix provides fundamental information on convex and concave functions. Intended for Ph.D. students, researchers, and practitioners looking for advanced solution methods to difficult optimization problems. It can be used as a supplementary text in an advanced graduate-level seminar.
  computational optimization and applications: Computational Neuroscience Jaime A. Riascos Salas,
  computational optimization and applications: Computational Management Srikanta Patnaik, Kayhan Tajeddini, Vipul Jain, 2021-05-29 This book offers a timely review of cutting-edge applications of computational intelligence to business management and financial analysis. It covers a wide range of intelligent and optimization techniques, reporting in detail on their application to real-world problems relating to portfolio management and demand forecasting, decision making, knowledge acquisition, and supply chain scheduling and management.
  computational optimization and applications: Scalable Optimization via Probabilistic Modeling Martin Pelikan, Kumara Sastry, Erick Cantú-Paz, 2006-09-25 I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.
  computational optimization and applications: Optimization Techniques and Applications with Examples Xin-She Yang, 2018-09-19 A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.
  computational optimization and applications: Advanced Optimization and Operations Research Asoke Kumar Bhunia, Laxminarayan Sahoo, Ali Akbar Shaikh, 2020-01-09 This textbook provides students with fundamentals and advanced concepts in optimization and operations research. It gives an overview of the historical perspective of operations research and explains its principal characteristics, tools, and applications. The wide range of topics covered includes convex and concave functions, simplex methods, post optimality analysis of linear programming problems, constrained and unconstrained optimization, game theory, queueing theory, and related topics. The text also elaborates on project management, including the importance of critical path analysis, PERT and CPM techniques. This textbook is ideal for any discipline with one or more courses in optimization and operations research; it may also provide a solid reference for researchers and practitioners in operations research.
  computational optimization and applications: Optimization of Complex Systems: Theory, Models, Algorithms and Applications Hoai An Le Thi, Hoai Minh Le, Tao Pham Dinh, 2019-06-15 This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.
  computational optimization and applications: Bioinspired Computation in Combinatorial Optimization Frank Neumann, Carsten Witt, 2010-11-04 Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.
  computational optimization and applications: Introduction to Nonlinear Optimization Amir Beck, 2014-10-27 This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.
  computational optimization and applications: Algorithms for Optimization Mykel J. Kochenderfer, Tim A. Wheeler, 2019-03-12 A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.
  computational optimization and applications: Nonlinear Programming Lorenz T. Biegler, 2010-01-01 This book addresses modern nonlinear programming (NLP) concepts and algorithms, especially as they apply to challenging applications in chemical process engineering. The author provides a firm grounding in fundamental NLP properties and algorithms, and relates them to real-world problem classes in process optimization, thus making the material understandable and useful to chemical engineers and experts in mathematical optimization.
  computational optimization and applications: Advances and Trends in Optimization with Engineering Applications Tamas Terlaky, Miguel F. Anjos, Shabbir Ahmed, 2017-04-26 Optimization is of critical importance in engineering. Engineers constantly strive for the best possible solutions, the most economical use of limited resources, and the greatest efficiency. As system complexity increases, these goals mandate the use of state-of-the-art optimization techniques. In recent years, the theory and methodology of optimization have seen revolutionary improvements. Moreover, the exponential growth in computational power, along with the availability of multicore computing with virtually unlimited memory and storage capacity, has fundamentally changed what engineers can do to optimize their designs. This is a two-way process: engineers benefit from developments in optimization methodology, and challenging new classes of optimization problems arise from novel engineering applications. Advances and Trends in Optimization with Engineering Applications reviews 10 major areas of optimization and related engineering applications, providing a broad summary of state-of-the-art optimization techniques most important to engineering practice. Each part provides a clear overview of a specific area and discusses a range of real-world problems. The book provides a solid foundation for engineers and mathematical optimizers alike who want to understand the importance of optimization methods to engineering and the capabilities of these methods.
  computational optimization and applications: Financial Decision Making Using Computational Intelligence Michael Doumpos, Constantin Zopounidis, Panos M. Pardalos, 2012-07-23 The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides an arsenal of particularly useful techniques. These techniques include new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems. Computational intelligence has also evolved rapidly over the past few years and it is now one of the most active fields in operations research and computer science. This volume presents the recent advances of the use of computation intelligence in financial decision making. The book covers all the major areas of computational intelligence and a wide range of problems in finance, such as portfolio optimization, credit risk analysis, asset valuation, financial forecasting, and trading.
  computational optimization and applications: Optimization Methods and Applications Sergiy Butenko, Panos M. Pardalos, Volodymyr Shylo, 2018-02-20 Researchers and practitioners in computer science, optimization, operations research and mathematics will find this book useful as it illustrates optimization models and solution methods in discrete, non-differentiable, stochastic, and nonlinear optimization. Contributions from experts in optimization are showcased in this book showcase a broad range of applications and topics detailed in this volume, including pattern and image recognition, computer vision, robust network design, and process control in nonlinear distributed systems. This book is dedicated to the 80th birthday of Ivan V. Sergienko, who is a member of the National Academy of Sciences (NAS) of Ukraine and the director of the V.M. Glushkov Institute of Cybernetics. His work has had a significant impact on several theoretical and applied aspects of discrete optimization, computational mathematics, systems analysis and mathematical modeling.
  computational optimization and applications: Convex Analysis and Nonlinear Optimization Jonathan Borwein, Adrian S. Lewis, 2010-05-05 Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
  computational optimization and applications: Ant Colony Optimization Marco Dorigo, Thomas Stutzle, 2004-06-04 An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
  computational optimization and applications: Parallel Optimization Yair Censor, Stavros Andrea Zenios, 1997 This book offers a unique pathway to methods of parallel optimization by introducing parallel computing ideas into both optimization theory and into some numerical algorithms for large-scale optimization problems. The three parts of the book bring together relevant theory, careful study of algorithms, and modeling of significant real world problems such as image reconstruction, radiation therapy treatment planning, financial planning, transportation and multi-commodity network flow problems, planning under uncertainty, and matrix balancing problems.
  computational optimization and applications: Computational Optimization Jong-Shi Pang, 2012-12-06 Computational Optimization: A Tribute to Olvi Mangasarian serves as an excellent reference, providing insight into some of the most challenging research issues in the field. This collection of papers covers a wide spectrum of computational optimization topics, representing a blend of familiar nonlinear programming topics and such novel paradigms as semidefinite programming and complementarity-constrained nonlinear programs. Many new results are presented in these papers which are bound to inspire further research and generate new avenues for applications. An informal categorization of the papers includes: Algorithmic advances for special classes of constrained optimization problems Analysis of linear and nonlinear programs Algorithmic advances B- stationary points of mathematical programs with equilibrium constraints Applications of optimization Some mathematical topics Systems of nonlinear equations.
  computational optimization and applications: Lectures on Modern Convex Optimization Aharon Ben-Tal, Arkadi Nemirovski, 2001-01-01 Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.
  computational optimization and applications: Particle Swarm Optimization and Intelligence: Advances and Applications Parsopoulos, Konstantinos E., Vrahatis, Michael N., 2010-01-31 This book presents the most recent and established developments of Particle swarm optimization (PSO) within a unified framework by noted researchers in the field--Provided by publisher.
  computational optimization and applications: Mixed Integer Nonlinear Programming Jon Lee, Sven Leyffer, 2011-12-02 Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
COMPUTATIONAL definition | Cambridge English Dictionary
COMPUTATIONAL meaning: 1. involving the calculation of answers, amounts, results, etc.: 2. using computers to study…. Learn more.

COMPUTATIONAL Definition & Meaning - Merriam-Webster
The meaning of COMPUTATION is the act or action of computing : calculation. How to use computation in a sentence.

Computation - Wikipedia
Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. Computer science is an academic field that involves the study of computation.

Computational science - Wikipedia
Computational science, also known as scientific computing, technical computing or scientific computation (SC), is a division of science, and more specifically the Computer Sciences, which …

Computational - Definition, Meaning & Synonyms
Computational is an adjective referring to a system of calculating or "computing," or, more commonly today, work involving computers. Tasks with a lot of computational steps are best …

COMPUTATIONAL definition in American English - Collins Online …
Computational means using computers. Students may pursue research in any aspect of computational linguistics. Collins COBUILD Advanced Learner’s Dictionary. Copyright © …

Computational - definition of computational by ... - The Free …
Define computational. computational synonyms, computational pronunciation, computational translation, English dictionary definition of computational. n. 1. a. The act or process of …

COMPUTATIONAL - Definition & Translations | Collins English …
Discover everything about the word "COMPUTATIONAL" in English: meanings, translations, synonyms, pronunciations, examples, and grammar insights - all in one comprehensive guide.

What is computational thinking? - Introduction to computational …
Learn about the four cornerstones of computational thinking including decomposition, pattern recognition, abstraction and algorithms.

Computational Definition & Meaning - YourDictionary
Computational definition: Of or relating to computation.

COMPUTATIONAL definition | Cambridge English Dictionary
COMPUTATIONAL meaning: 1. involving the calculation of answers, amounts, results, etc.: 2. using computers to study…. Learn more.

COMPUTATIONAL Definition & Meaning - Merriam-Webster
The meaning of COMPUTATION is the act or action of computing : calculation. How to use computation in a sentence.

Computation - Wikipedia
Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. Computer science is an academic field that involves the study of computation.

Computational science - Wikipedia
Computational science, also known as scientific computing, technical computing or scientific computation (SC), is a division of science, and more specifically the Computer Sciences, …

Computational - Definition, Meaning & Synonyms
Computational is an adjective referring to a system of calculating or "computing," or, more commonly today, work involving computers. Tasks with a lot of computational steps are best …

COMPUTATIONAL definition in American English - Collins Online …
Computational means using computers. Students may pursue research in any aspect of computational linguistics. Collins COBUILD Advanced Learner’s Dictionary. Copyright © …

Computational - definition of computational by ... - The Free …
Define computational. computational synonyms, computational pronunciation, computational translation, English dictionary definition of computational. n. 1. a. The act or process of …

COMPUTATIONAL - Definition & Translations | Collins English …
Discover everything about the word "COMPUTATIONAL" in English: meanings, translations, synonyms, pronunciations, examples, and grammar insights - all in one comprehensive guide.

What is computational thinking? - Introduction to computational …
Learn about the four cornerstones of computational thinking including decomposition, pattern recognition, abstraction and algorithms.

Computational Definition & Meaning - YourDictionary
Computational definition: Of or relating to computation.