Computer Science 101 Course



  computer science 101 course: Structure and Interpretation of Computer Programs Harold Abelson, Gerald Jay Sussman, 2022-05-03 A new version of the classic and widely used text adapted for the JavaScript programming language. Since the publication of its first edition in 1984 and its second edition in 1996, Structure and Interpretation of Computer Programs (SICP) has influenced computer science curricula around the world. Widely adopted as a textbook, the book has its origins in a popular entry-level computer science course taught by Harold Abelson and Gerald Jay Sussman at MIT. SICP introduces the reader to central ideas of computation by establishing a series of mental models for computation. Earlier editions used the programming language Scheme in their program examples. This new version of the second edition has been adapted for JavaScript. The first three chapters of SICP cover programming concepts that are common to all modern high-level programming languages. Chapters four and five, which used Scheme to formulate language processors for Scheme, required significant revision. Chapter four offers new material, in particular an introduction to the notion of program parsing. The evaluator and compiler in chapter five introduce a subtle stack discipline to support return statements (a prominent feature of statement-oriented languages) without sacrificing tail recursion. The JavaScript programs included in the book run in any implementation of the language that complies with the ECMAScript 2020 specification, using the JavaScript package sicp provided by the MIT Press website.
  computer science 101 course: Computer Science Michael A. Covington, 1991 Covers 80 key topics grouped into 12 themes, from operating systems and data communication to graphics and artificial intelligence.
  computer science 101 course: Science and Cooking: Physics Meets Food, From Homemade to Haute Cuisine Michael Brenner, Pia Sörensen, David Weitz, 2020-10-20 Based on the popular Harvard University and edX course, Science and Cooking explores the scientific basis of why recipes work. The spectacular culinary creations of modern cuisine are the stuff of countless articles and social media feeds. But to a scientist they are also perfect pedagogical explorations into the basic scientific principles of cooking. In Science and Cooking, Harvard professors Michael Brenner, Pia Sörensen, and David Weitz bring the classroom to your kitchen to teach the physics and chemistry underlying every recipe. Why do we knead bread? What determines the temperature at which we cook a steak, or the amount of time our chocolate chip cookies spend in the oven? Science and Cooking answers these questions and more through hands-on experiments and recipes from renowned chefs such as Christina Tosi, Joanne Chang, and Wylie Dufresne, all beautifully illustrated in full color. With engaging introductions from revolutionary chefs and collaborators Ferran Adria and José Andrés, Science and Cooking will change the way you approach both subjects—in your kitchen and beyond.
  computer science 101 course: Explorations in Computing John S. Conery, 2014-09-24 An Active Learning Approach to Teaching the Main Ideas in Computing Explorations in Computing: An Introduction to Computer Science and Python Programming teaches computer science students how to use programming skills to explore fundamental concepts and computational approaches to solving problems. Tbook gives beginning students an introduction to
  computer science 101 course: Exploring Microsoft Office Excel 2016 Comprehensive Mary Anne Poatsy, Keith Mulbery, Jason Davidson, Robert Grauer, 2016-03-23 This book offers full, comprehensive coverage of Microsoft Excel. Beyond point-and-click The goal of the Exploring series is to move students beyond the point-and-click, to understanding the why and how behind each skill. And because so much learning takes place outside of the classroom, this series provides learning tools that students can access anywhere, anytime. Students go to college now with a different set of skills than they did years ago. With this in mind, the Exploring series seeks to move students beyond the basics of the software at a faster pace, without sacrificing coverage of the fundamental skills that everyone needs to know. Also available with MyITLab MyITLab (R) is an online homework, tutorial, and assessment program designed for Information Technology (IT) courses, which engages students and improves results. HTML5 Simulation exercises and Live-in-Application Grader projects come with the convenience of auto-grading and instant feedback, helping students learn more quickly and effectively. Digital badges lets students showcase their Microsoft Office or Computer Concepts competencies, keeping them motivated and focused on their future careers. MyITLab builds the critical skills needed for college and career success. Note: You are purchasing a standalone product; MyITLab does not come packaged with this content. Students, if interested in purchasing this title with MyITLab, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.
  computer science 101 course: Python Programming John M. Zelle, 2004 This book is suitable for use in a university-level first course in computing (CS1), as well as the increasingly popular course known as CS0. It is difficult for many students to master basic concepts in computer science and programming. A large portion of the confusion can be blamed on the complexity of the tools and materials that are traditionally used to teach CS1 and CS2. This textbook was written with a single overarching goal: to present the core concepts of computer science as simply as possible without being simplistic.
  computer science 101 course: Introduction to Programming in Java: An Interdisciplinary Approach Robert Sedgewick, Kevin Wayne, 2013-07-31 By emphasizing the application of computer programming not only in success stories in the software industry but also in familiar scenarios in physical and biological science, engineering, and applied mathematics, Introduction to Programming in Java takes an interdisciplinary approach to teaching programming with the Java(TM) programming language. Interesting applications in these fields foster a foundation of computer science concepts and programming skills that students can use in later courses while demonstrating that computation is an integral part of the modern world. Ten years in development, this book thoroughly covers the field and is ideal for traditional introductory programming courses. It can also be used as a supplement or a main text for courses that integrate programming with mathematics, science, or engineering.
  computer science 101 course: Blown to Bits Harold Abelson, Ken Ledeen, Harry R. Lewis, 2008 'Blown to Bits' is about how the digital explosion is changing everything. The text explains the technology, why it creates so many surprises and why things often don't work the way we expect them to. It is also about things the information explosion is destroying: old assumptions about who is really in control of our lives.
  computer science 101 course: How to Design Programs, second edition Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, 2018-05-25 A completely revised edition, offering new design recipes for interactive programs and support for images as plain values, testing, event-driven programming, and even distributed programming. This introduction to programming places computer science at the core of a liberal arts education. Unlike other introductory books, it focuses on the program design process, presenting program design guidelines that show the reader how to analyze a problem statement, how to formulate concise goals, how to make up examples, how to develop an outline of the solution, how to finish the program, and how to test it. Because learning to design programs is about the study of principles and the acquisition of transferable skills, the text does not use an off-the-shelf industrial language but presents a tailor-made teaching language. For the same reason, it offers DrRacket, a programming environment for novices that supports playful, feedback-oriented learning. The environment grows with readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks. This second edition has been completely revised. While the book continues to teach a systematic approach to program design, the second edition introduces different design recipes for interactive programs with graphical interfaces and batch programs. It also enriches its design recipes for functions with numerous new hints. Finally, the teaching languages and their IDE now come with support for images as plain values, testing, event-driven programming, and even distributed programming.
  computer science 101 course: Computation Structures Stephen A. Ward, Robert H. Halstead, 1990 Computer Systems Organization -- general.
  computer science 101 course: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  computer science 101 course: Python for Everybody Charles R. Severance, 2016-04-09 Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet.Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software.This book uses the Python 3 language. The earlier Python 2 version of this book is titled Python for Informatics: Exploring Information.There are free downloadable electronic copies of this book in various formats and supporting materials for the book at www.pythonlearn.com. The course materials are available to you under a Creative Commons License so you can adapt them to teach your own Python course.
  computer science 101 course: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
  computer science 101 course: Computer Architecture John L. Hennessy, David A. Patterson, Krste Asanović, 2012 The computing world is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation. This book focuses on the shift, exploring the ways in which software and technology in the 'cloud' are accessed by cell phones, tablets, laptops, and more
  computer science 101 course: Introduction to Computer Science (First Edition) Perry Donham, 2018-08-09 Introduction to Computer Science introduces students to the fundamentals of computer science by connecting the dots between applications they use every day and the underlying technologies that power them. Throughout, students learn valuable technical skills including how to write simple JavaScript programs, format a webpage with HTML and CSS code, reduce the size of a file, and more. Opening chapters of the text provide students with historical background, describe the numbering systems that computers operate with, and explain how computers store and convert data such as images and music. Later chapters explore the anatomy of computer hardware such as CPUs and memory, how computers communicate over networks, and the programming languages that allow us to solve problems using computation. The book concludes with chapters dedicated to security and privacy, the structure and function of operating systems, and the world of e-commerce. Accessible in approach, Introduction to Computer Science is designed to help non-computer science majors learn how technology and computers power the world around them. The text is well suited for introductory courses in computer science.
  computer science 101 course: Aise MATLAB Programming for Engineers Stephen Chapman, 2014-05-20
  computer science 101 course: Computer Science Robert Sedgewick, Kevin Wayne, 2016-06-17 Named a Notable Book in the 21st Annual Best of Computing list by the ACM! Robert Sedgewick and Kevin Wayne’s Computer Science: An Interdisciplinary Approach is the ideal modern introduction to computer science with Java programming for both students and professionals. Taking a broad, applications-based approach, Sedgewick and Wayne teach through important examples from science, mathematics, engineering, finance, and commercial computing. The book demystifies computation, explains its intellectual underpinnings, and covers the essential elements of programming and computational problem solving in today’s environments. The authors begin by introducing basic programming elements such as variables, conditionals, loops, arrays, and I/O. Next, they turn to functions, introducing key modular programming concepts, including components and reuse. They present a modern introduction to object-oriented programming, covering current programming paradigms and approaches to data abstraction. Building on this foundation, Sedgewick and Wayne widen their focus to the broader discipline of computer science. They introduce classical sorting and searching algorithms, fundamental data structures and their application, and scientific techniques for assessing an implementation’s performance. Using abstract models, readers learn to answer basic questions about computation, gaining insight for practical application. Finally, the authors show how machine architecture links the theory of computing to real computers, and to the field’s history and evolution. For each concept, the authors present all the information readers need to build confidence, together with examples that solve intriguing problems. Each chapter contains question-and-answer sections, self-study drills, and challenging problems that demand creative solutions. Companion web site (introcs.cs.princeton.edu/java) contains Extensive supplementary information, including suggested approaches to programming assignments, checklists, and FAQs Graphics and sound libraries Links to program code and test data Solutions to selected exercises Chapter summaries Detailed instructions for installing a Java programming environment Detailed problem sets and projects Companion 20-part series of video lectures is available at informit.com/title/9780134493831
  computer science 101 course: Introduction To Algorithms Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, 2001 An extensively revised edition of a mathematically rigorous yet accessible introduction to algorithms.
  computer science 101 course: Computer Engineering for Babies Chase Roberts, 2021-10-20 An introduction to computer engineering for babies. Learn basic logic gates with hands on examples of buttons and an output LED.
  computer science 101 course: CG 101 Terrence Masson, 1999 CG101 is the first comprehensive resource guide written in plain language for all levels of computer graphics users. It is also the first and only detailed behind-the-scenes history about the people and companies that have formed today's industry. Hundreds of contributors and in-depth interviews give a never-before-seen look into the earliest years of CG right up to present day. In addition to the historical perspective, CG 101 includes detailed tips and tricks, demo reel guidelines and CG job descriptions to help those looking to get into the business. The hundreds of software tool descriptions all have extensive contact information, including Web addresses and phone numbers for easy reference.
  computer science 101 course: Understanding by Design Grant P. Wiggins, Jay McTighe, 2005 What is understanding and how does it differ from knowledge? How can we determine the big ideas worth understanding? Why is understanding an important teaching goal, and how do we know when students have attained it? How can we create a rigorous and engaging curriculum that focuses on understanding and leads to improved student performance in today's high-stakes, standards-based environment? Authors Grant Wiggins and Jay McTighe answer these and many other questions in this second edition of Understanding by Design. Drawing on feedback from thousands of educators around the world who have used the UbD framework since its introduction in 1998, the authors have greatly revised and expanded their original work to guide educators across the K-16 spectrum in the design of curriculum, assessment, and instruction. With an improved UbD Template at its core, the book explains the rationale of backward design and explores in greater depth the meaning of such key ideas as essential questions and transfer tasks. Readers will learn why the familiar coverage- and activity-based approaches to curriculum design fall short, and how a focus on the six facets of understanding can enrich student learning. With an expanded array of practical strategies, tools, and examples from all subject areas, the book demonstrates how the research-based principles of Understanding by Design apply to district frameworks as well as to individual units of curriculum. Combining provocative ideas, thoughtful analysis, and tested approaches, this new edition of Understanding by Design offers teacher-designers a clear path to the creation of curriculum that ensures better learning and a more stimulating experience for students and teachers alike.
  computer science 101 course: Computer Science J. Glenn Brookshear, 2012 Computer Science: An Overview uses broad coverage and clear exposition to present a complete picture of the dynamic computer science field. Accessible to students from all backgrounds, Glenn Brookshear uses a language-independent context to encourage the development of a practical, realistic understanding of the field. An overview of each of the important areas of Computer Science (e.g. Networking, OS, Computer Architecture, Algorithms) provides students with a general level of proficiency for future courses. The Eleventh Edition features two new contributing authors (David Smith -- Indiana University of PA; Dennis Brylow -- Marquette University), new, modern examples, and updated coverage based on current technology.
  computer science 101 course: Automata, Computability and Complexity Elaine Rich, 2008 For upper level courses on Automata. Combining classic theory with unique applications, this crisp narrative is supported by abundant examples and clarifies key concepts by introducing important uses of techniques in real systems. Broad-ranging coverage allows instructors to easily customise course material to fit their unique requirements.
  computer science 101 course: Basic Computer Games David H. Ahl, 1981
  computer science 101 course: Think Python Allen B. Downey, 2015-12-02 If you want to learn how to program, working with Python is an excellent way to start. This hands-on guide takes you through the language a step at a time, beginning with basic programming concepts before moving on to functions, recursion, data structures, and object-oriented design. This second edition and its supporting code have been updated for Python 3. Through exercises in each chapter, youâ??ll try out programming concepts as you learn them. Think Python is ideal for students at the high school or college level, as well as self-learners, home-schooled students, and professionals who need to learn programming basics. Beginners just getting their feet wet will learn how to start with Python in a browser. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand objects, methods, and object-oriented programming Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design, data structures, and GUI-based programs through case studies
  computer science 101 course: Calculus Revisited R.W. Carroll, 2002-12-31 In this book the details of many calculations are provided for access to work in quantum groups, algebraic differential calculus, noncommutative geometry, fuzzy physics, discrete geometry, gauge theory, quantum integrable systems, braiding, finite topological spaces, some aspects of geometry and quantum mechanics and gravity.
  computer science 101 course: A Primer on Scientific Programming with Python Hans Petter Langtangen, 2016-07-28 The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches Matlab-style and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
  computer science 101 course: Introduction to Programming Using Java David Eck, 2009-09 This is a free, on-line textbook on introductory programming using Java. This book is directed mainly towards beginning programmers, although it might also be useful for experienced programmers who want to learn more about Java. It is an introductory text and does not provide complete coverage of the Java language. The text is a PDF and is suitable for printing or on-screen reading. It contains internal links for navigation and external links to source code files, exercise solutions, and other resources. Contents: 1) Overview: The Mental Landscape. 2) Programming in the Small I: Names and Things. 3) Programming in the Small II: Control. 4) Programming in the Large I: Subroutines. 5) Programming in the Large II: Objects and Classes. 6) Introduction to GUI Programming. 7) Arrays. 8) Correctness and Robustness. 9) Linked Data Structures and Recursion. 10) Generic Programming and Collection Classes. 11) Files and Networking. 12) Advanced GUI Programming. Appendices: Source Code for All Examples in this Book, and News and Errata.
  computer science 101 course: How to Prove It Daniel J. Velleman, 2006-01-16 Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
  computer science 101 course: Practical C++ Programming Steve Oualline, 2002-12-13 C++ is a powerful, highly flexible, and adaptable programming language that allows software engineers to organize and process information quickly and effectively. But this high-level language is relatively difficult to master, even if you already know the C programming language.The 2nd edition of Practical C++ Programming is a complete introduction to the C++ language for programmers who are learning C++. Reflecting the latest changes to the C++ standard, this 2nd edition takes a useful down-to-earth approach, placing a strong emphasis on how to design clean, elegant code.In short, to-the-point chapters, all aspects of programming are covered including style, software engineering, programming design, object-oriented design, and debugging. It also covers common mistakes and how to find (and avoid) them. End of chapter exercises help you ensure you've mastered the material.Practical C++ Programming thoroughly covers: C++ Syntax Coding standards and style Creation and use of object classes Templates Debugging and optimization Use of the C++ preprocessor File input/output Steve Oualline's clear, easy-going writing style and hands-on approach to learning make Practical C++ Programming a nearly painless way to master this complex but powerful programming language.
  computer science 101 course: Introduction to Computing David Evans, 2011-12-07 Introduction to Computing is a comprehensive text designed for the CS0 (Intro to CS) course at the college level. It may also be used as a primary text for the Advanced Placement Computer Science course at the high school level.
  computer science 101 course: Practical Programming Paul Gries, Jennifer Campbell, Jason Montojo, 2017-12-06 Classroom-tested by tens of thousands of students, this new edition of the bestselling intro to programming book is for anyone who wants to understand computer science. Learn about design, algorithms, testing, and debugging. Discover the fundamentals of programming with Python 3.6--a language that's used in millions of devices. Write programs to solve real-world problems, and come away with everything you need to produce quality code. This edition has been updated to use the new language features in Python 3.6.
  computer science 101 course: Open Data Structures Pat Morin, 2013 Introduction -- Array-based lists -- Linked lists -- Skiplists -- Hash tables -- Binary trees -- Random binary search trees -- Scapegoat trees -- Red-black trees -- Heaps -- Sorting algorithms -- Graphs -- Data structures for integers -- External memory searching.
  computer science 101 course: Programming for the Puzzled Srini Devadas, 2017-11-16 Learning programming with one of “the coolest applications around”: algorithmic puzzles ranging from scheduling selfie time to verifying the six degrees of separation hypothesis. This book builds a bridge between the recreational world of algorithmic puzzles (puzzles that can be solved by algorithms) and the pragmatic world of computer programming, teaching readers to program while solving puzzles. Few introductory students want to program for programming's sake. Puzzles are real-world applications that are attention grabbing, intriguing, and easy to describe. Each lesson starts with the description of a puzzle. After a failed attempt or two at solving the puzzle, the reader arrives at an Aha! moment—a search strategy, data structure, or mathematical fact—and the solution presents itself. The solution to the puzzle becomes the specification of the code to be written. Readers will thus know what the code is supposed to do before seeing the code itself. This represents a pedagogical philosophy that decouples understanding the functionality of the code from understanding programming language syntax and semantics. Python syntax and semantics required to understand the code are explained as needed for each puzzle. Readers need only the rudimentary grasp of programming concepts that can be obtained from introductory or AP computer science classes in high school. The book includes more than twenty puzzles and more than seventy programming exercises that vary in difficulty. Many of the puzzles are well known and have appeared in publications and on websites in many variations. They range from scheduling selfie time with celebrities to solving Sudoku problems in seconds to verifying the six degrees of separation hypothesis. The code for selected puzzle solutions is downloadable from the book's website; the code for all puzzle solutions is available to instructors.
  computer science 101 course: Raspberry Pi User Guide Eben Upton, Gareth Halfacree, 2016-08-29 Learn the Raspberry Pi 3 from the experts! Raspberry Pi User Guide, 4th Edition is the unofficial official guide to everything Raspberry Pi 3. Written by the Pi's creator and a leading Pi guru, this book goes straight to the source to bring you the ultimate Raspberry Pi 3 manual. This new fourth edition has been updated to cover the Raspberry Pi 3 board and software, with detailed discussion on its wide array of configurations, languages, and applications. You'll learn how to take full advantage of the mighty Pi's full capabilities, and then expand those capabilities even more with add-on technologies. You'll write productivity and multimedia programs, and learn flexible programming languages that allow you to shape your Raspberry Pi into whatever you want it to be. If you're ready to jump right in, this book gets you started with clear, step-by-step instruction from software installation to system customization. The Raspberry Pi's tremendous popularity has spawned an entire industry of add-ons, parts, hacks, ideas, and inventions. The movement is growing, and pushing the boundaries of possibility along with it—are you ready to be a part of it? This book is your ideal companion for claiming your piece of the Pi. Get all set up with software, and connect to other devices Understand Linux System Admin nomenclature and conventions Write your own programs using Python and Scratch Extend the Pi's capabilities with add-ons like Wi-Fi dongles, a touch screen, and more The credit-card sized Raspberry Pi has become a global phenomenon. Created by the Raspberry Pi Foundation to get kids interested in programming, this tiny computer kick-started a movement of tinkerers, thinkers, experimenters, and inventors. Where will your Raspberry Pi 3 take you? The Raspberry Pi User Guide, 3rd Edition is your ultimate roadmap to discovery.
  computer science 101 course: Introduction to Computing Systems Yale N. Patt, Sanjay J. Patel, 2005 Introduction to Computing Systems: From bits & gates to C & beyond, now in its second edition, is designed to give students a better understanding of computing early in their college careers in order to give them a stronger foundation for later courses. The book is in two parts: (a) the underlying structure of a computer, and (b) programming in a high level language and programming methodology. To understand the computer, the authors introduce the LC-3 and provide the LC-3 Simulator to give students hands-on access for testing what they learn. To develop their understanding of programming and programming methodology, they use the C programming language. The book takes a motivated bottom-up approach, where the students first get exposed to the big picture and then start at the bottom and build their knowledge bottom-up. Within each smaller unit, the same motivated bottom-up approach is followed. Every step of the way, students learn new things, building on what they already know. The authors feel that this approach encourages deeper understanding and downplays the need for memorizing. Students develop a greater breadth of understanding, since they see how the various parts of the computer fit together.
  computer science 101 course: Invitation to Computer Science G. Michael Schneider, Judith L. Gersting, 2006 This new edition of Invitation to Computer Science follows the breadth-first guidelines recommended by CC2001 to teach computer science topics from the ground up. The authors begin by showing that computer science is the study of algorithms, the central theme of the book, then move up the next five levels of the hierarchy: hardware, virtual machine, software, applications, and ethics. Utilizing rich pedagogy and a consistently engaging writing style, Schneider and Gersting provide students with a solid grounding in theoretical concepts, as well as important applications of computing and information technology. A laboratory manual and accompanying software is available as an optional bundle with this text.
  computer science 101 course: Basic Mathematics Serge Lang, 1988-01
  computer science 101 course: MTEL , 2011 If you are preparing for a teaching career in Massachusetts, passing the Massachusetts Tests for Educator Licensure (MTEL) Communication and Literacy Skills (01) test is an essential part of the certification process. This easy-to-use e-book helps you develop and practice the skills needed to achieve success on the MTEL. It provides a fully updated, comprehensive review of all areas tested on the official Communication and Literacy Skills (01) assessment, helpful information on the Massachusetts teacher certification and licensing process, and the LearningExpress Test Preparation System, with proven techniques for overcoming test anxiety, planning study time, and improving your results.
  computer science 101 course: Discrete Mathematics with Applications, Metric Edition Susanna Epp, 2019 DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, Metric Edition explains complex, abstract concepts with clarity and precision and provides a strong foundation for computer science and upper-level mathematics courses of the computer age. Author Susanna Epp presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to today's science and technology.
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …

Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …

What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …

Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …

Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.

What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …