Advertisement
computer science course prerequisites: Parallel Numerical Algorithms David E. Keyes, Ahmed Sameh, V. Venkatakrishnan, 2012-12-06 In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate. |
computer science course prerequisites: Sequences and Power Series , |
computer science course prerequisites: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. |
computer science course prerequisites: Computer Science Handbook Allen B. Tucker, 2004-06-28 When you think about how far and fast computer science has progressed in recent years, it's not hard to conclude that a seven-year old handbook may fall a little short of the kind of reference today's computer scientists, software engineers, and IT professionals need. With a broadened scope, more emphasis on applied computing, and more than 70 chap |
computer science course prerequisites: How to Prove It Daniel J. Velleman, 2006-01-16 Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians. |
computer science course prerequisites: Calculus Revisited R.W. Carroll, 2002-12-31 In this book the details of many calculations are provided for access to work in quantum groups, algebraic differential calculus, noncommutative geometry, fuzzy physics, discrete geometry, gauge theory, quantum integrable systems, braiding, finite topological spaces, some aspects of geometry and quantum mechanics and gravity. |
computer science course prerequisites: Higher Education Opportunity Act United States, 2008 |
computer science course prerequisites: Security Informatics Christopher C. Yang, Michael Chau, Jau-Hwang Wang, Hsinchun Chen, 2010-01-08 Intelligence and Security Informatics (ISI) is defined as the study of the development and use of advanced information systems and technologies for national, international, and societal security-related applications. With the rise of global terrorism, the field has been given an increasing amount of attention from academic researchers, law enforcement, intelligent experts, information technology consultants and practitioners. SECURITY INFORMATICS is global in scope and perspective. Leading experts will be invited as contributing authors from the US, UK, Denmark, Israel, Singapore, Hong Kong, Taiwan, Europe, etc. It is the first systematic, archival volume treatment of the field and will cover the very latest advances in ISI research and practice. It is organized in four major subject areas: (1) Information and Systems Security, (2) Information Sharing and Analysis in Security Informatics, (3) Infrastructure Protection and Emergency Responses, and (4) National Security and Terrorism Informatics. |
computer science course prerequisites: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
computer science course prerequisites: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
computer science course prerequisites: The Elements of Computing Systems Noam Nisan, Shimon Schocken, 2008 This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system. |
computer science course prerequisites: Introduction To Algorithms Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, 2001 An extensively revised edition of a mathematically rigorous yet accessible introduction to algorithms. |
computer science course prerequisites: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success. |
computer science course prerequisites: Artificial Intelligence Cherry Bhargava, Pradeep Kumar Sharma, 2021-07-28 This comprehensive reference text discusses the fundamental concepts of artificial intelligence and its applications in a single volume. Artificial Intelligence: Fundamentals and Applications presents a detailed discussion of basic aspects and ethics in the field of artificial intelligence and its applications in areas, including electronic devices and systems, consumer electronics, automobile engineering, manufacturing, robotics and automation, agriculture, banking, and predictive analysis. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, manufacturing engineering, pharmacy, and healthcare, this text: Discusses advances in artificial intelligence and its applications. Presents the predictive analysis and data analysis using artificial intelligence. Covers the algorithms and pseudo-codes for different domains. Discusses the latest development of artificial intelligence in the field of practical speech recognition, machine translation, autonomous vehicles, and household robotics. Covers the applications of artificial intelligence in fields, including pharmacy and healthcare, electronic devices and systems, manufacturing, consumer electronics, and robotics. |
computer science course prerequisites: INTRODUCTION TO ARTIFICIAL INTELLIGENCE, Second Edition AKERKAR, RAJENDRA, 2014-07-18 This comprehensive text acquaints the readers with the important aspects of artificial intelligence (AI) and intelligent systems and guides them towards a better understanding of the subject. The text begins with a brief introduction to artificial intelligence, including application areas, its history and future, and programming. It then deals with symbolic logic, knowledge acquisition, representation and reasoning. The text also lucidly explains AI technologies such as computer vision, natural language processing, pattern recognition and speech recognition. Topics such as expert systems, neural networks, constraint programming and case-based reasoning are also discussed in the book. In the Second Edition, the contents and presentation have been improved thoroughly and in addition six new chapters providing a simulating and inspiring synthesis of new artificial intelligence and an appendix on AI tools have been introduced. The treatment throughout the book is primarily tailored to the curriculum needs of B.E./B.Tech. students in Computer Science and Engineering, B.Sc. (Hons.) and M.Sc. students in Computer Science, and MCA students. The book is also useful for computer professionals interested in exploring the field of artificial intelligence. Key Features • Exposes the readers to real-world applications of AI. • Concepts are duly supported by examples and cases. • Provides appendices on PROLOG, LISP and AI Tools. • Incorporates most recommendations of the Curriculum Committee on Computer Science/Engineering for AI and Intelligent Systems. • Exercises provided will help readers apply what they have learned. |
computer science course prerequisites: Princeton Review AP Computer Science A Prep, 2022 The Princeton Review, 2021-08-31 Make sure you’re studying with the most up-to-date prep materials! Look for the newest edition of this title, The Princeton Review AP Computer Science A Prep, 2023 (ISBN: 9780593450727, on-sale September 2020). Publisher's Note: Products purchased from third-party sellers are not guaranteed by the publisher for quality or authenticity, and may not include access to online tests or materials included with the original product. |
computer science course prerequisites: Python for Everybody Charles R. Severance, 2016-04-09 Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet.Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software.This book uses the Python 3 language. The earlier Python 2 version of this book is titled Python for Informatics: Exploring Information.There are free downloadable electronic copies of this book in various formats and supporting materials for the book at www.pythonlearn.com. The course materials are available to you under a Creative Commons License so you can adapt them to teach your own Python course. |
computer science course prerequisites: Operating Systems Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, 2018-09 This book is organized around three concepts fundamental to OS construction: virtualization (of CPU and memory), concurrency (locks and condition variables), and persistence (disks, RAIDS, and file systems--Back cover. |
computer science course prerequisites: Understanding by Design Grant P. Wiggins, Jay McTighe, 2005 What is understanding and how does it differ from knowledge? How can we determine the big ideas worth understanding? Why is understanding an important teaching goal, and how do we know when students have attained it? How can we create a rigorous and engaging curriculum that focuses on understanding and leads to improved student performance in today's high-stakes, standards-based environment? Authors Grant Wiggins and Jay McTighe answer these and many other questions in this second edition of Understanding by Design. Drawing on feedback from thousands of educators around the world who have used the UbD framework since its introduction in 1998, the authors have greatly revised and expanded their original work to guide educators across the K-16 spectrum in the design of curriculum, assessment, and instruction. With an improved UbD Template at its core, the book explains the rationale of backward design and explores in greater depth the meaning of such key ideas as essential questions and transfer tasks. Readers will learn why the familiar coverage- and activity-based approaches to curriculum design fall short, and how a focus on the six facets of understanding can enrich student learning. With an expanded array of practical strategies, tools, and examples from all subject areas, the book demonstrates how the research-based principles of Understanding by Design apply to district frameworks as well as to individual units of curriculum. Combining provocative ideas, thoughtful analysis, and tested approaches, this new edition of Understanding by Design offers teacher-designers a clear path to the creation of curriculum that ensures better learning and a more stimulating experience for students and teachers alike. |
computer science course prerequisites: Database Systems: The Complete Book Hector Garcia-Molina, 2008 |
computer science course prerequisites: CompTIA A+ Complete Practice Tests Jeff T. Parker, Quentin Docter, 2019-07-18 Test your knowledge and know what to expect on A+ exam day CompTIA A+ Complete Practice Tests, Second Edition enables you to hone your test-taking skills, focus on challenging areas, and be thoroughly prepared to ace the exam and earn your A+ certification. This essential component of your overall study plan presents nine unique practice tests—and two 90-question bonus tests—covering 100% of the objective domains for both the 220-1001 and 220-1002 exams. Comprehensive coverage of every essential exam topic ensures that you will know what to expect on exam day and maximize your chances for success. Over 1200 practice questions on topics including hardware, networking, mobile devices, operating systems and procedures, troubleshooting, and more, lets you assess your performance and gain the confidence you need to pass the exam with flying colors. This second edition has been fully updated to reflect the latest best practices and updated exam objectives you will see on the big day. A+ certification is a crucial step in your IT career. Many businesses require this accreditation when hiring computer technicians or validating the skills of current employees. This collection of practice tests allows you to: Access the test bank in the Sybex interactive learning environment Understand the subject matter through clear and accurate answers and explanations of exam objectives Evaluate your exam knowledge and concentrate on problem areas Integrate practice tests with other Sybex review and study guides, including the CompTIA A+ Complete Study Guide and the CompTIA A+ Complete Deluxe Study Guide Practice tests are an effective way to increase comprehension, strengthen retention, and measure overall knowledge. The CompTIA A+ Complete Practice Tests, Second Edition is an indispensable part of any study plan for A+ certification. |
computer science course prerequisites: Computability and Complexity Neil D. Jones, 1997 Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive constant speedup property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series |
computer science course prerequisites: Parallel Scientific Computing Jack Dongarra, Jerzy Wasniewski, 1994-11-23 This volume presents the proceedings of the First International workshop on Parallel Scientific Computing, PARA '94, held in Lyngby, Denmark in June 1994. It reports interdisciplinary work done by mathematicians, scientists and engineers working on large-scale computational problems in discussion with computer science specialists in the field of parallel methods and the efficient exploitation of modern high-performance computing resources. The 53 full refereed papers provide a wealth of new results: an up-to-date overview on high-speed computing facilities, including different parallel and vector computers as well as workstation clusters, is given and the most important numerical algorithms, with a certain emphasis on computational linear algebra, are investigated. |
computer science course prerequisites: Foundation Mathematics for Computer Science John Vince, 2015-07-27 John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts. |
computer science course prerequisites: Blown to Bits Harold Abelson, Ken Ledeen, Harry R. Lewis, 2008 'Blown to Bits' is about how the digital explosion is changing everything. The text explains the technology, why it creates so many surprises and why things often don't work the way we expect them to. It is also about things the information explosion is destroying: old assumptions about who is really in control of our lives. |
computer science course prerequisites: Computer Science Illuminated Nell B. Dale, John Lewis, 2013 Revised and updated with the latest information in the field, the Fifth Edition of best-selling Computer Science Illuminated continues to provide students with an engaging breadth-first overview of computer science principles and provides a solid foundation for those continuing their study in this dynamic and exciting discipline. Authored by two of today's most respected computer science educators, Nell Dale and John Lewis, the text carefully unfolds the many layers of computing from a language-neutral perspective, beginning with the information layer, progressing through the hardware, programming, operating systems, application, and communication layers, and ending with a discussion on the limitations of computing. Separate program language chapters are available as bundle items for instructors who would like to explore a particular programming language with their students. Ideal for introductory computing and computer science courses, the fifth edition's thorough presentation of computing systems provides computer science majors with a solid foundation for further study, and offers non-majors a comprehensive and complete introduction to computing. New Features of the Fifth Edition: - Includes a NEW chapter on computer security (chapter 17) to provide readers with the latest information, including discussions on preventing unauthorized access and guidelines for creating effective passwords, types of malware anti-virus software, problems created by poor programming, protecting your online information including data collection issues with Facebook, Google, etc., and security issues with mobile and portable devices. - A NEW section on cloud computing (chapter 15) offers readers an overview of the latest way in which businesses and users interact with computers and mobile devices. - The section on social networks (moved to chapter 16) has been rewritten to include up-to-date information, including new data on Google+ and Facebook. - The sections covering HTML have been updated to include HTML5. - Includes revised and updated Did You Know callouts in the chapter margins. - The updated Ethical Issues at the end of each chapter have been revised to tie the content to the recently introduced tenth strand recommended by the ACM stressing the importance of computer ethics. Instructor Resources: -Answers to the end of chapter exercises -Answers to the lab exercises -PowerPoint Lecture Outlines -PowerPoint Image Bank -Test Bank Every new copy is packaged with a free access code to the robust Student Companion Website featuring: Animated Flashcards; Relevant Web Links; Crossword Puzzles; Interactive Glossary; Step by step tutorial on web page development; Digital Lab Manual; R. Mark Meyer's labs, Explorations in Computer Science; Additional programming chapters, including Alice, C++, Java, JavaScript, Pascal, Perl, Python, Ruby, SQL, and VB.NET; C++ Language Essentials labs; Java Language Essentials labs; Link to Download Pep/8 |
computer science course prerequisites: Biocomputing Panos M. Pardalos, J.C. Principe, 2013-12-01 In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational Neuroengineering Center, the Biomedical En gineering Program (through a Whitaker Foundation grant), the Brain Institute, the School of Engineering, and the University of Florida Research & Graduate Programs. The conference provided a forum for researchers to discuss and present new directions in Biocomputing. The well-attended three days event was highlighted by the presence of top researchers in the field who presented their work in Biocomputing. This volume contains a selective collection of ref ereed papers based on talks presented at this conference. You will find seminal contributions in genomics, global optimization, computational neuroscience, FMRI, brain dynamics, epileptic seizure prediction and cancer diagnostics. We would like to take the opportunity to thank the sponsors, the authors of the papers, the anonymous referees, and Kluwer Academic Publishers for making the conference successful and the publication of this volume possible. Panos M. Pardalos and Jose C. |
computer science course prerequisites: Linux Device Drivers Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, 2005-02-07 Device drivers literally drive everything you're interested in--disks, monitors, keyboards, modems--everything outside the computer chip and memory. And writing device drivers is one of the few areas of programming for the Linux operating system that calls for unique, Linux-specific knowledge. For years now, programmers have relied on the classic Linux Device Drivers from O'Reilly to master this critical subject. Now in its third edition, this bestselling guide provides all the information you'll need to write drivers for a wide range of devices.Over the years the book has helped countless programmers learn: how to support computer peripherals under the Linux operating system how to develop and write software for new hardware under Linux the basics of Linux operation even if they are not expecting to write a driver The new edition of Linux Device Drivers is better than ever. The book covers all the significant changes to Version 2.6 of the Linux kernel, which simplifies many activities, and contains subtle new features that can make a driver both more efficient and more flexible. Readers will find new chapters on important types of drivers not covered previously, such as consoles, USB drivers, and more.Best of all, you don't have to be a kernel hacker to understand and enjoy this book. All you need is an understanding of the C programming language and some background in Unix system calls. And for maximum ease-of-use, the book uses full-featured examples that you can compile and run without special hardware.Today Linux holds fast as the most rapidly growing segment of the computer market and continues to win over enthusiastic adherents in many application areas. With this increasing support, Linux is now absolutely mainstream, and viewed as a solid platform for embedded systems. If you're writing device drivers, you'll want this book. In fact, you'll wonder how drivers are ever written without it. |
computer science course prerequisites: Building Bridges Martin Grötschel, Gyula O.H. Katona, 2010-05-28 Discrete mathematics and theoretical computer science are closely linked research areas with strong impacts on applications and various other scientific disciplines. Both fields deeply cross fertilize each other. One of the persons who particularly contributed to building bridges between these and many other areas is László Lovász, a scholar whose outstanding scientific work has defined and shaped many research directions in the last 40 years. A number of friends and colleagues, all top authorities in their fields of expertise and all invited plenary speakers at one of two conferences in August 2008 in Hungary, both celebrating Lovász’s 60th birthday, have contributed their latest research papers to this volume. This collection of articles offers an excellent view on the state of combinatorics and related topics and will be of interest for experienced specialists as well as young researchers. |
computer science course prerequisites: Computer Systems Randal E.. Bryant, David Richard O'Hallaron, 2013-07-23 For Computer Systems, Computer Organization and Architecture courses in CS, EE, and ECE departments. Few students studying computer science or computer engineering will ever have the opportunity to build a computer system. On the other hand, most students will be required to use and program computers on a near daily basis. Computer Systems: A Programmer's Perspective introduces the important and enduring concepts that underlie computer systems by showing how these ideas affect the correctness, performance, and utility of application programs. The text's hands-on approach (including a comprehensive set of labs) helps students understand the under-the-hood operation of a modern computer system and prepares them for future courses in systems topics such as compilers, computer architecture, operating systems, and networking. |
computer science course prerequisites: How to Design Programs, second edition Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, 2018-05-25 A completely revised edition, offering new design recipes for interactive programs and support for images as plain values, testing, event-driven programming, and even distributed programming. This introduction to programming places computer science at the core of a liberal arts education. Unlike other introductory books, it focuses on the program design process, presenting program design guidelines that show the reader how to analyze a problem statement, how to formulate concise goals, how to make up examples, how to develop an outline of the solution, how to finish the program, and how to test it. Because learning to design programs is about the study of principles and the acquisition of transferable skills, the text does not use an off-the-shelf industrial language but presents a tailor-made teaching language. For the same reason, it offers DrRacket, a programming environment for novices that supports playful, feedback-oriented learning. The environment grows with readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks. This second edition has been completely revised. While the book continues to teach a systematic approach to program design, the second edition introduces different design recipes for interactive programs with graphical interfaces and batch programs. It also enriches its design recipes for functions with numerous new hints. Finally, the teaching languages and their IDE now come with support for images as plain values, testing, event-driven programming, and even distributed programming. |
computer science course prerequisites: Principles of Communications Rodger E. Ziemer, William H. Tranter, 1976 |
computer science course prerequisites: Foundations of Computer Science Alfred V. Aho, Jeffrey D. Ullman, 1994-10-15 |
computer science course prerequisites: Learn Prolog Now! Patrick Blackburn, Johannes Bos, Kristina Striegnitz, 2006 Prolog is a programming language, but a rather unusual one. Prolog'' is short for Programming with Logic'', and the link with logic gives Prolog its special character. At the heart of Prolog lies a surprising idea: don't tell the computer what to do. Instead, describe situations of interest, and compute by asking questions. Prolog will logically deduce new facts about the situations and give its deductions back to us as answers. Why learn Prolog? For a start, its say what the problem is, rather than how to solve it'' stance, means that it is a very high level language, good for knowledge rich applications such as artificial intelligence, natural language processing, and the semantic web. So by studying Prolog, you gain insight into how sophisticated tasks can be handled computationally. Moreover, Prolog requires a different mindset. You have to learn to see problems from a new perspective, declaratively rather than procedurally. Acquiring this mindset, and learning to appreciate the links between logic and programming, makes the study of Prolog both challenging and rewarding. Learn Prolog Now! is a practical introduction to this fascinating language. Freely available as a web-book since 2002 (see www.learnprolognow.org) Learn Prolog Now! has became one of the most popular introductions to the Prolog programming language, an introduction prized for its clarity and down-to-earth approach. It is widely used as a textbook at university departments around the world, and even more widely used for self study. College Publications is proud to present here the first hard-copy version of this online classic. Carefully revised in the light of reader's feedback, and now with answers to all the exercises, here you will find the essential material required to help you learn Prolog now. |
computer science course prerequisites: BLS Reference Card American Heart Association, 2020-10-21 20-1132 |
computer science course prerequisites: Programming with Java! Tim Ritchey, 1995 Gives examples of how to write your own Java code. Examples from book are on CD-ROM disk. |
computer science course prerequisites: Programming Languages: Design and Implementation Terrence W. Pratt, 1975 |
computer science course prerequisites: Catalogue Number. Course Catalog Anonymous, 2024-05-31 |
computer science course prerequisites: Introduction to Computers and Problem Solving T. E. Hull, David D. F. Day, 1969 |
computer science course prerequisites: Bioinformatics and Computational Biology Hamid R. Arabnia, Fernando G. Tinetti, Quoc-Nam Tran, 2020-03-13 Proceedings of the 2019 International Conference on Bioinformatics & Computational Biology (BIOCOMP'19) held July 29th - August 1st, 2019 in Las Vegas, Nevada. |
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top …
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components …
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …