Computer Science Masters Programs No Background



  computer science masters programs no background: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.
  computer science masters programs no background: Barron's GRE Sharon Weiner Green, Ira K. Wolf, 2015-06-01 This newly revised and updated manual presents a test overview of the GRE, test-taking advice, and a timetable for a typical computer-based test. Added features include— A diagnostic test with an answer key and answer explanations A verbal reasoning review with practice questions in sentence completion and reading comprehension An analytical writing review with scoring guidelines and practice exercises A quantitative reasoning review that includes general math strategies, discrete quantitative questions, quantitative comparison questions, and data interpretation questions Two full-length model GRE tests with answer keys and answer explanations The manual can be purchased alone, or with an optional CD-ROM that includes two additional full-length computer-based GREs with all questions answered and explained and automatic scoring BONUS: FREE ONLINE GRE COURSE With purchase of either version of Barron’s comprehensive GRE manual, test takers also get FREE access to Barron’s Online GRE Course. When they go online with Barron’s, they get: A diagnostic test to establish their skill profile A personalized GRE study plan to help focus time and energy Expert video lessons with solutions to help them master difficult concepts Additional practice quizzes and extra questions to help optimize their score A comprehensive GRE skill report to monitor progress GRE score projection A FREE iPad app for easy studying on the go This customized online course adapts to each individual's specific needs. Getting a great score has never been more personal or more convenient!
  computer science masters programs no background: Learn You a Haskell for Great Good! Miran Lipovaca, 2011-04-15 It's all in the name: Learn You a Haskell for Great Good! is a hilarious, illustrated guide to this complex functional language. Packed with the author's original artwork, pop culture references, and most importantly, useful example code, this book teaches functional fundamentals in a way you never thought possible. You'll start with the kid stuff: basic syntax, recursion, types and type classes. Then once you've got the basics down, the real black belt master-class begins: you'll learn to use applicative functors, monads, zippers, and all the other mythical Haskell constructs you've only read about in storybooks. As you work your way through the author's imaginative (and occasionally insane) examples, you'll learn to: –Laugh in the face of side effects as you wield purely functional programming techniques –Use the magic of Haskell's laziness to play with infinite sets of data –Organize your programs by creating your own types, type classes, and modules –Use Haskell's elegant input/output system to share the genius of your programs with the outside world Short of eating the author's brain, you will not find a better way to learn this powerful language than reading Learn You a Haskell for Great Good!
  computer science masters programs no background: Think Stats Allen B. Downey, 2011-07-01 If you know how to program, you have the skills to turn data into knowledge using the tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts. Develop your understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Learn topics not usually covered in an introductory course, such as Bayesian estimation Import data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data
  computer science masters programs no background: ICT for GCSE Tim Roderick, Geoff Rushbrook, 2002-04-04 This is an illustrated summary book in full colour for classroom use and for examination revision, covering the requirements of GCSE Specifications from September 2001 in information technology/computing.
  computer science masters programs no background: Hackers & Painters Paul Graham, 2004-05-18 The author examines issues such as the rightness of web-based applications, the programming language renaissance, spam filtering, the Open Source Movement, Internet startups and more. He also tells important stories about the kinds of people behind technical innovations, revealing their character and their craft.
  computer science masters programs no background: Principles of Mathematics Carl Barnett Allendoerfer, Cletus Odia Oakley, 1953
  computer science masters programs no background: Data Structures and Algorithm Analysis in Java, Third Edition Clifford A. Shaffer, 2012-09-06 Comprehensive treatment focuses on creation of efficient data structures and algorithms and selection or design of data structure best suited to specific problems. This edition uses Java as the programming language.
  computer science masters programs no background: Advanced Database Systems Nabil R. Adam, Bharat K. Bhargava, 1993-12-08 Database management is attracting wide interest in both academic and industrial contexts. New application areas such as CAD/CAM, geographic information systems, and multimedia are emerging. The needs of these application areas are far more complex than those of conventional business applications. The purpose of this book is to bring together a set of current research issues that addresses a broad spectrum of topics related to database systems and applications. The book is divided into four parts: - object-oriented databases, - temporal/historical database systems, - query processing in database systems, - heterogeneity, interoperability, open system architectures, multimedia database systems.
  computer science masters programs no background: University Education in Computing Science Aaron Finerman, 2014-06-20 University Education in Computing Science documents the proceedings of a conference on graduate academic and related research programs in computing science, held at the State University of New York at Stony Brook on June 8, 1967. This book provides a comprehensive study of the role of the computing sciences as an academic program, including its organizational structure and relationship to the computing center. The undergraduate education in computing science and operational policies of university computing centers are also elaborated. Other topics include the graduate computer science program at American universities, dilemma of computer sciences, and science and engineering of information. The industry's view of computing science and doctoral program in computing science are likewise covered. This publication is suitable for educational, industrial, and governmental organizations concerned with education related to computing science.
  computer science masters programs no background: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
  computer science masters programs no background: Statistics in Plain English Timothy C. Urdan, 2005 This book is meant to be a supplement to a more detailed statistics textbook, such as that recommended for a statistics course in the social sciences. Also, as a reference book to refresh your memory about statistical concepts.
  computer science masters programs no background: A Computer Science Tapestry Owen L. Astrachan, 2000 A Computer Science Tapestry is designed for use in a first course in computer science (CS1) that uses C++ as its programming language. This book covers basic concepts in programming, program design and computer science and gives students a good introduction to the C++ language. In the second edition, Astrachan has put more emphasis on object-oriented programming by introducing a graphics library and including a new chapter on object-oriented techniques. He has also added new case studies and design tips.
  computer science masters programs no background: CUCKOO'S EGG Clifford Stoll, 2012-05-23 Before the Internet became widely known as a global tool for terrorists, one perceptive U.S. citizen recognized its ominous potential. Armed with clear evidence of computer espionage, he began a highly personal quest to expose a hidden network of spies that threatened national security. But would the authorities back him up? Cliff Stoll's dramatic firsthand account is a computer-age detective story, instantly fascinating [and] astonishingly gripping (Smithsonian). Cliff Stoll was an astronomer turned systems manager at Lawrence Berkeley Lab when a 75-cent accounting error alerted him to the presence of an unauthorized user on his system. The hacker's code name was Hunter—a mysterious invader who managed to break into U.S. computer systems and steal sensitive military and security information. Stoll began a one-man hunt of his own: spying on the spy. It was a dangerous game of deception, broken codes, satellites, and missile bases—a one-man sting operation that finally gained the attention of the CIA . . . and ultimately trapped an international spy ring fueled by cash, cocaine, and the KGB.
  computer science masters programs no background: Internet Economics Lee W. McKnight, Joseph P. Bailey, 1998 The Internet has rapidly become an important element of the economic system. The lack of accepted metrics for economic analysis of Internet transactions is therefore increasingly problematic. This book, one of the first to bring together research on Internet engineering and economics, attempts to establish such metrics. The chapters, which developed out of a 1995 workshop held at MIT, include architectural models and analyses of Internet usage, as well as alternative pricing policies. The book is organized into six sections: 1) Introduction to Internet Economics, 2) The Economics of the Internet, 3) Interconnection and Multicast Economics, 4) Usage Sensitive Pricing, 5) Internet Commerce, and 6) Internet Economics and Policy. Contributors Loretta Anania, Joseph P. Bailey, Nevil Brownlee, David Carver, David Clark, David W. Crawford, Ketil Danielsen, Deborah Estrin, Branko Gerovac, David Gingold, Jiong Gong, Alok Gupta, Shai Herzog, Clark Johnson, Martyne M. Hallgren, Frank P. Kelly, Charlie Lai, Alan K. McAdams, Jeffrey K. MacKie-Mason, Lee W. McKnight, Gennady Medvinsky, Liam Murphy, John Murphy, B. Clifford Neuman, Jon M. Peha, Joseph Reagle, Mitrabarun Sarkar, Scott Shenker, Marvin A. Sirbu, Richard Jay Solomon, Padmanabhan Srinagesh, Dale O. Stahl, Hal R. Varian, Qiong Wang, Martin Weiss, Andrew B. Whinston
  computer science masters programs no background: The Profession of Modeling and Simulation Andreas Tolk, Tuncer Ören, 2017-07-24 The definite guide to the theory, knowledge, technical expertise, and ethical considerations that define the M&S profession From traffic control to disaster management, supply chain analysis to military logistics, healthcare management to new drug discovery, modeling and simulation (M&S) has become an essential tool for solving countless real-world problems. M&S professionals are now indispensable to how things get done across virtually every aspect of modern life. This makes it all the more surprising that, until now, no effort has been made to systematically codify the core theory, knowledge, and technical expertise needed to succeed as an M&S professional. This book brings together contributions from experts at the leading edge of the modeling and simulation profession, worldwide, who share their priceless insights into issues which are fundamental to professional success and career development in this critically important field. Running as a common thread throughout the book is an emphasis on several key aspects of the profession, including the essential body of knowledge underlying the M&S profession; the technical discipline of M&S; the ethical standards that should guide professional conduct; and the economic and commercial challenges today’s M&S professionals face. • Demonstrates applications of M&S tools and techniques in a variety of fields—such as engineering, operations research, and cyber environments—with over 500 types of simulations • Highlights professional and academic aspects of the field, including preferred programming languages, professional academic and certification programs, and key international societies • Shows why M&S professionals must be fully versed in the theory, concepts, and tools needed to address the challenges of cyber environments The Profession of Modeling and Simulation is a valuable resource for M&S practitioners, developers, and researchers working in industry and government. Simulation professionals, including administrators, managers, technologists, faculty members, and scholars within the physical sciences, life sciences, and engineering fields will find it highly useful, as will students planning to pursue a career in the M&S profession. “ ...nearly three dozen experts in Modeling and Simulation (M&S) come together to make a compelling case for the recognition of M&S as a profession... Important reading for anyone seeking to elevate the standing of this vital field.” Alfred (Al) Grasso, President & CEO, The MITRE Corporation Andreas Tolk, PhD, is Technology Integrator for the Modeling, Simulation, Experimentation, and Analytics Division of The MITRE Corporation, an adjunct professor in the Department of Engineering Management and Systems Engineering and the Department for Modeling, Simulation, and Visualization Engineering at Old Dominion University, and an SCS fellow. Tuncer Ören, PhD, is Professor Emeritus of Computer Science at the University of Ottawa. He is an SCS fellow and an inductee to SCS Modeling and Simulation Hall of Fame. His research interests include advancing methodologies, ethics, body of knowledge, and terminology of modeling and simulation.
  computer science masters programs no background: Application of Computational Techniques in Pharmacy and Medicine Leonid Gorb, Victor Kuz'min, Eugene Muratov, 2014-11-07 The proposed volume provides both fundamental and detailed information about the computational and computational-experimental studies which improve our knowledge of how leaving matter functions, the different properties of drugs (including the calculation and the design of new ones), and the creation of completely new ways of treating numerical diseases. Whenever it is possible, the interplay between theory and experiment is provided. The book features computational techniques such as quantum-chemical and molecular dynamic approaches and quantitative structure–activity relationships. The initial chapters describe the state-of-the art research on the computational investigations in molecular biology, molecular pharmacy, and molecular medicine performed with the use of pure quantum-chemical techniques. The central part of the book illustrates the status of computational techniques that utilize hybrid, so called QM/MM approximations as well as the results of the QSAR studies which now are the most popular in predicting drugs’ efficiency. The last chapters describe combined computational and experimental investigations.
  computer science masters programs no background: Data Mining For Dummies Meta S. Brown, 2014-09-04 Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.
  computer science masters programs no background: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success.
  computer science masters programs no background: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
  computer science masters programs no background: The Data Science Handbook Field Cady, 2017-02-28 A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.
  computer science masters programs no background: Java Programming Ralph Bravaco, Shai Simonson, 2009-02-01 Java Programming, From The Ground Up, with its flexible organization, teaches Java in a way that is refreshing, fun, interesting and still has all the appropriate programming pieces for students to learn. The motivation behind this writing is to bring a logical, readable, entertaining approach to keep your students involved. Each chapter has a Bigger Picture section at the end of the chapter to provide a variety of interesting related topics in computer science. The writing style is conversational and not overly technical so it addresses programming concepts appropriately. Because of the flexibile organization of the text, it can be used for a one or two semester introductory Java programming class, as well as using Java as a second language. The text contains a large variety of carefully designed exercises that are more effective than the competition.
  computer science masters programs no background: The Computational Beauty of Nature Gary William Flake, 2000-01-27 Gary William Flake develops in depth the simple idea that recurrent rules can produce rich and complicated behaviors. In this book Gary William Flake develops in depth the simple idea that recurrent rules can produce rich and complicated behaviors. Distinguishing agents (e.g., molecules, cells, animals, and species) from their interactions (e.g., chemical reactions, immune system responses, sexual reproduction, and evolution), Flake argues that it is the computational properties of interactions that account for much of what we think of as beautiful and interesting. From this basic thesis, Flake explores what he considers to be today's four most interesting computational topics: fractals, chaos, complex systems, and adaptation. Each of the book's parts can be read independently, enabling even the casual reader to understand and work with the basic equations and programs. Yet the parts are bound together by the theme of the computer as a laboratory and a metaphor for understanding the universe. The inspired reader will experiment further with the ideas presented to create fractal landscapes, chaotic systems, artificial life forms, genetic algorithms, and artificial neural networks.
  computer science masters programs no background: Software Engineering for Internet Applications Eve Astrid Andersson, Philip Greenspun, Andrew Grumet, 2006 After completing this self-contained course on server-based Internet applications software that grew out of an MIT course, students who start with only the knowledge of how to write and debug a computer program will have learned how to build sophisticated Web-based applications.
  computer science masters programs no background: Data Privacy and Security J. J. P. Kenny, 1985
  computer science masters programs no background: 5 Lb. Book of GRE Practice Problems Manhattan Prep, 2018
  computer science masters programs no background: Computer Science and Education Ron Colman, Paul Lorton, 1976
  computer science masters programs no background: The Elements of Computing Systems Noam Nisan, Shimon Schocken, 2008 This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system.
  computer science masters programs no background: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  computer science masters programs no background: Programs and Courses University of Northern Iowa, 2006
  computer science masters programs no background: Bulletin of the United States Bureau of Labor Statistics , 1980
  computer science masters programs no background: Computerworld , 1987-07-13 For more than 40 years, Computerworld has been the leading source of technology news and information for IT influencers worldwide. Computerworld's award-winning Web site (Computerworld.com), twice-monthly publication, focused conference series and custom research form the hub of the world's largest global IT media network.
  computer science masters programs no background: Research in Education , 1972
  computer science masters programs no background: Resources in Education , 1995
  computer science masters programs no background: The Academic Identity Development of International Doctoral Students Anh Ngoc Quynh Phan, This qualitative study examines the factors that facilitate or inhibit the academic identity development of four Vietnamese doctoral students in Denmark. Using the combination of Genetic method and Activity theory, the paper provides insights into the participants’ experiences of becoming and being an academic, which is context-dependent and personal. The findings suggest that the sense of being academics was strengthened when doctoral students were empowered by their supervisors, and other members of the academic community validated their membership. The students also enacted their agency to move beyond the student role and establish a confirmed academic identity, though there were situations when their agency did not lead to desirable outcomes. The study is one among a few that incorporated the personal life history of doctoral students to examine their academic identity development, arguing for its inclusion to have a comprehensive picture of students’ learning and the process of becoming an academic. Keywords: academic identity, international doctoral student, sociocultural theory, Vietnam, Denmark
  computer science masters programs no background: Computerworld , 2000-04-10 For more than 40 years, Computerworld has been the leading source of technology news and information for IT influencers worldwide. Computerworld's award-winning Web site (Computerworld.com), twice-monthly publication, focused conference series and custom research form the hub of the world's largest global IT media network.
  computer science masters programs no background: InfoWorld , 2000-04-10 InfoWorld is targeted to Senior IT professionals. Content is segmented into Channels and Topic Centers. InfoWorld also celebrates people, companies, and projects.
  computer science masters programs no background: Advanced Topics in Computer Vision Giovanni Maria Farinella, Sebastiano Battiato, Roberto Cipolla, 2013-09-24 This book presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of reconstruction, registration, and recognition. The text provides an overview of challenging areas and descriptions of novel algorithms. Features: investigates visual features, trajectory features, and stereo matching; reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization; presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization; examines solutions to the co-recognition problem, and distance-based classifiers for large-scale image classification; describes how the four-color theorem can be used for solving MRF problems; introduces a Bayesian generative model for understanding indoor environments, and a boosting approach for generalizing the k-NN rule; discusses the issue of scene-specific object detection, and an approach for making temporal super resolution video.
  computer science masters programs no background: Occupational Outlook Handbook, 2009 U.S. Department of Labor, 2008-12-17 The perfect place to find a new career, advance in your current one, and keep an eye on tomorrow's...
  computer science masters programs no background: 101 Careers in Mathematics: Fourth Edition Deanna Haunsperger, Robert Thompson, 2019-09-24 What can you do with a degree in math? This book addresses this question with 125 career profiles written by people with degrees and backgrounds in mathematics. With job titles ranging from sports analyst to science writer to inventory specialist to CEO, the volume provides ample evidence that one really can do nearly anything with a degree in mathematics. These professionals share how their mathematical education shaped their career choices and how mathematics, or the skills acquired in a mathematics education, is used in their daily work. The degrees earned by the authors profiled here are a good mix of bachelors, masters, and PhDs. With 114 completely new profiles since the third edition, the careers featured within accurately reflect current trends in the job market. College mathematics faculty, high school teachers, and career counselors will all find this a useful resource. Career centers, mathematics departments, and student lounges should have a copy available for student browsing. In addition to the career profiles, the volume contains essays from career counseling professionals on the topics of job-searching, interviewing, and applying to graduate school.
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …

Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …

What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …

Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …

Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.

What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …

Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …

Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …

What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …

Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …

Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.

What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …