Advertisement
computer science research opportunities for high school students: Stuck in the Shallow End, updated edition Jane Margolis, 2017-03-03 Why so few African American and Latino/a students study computer science: updated edition of a book that reveals the dynamics of inequality in American schools. The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a field of study and profession. In Stuck in the Shallow End, Jane Margolis and coauthors look at the daily experiences of students and teachers in three Los Angeles public high schools: an overcrowded urban high school, a math and science magnet school, and a well-funded school in an affluent neighborhood. They find an insidious “virtual segregation” that maintains inequality. The race gap in computer science, Margolis discovers, is one example of the way students of color are denied a wide range of occupational and educational futures. Stuck in the Shallow End is a story of how inequality is reproduced in America—and how students and teachers, given the necessary tools, can change the system. Since the 2008 publication of Stuck in the Shallow End, the book has found an eager audience among teachers, school administrators, and academics. This updated edition offers a new preface detailing the progress in making computer science accessible to all, a new postscript, and discussion questions (coauthored by Jane Margolis and Joanna Goode). |
computer science research opportunities for high school students: Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Policy and Global Affairs, Board on Higher Education and Workforce, Committee on the Growth of Computer Science Undergraduate Enrollments, 2018-04-28 The field of computer science (CS) is currently experiencing a surge in undergraduate degree production and course enrollments, which is straining program resources at many institutions and causing concern among faculty and administrators about how best to respond to the rapidly growing demand. There is also significant interest about what this growth will mean for the future of CS programs, the role of computer science in academic institutions, the field as a whole, and U.S. society more broadly. Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments seeks to provide a better understanding of the current trends in computing enrollments in the context of past trends. It examines drivers of the current enrollment surge, relationships between the surge and current and potential gains in diversity in the field, and the potential impacts of responses to the increased demand for computing in higher education, and it considers the likely effects of those responses on students, faculty, and institutions. This report provides recommendations for what institutions of higher education, government agencies, and the private sector can do to respond to the surge and plan for a strong and sustainable future for the field of CS in general, the health of the institutions of higher education, and the prosperity of the nation. |
computer science research opportunities for high school students: Learning to Solve Problems by Searching for Macro-operators Richard E. Korf, 1985 This monograph explores the idea of learning efficient strategies for solving problems by searching for macro-operators. |
computer science research opportunities for high school students: Handbook of Research on Equity in Computer Science in P-16 Education Keengwe, Jared, Tran, Yune, 2020-11-13 The growing trend for high-quality computer science in school curricula has drawn recent attention in classrooms. With an increasingly information-based and global society, computer science education coupled with computational thinking has become an integral part of an experience for all students, given that these foundational concepts and skills intersect cross-disciplinarily with a set of mental competencies that are relevant in their daily lives and work. While many agree that these concepts should be taught in schools, there are systematic inequities that exist to prevent students from accessing related computer science skills. The Handbook of Research on Equity in Computer Science in P-16 Education is a comprehensive reference book that highlights relevant issues, perspectives, and challenges in P-16 environments that relate to the inequities that students face in accessing computer science or computational thinking and examines methods for challenging these inequities in hopes of allowing all students equal opportunities for learning these skills. Additionally, it explores the challenges and policies that are created to limit access and thus reinforce systems of power and privilege. The chapters highlight issues, perspectives, and challenges faced in P-16 environments that include gender and racial imbalances, population of growing computer science teachers who are predominantly white and male, teacher preparation or lack of faculty expertise, professional development programs, and more. It is intended for teacher educators, K-12 teachers, high school counselors, college faculty in the computer science department, school administrators, curriculum and instructional designers, directors of teaching and learning centers, policymakers, researchers, and students. |
computer science research opportunities for high school students: Shaping a Digital World Derek C. Schuurman, 2013-04-16 Building on the work of Jacques Ellul, Marshall McLuhan and Neil Postman, as well as a wide range of Reformed thinkers, Derek Schuurman provides a brief theology of technology—rooted in the Reformed tradition and oriented around the grand themes of creation, fall, redemption and new creation. |
computer science research opportunities for high school students: The Ultimate Guide to Summer Opportunities for Teens Sandra L. Berger, 2007-10 Presents advice on using summer opportunities to help gain entrance into selective universities and provides guidance on researching, choosing, and applying for summer programs. |
computer science research opportunities for high school students: Radical Equations Robert Moses, Charles E. Cobb, 2002-06-10 The remarkable story of the Algebra Project, a community-based effort to develop math-science literacy in disadvantaged schools—as told by the program’s founder “Bob Moses was a hero of mine. His quiet confidence helped shape the civil rights movement, and he inspired generations of young people looking to make a difference”—Barack Obama At a time when popular solutions to the educational plight of poor children of color are imposed from the outside—national standards, high-stakes tests, charismatic individual saviors—the acclaimed Algebra Project and its founder, Robert Moses, offer a vision of school reform based in the power of communities. Begun in 1982, the Algebra Project is transforming math education in twenty-five cities. Founded on the belief that math-science literacy is a prerequisite for full citizenship in society, the Project works with entire communities—parents, teachers, and especially students—to create a culture of literacy around algebra, a crucial stepping-stone to college math and opportunity. Telling the story of this remarkable program, Robert Moses draws on lessons from the 1960s Southern voter registration he famously helped organize: “Everyone said sharecroppers didn't want to vote. It wasn't until we got them demanding to vote that we got attention. Today, when kids are falling wholesale through the cracks, people say they don't want to learn. We have to get the kids themselves to demand what everyone says they don't want.” We see the Algebra Project organizing community by community. Older kids serve as coaches for younger students and build a self-sustained tradition of leadership. Teachers use innovative techniques. And we see the remarkable success stories of schools like the predominately poor Hart School in Bessemer, Alabama, which outscored the city's middle-class flagship school in just three years. Radical Equations provides a model for anyone looking for a community-based solution to the problems of our disadvantaged schools. |
computer science research opportunities for high school students: Computer Science Education Research Sally Fincher, Marian Petre, 2004-01-01 This book provides an overview of how to approach computer science education research from a pragmatic perspective. It represents the diversity of traditions and approaches inherent in this interdisciplinary area, while also providing a structure within which to make sense of that diversity. It provides multiple 'entry points'- to literature, to methods, to topics Part One, 'The Field and the Endeavor', frames the nature and conduct of research in computer science education. Part Two, 'Perspectives and Approaches', provides a number of grounded chapters on particular topics or themes, written by experts in each domain. These chapters cover the following topics: * design * novice misconceptions * programming environments for novices * algorithm visualisation * a schema theory view on learning to program * critical theory as a theoretical approach to computer science education research Juxtaposed and taken together, these chapters indicate just how varied the perspectives and research approaches can be. These chapters, too, act as entry points, with illustrations drawn from published work. |
computer science research opportunities for high school students: Unlocking the Clubhouse Jane Margolis, Allan Fisher, 2003-02-28 Understanding and overcoming the gender gap in computer science education. The information technology revolution is transforming almost every aspect of society, but girls and women are largely out of the loop. Although women surf the Web in equal numbers to men and make a majority of online purchases, few are involved in the design and creation of new technology. It is mostly men whose perspectives and priorities inform the development of computing innovations and who reap the lion's share of the financial rewards. As only a small fraction of high school and college computer science students are female, the field is likely to remain a male clubhouse, absent major changes. In Unlocking the Clubhouse, social scientist Jane Margolis and computer scientist and educator Allan Fisher examine the many influences contributing to the gender gap in computing. The book is based on interviews with more than 100 computer science students of both sexes from Carnegie Mellon University, a major center of computer science research, over a period of four years, as well as classroom observations and conversations with hundreds of college and high school faculty. The interviews capture the dynamic details of the female computing experience, from the family computer kept in a brother's bedroom to women's feelings of alienation in college computing classes. The authors investigate the familial, educational, and institutional origins of the computing gender gap. They also describe educational reforms that have made a dramatic difference at Carnegie Mellon—where the percentage of women entering the School of Computer Science rose from 7% in 1995 to 42% in 2000—and at high schools around the country. |
computer science research opportunities for high school students: Computer Science Education Research Sally Fincher, Marian Petre, 2005-09-26 This book provides an overview of how to approach computer science education research from a pragmatic perspective. It represents the diversity of traditions and approaches inherent in this interdisciplinary area, while also providing a structure within which to make sense of that diversity. It provides multiple 'entry points'- to literature, to me |
computer science research opportunities for high school students: The Best Summer Programs for Teens Sandra L Berger, 2015-09-15 Record numbers of teens are applying to selective universities and the competition to gain entrance into college is tougher than ever before. The 2016-2017 edition of The Best Summer Programs for Teens helps teenagers find the coolest, most exciting, and most fulfilling summer programs across the United States. College-planning expert Sandra L. Berger provides students and parents with advice on using summer opportunities to help gain entrance into selective universities, and guidance on researching, choosing, applying for, and making the most out of summer programs. Students will be able to peruse the updated directory of more than 200 of the best summer opportunities in the areas of academic enrichment; fine arts; internships and paid positions; leadership and service; math, science, computer science, and technology; and study abroad or international travel, to find the program that fits them best. |
computer science research opportunities for high school students: The Future of Computer Science Research in the U.S. United States. Congress. House. Committee on Science, 2005 |
computer science research opportunities for high school students: Close to the Machine Ellen Ullman, 2012-02-28 With a New Introduction by Jaron Lanier A Salon Best Book of the Year In 1997, the computer was still a relatively new tool---a sleek and unforgiving machine that was beyond the grasp of most users. With intimate and unflinching detail, software engineer Ellen Ullman examines the strange ecstasy of being at the forefront of the predominantly male technological revolution, and the difficulty of translating the inherent messiness of human life into artful and efficient code. Close to the Machine is an elegant and revelatory mediation on the dawn of the digital era. |
computer science research opportunities for high school students: Emerging Research, Practice, and Policy on Computational Thinking Peter J. Rich, Charles B. Hodges, 2017-04-24 This book reports on research and practice on computational thinking and the effect it is having on education worldwide, both inside and outside of formal schooling. With coding becoming a required skill in an increasing number of national curricula (e.g., the United Kingdom, Israel, Estonia, Finland), the ability to think computationally is quickly becoming a primary 21st century “basic” domain of knowledge. The authors of this book investigate how this skill can be taught and its resultant effects on learning throughout a student's education, from elementary school to adult learning. |
computer science research opportunities for high school students: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
computer science research opportunities for high school students: Intelligent Computing Kohei Arai, |
computer science research opportunities for high school students: NBS Special Publication , 1968 |
computer science research opportunities for high school students: Product Marketing, Simplified Srini Sekaran, 2020-07-19 A comprehensive guide to product marketing — from messaging to influencing the product roadmap. Learn how to launch products, deliver value to the right customer, and grow your business. Whether you're looking to become a product marketer, a product manager, or an entrepreneur, this is the handbook you need to learn how to deliver value and take a product to market the right way. |
computer science research opportunities for high school students: Research in Education , 1974 |
computer science research opportunities for high school students: , |
computer science research opportunities for high school students: Computer Science Education Sue Sentance, Erik Barendsen, Nicol R. Howard, Carsten Schulte, 2023-02-23 Drawing together the most up-to-date research from experts all across the world, the second edition of Computer Science Education offers the most up-to-date coverage available on this developing subject, ideal for building confidence of new pre-service and in-service educators teaching a new discipline. It provides an international overview of key concepts, pedagogical approaches and assessment practices. Highlights of the second edition include: - New sections on machine learning and data-driven (epistemic) programming - A new focus on equity and inclusion in computer science education - Chapters updated throughout, including a revised chapter on relating ethical and societal aspects to knowledge-rich aspects of computer science education - A new set of chapters on the learning of programming, including design, pedagogy and misconceptions - A chapter on the way we use language in the computer science classroom. The book is structured to support the reader with chapter outlines, synopses and key points. Explanations of key concepts, real-life examples and reflective points keep the theory grounded in classroom practice. The book is accompanied by a companion website, including online summaries for each chapter, 3-minute video summaries by each author and an archived chapter on taxonomies and competencies from the first edition. |
computer science research opportunities for high school students: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
computer science research opportunities for high school students: Evolution of STEM-Driven Computer Science Education Vytautas Štuikys, Renata Burbaitė, 2024-01-01 The book discusses the evolution of STEM-driven Computer Science (CS) Education based on three categories of Big Concepts, Smart Education (Pedagogy), Technology (tools and adequate processes) and Content that relates to IoT, Data Science and AI. For developing, designing, testing, delivering and assessing learning outcomes for K-12 students (9-12 classes), the multi-dimensional modelling methodology is at the centre. The methodology covers conceptual and feature-based modelling, prototyping, and virtual and physical modelling at the implementation and usage level. Chapters contain case studies to assist understanding and learning. The book contains multiple methodological and scientific innovations including models, frameworks and approaches to drive STEM-driven CS education evolution. Educational strategists, educators, and researchers will find valuable material in this book to help them improve STEM-driven CS education strategies, curriculum development, and new ideas for research. |
computer science research opportunities for high school students: Office of Naval Research Guide to Programs United States. Office of Naval Research, 1992 |
computer science research opportunities for high school students: Directory of Awards National Science Foundation (U.S.). Directorate for Science and Engineering Education, |
computer science research opportunities for high school students: Office of Naval Research Guide to Programs United States. Office of the Chief of Naval Research, 1992 |
computer science research opportunities for high school students: Getting Smart Tom Vander Ark, 2011-09-20 A comprehensive look at the promise and potential of online learning In our digital age, students have dramatically new learning needs and must be prepared for the idea economy of the future. In Getting Smart, well-known global education expert Tom Vander Ark examines the facets of educational innovation in the United States and abroad. Vander Ark makes a convincing case for a blend of online and onsite learning, shares inspiring stories of schools and programs that effectively offer personal digital learning opportunities, and discusses what we need to do to remake our schools into smart schools. Examines the innovation-driven world, discusses how to combine online and onsite learning, and reviews smart tools for learning Investigates the lives of learning professionals, outlines the new employment bargain, examines online universities and smart schools Makes the case for smart capital, advocates for policies that create better learning, studies smart cultures |
computer science research opportunities for high school students: Smart STEM-Driven Computer Science Education Vytautas Štuikys, Renata Burbaitė, 2018-06-28 At the centre of the methodology used in this book is STEM learning variability space that includes STEM pedagogical variability, learners’ social variability, technological variability, CS content variability and interaction variability. To design smart components, firstly, the STEM learning variability space is defined for each component separately, and then model-driven approaches are applied. The theoretical basis includes feature-based modelling and model transformations at the top specification level and heterogeneous meta-programming techniques at the implementation level. Practice includes multiple case studies oriented for solving the task prototypes, taken from the real world, by educational robots. These case studies illustrate the process of gaining interdisciplinary knowledge pieces identified as S-knowledge, T-knowledge, E-knowledge, M-knowledge or integrated STEM knowledge and evaluate smart components from the pedagogical and technological perspectives based on data gathered from one real teaching setting. Smart STEM-Driven Computer Science Education: Theory, Methodology and Robot-based Practices outlines the overall capabilities of the proposed approach and also points out the drawbacks from the viewpoint of different actors, i.e. researchers, designers, teachers and learners. |
computer science research opportunities for high school students: Grants and Awards National Science Foundation (U.S.), |
computer science research opportunities for high school students: The Federal Research Portfolio United States. Congress. Senate. Committee on Commerce, Science, and Transportation, 2015 |
computer science research opportunities for high school students: Past, Present and Future of Computing Education Research Mikko Apiola, Sonsoles López-Pernas, Mohammed Saqr, 2023-04-17 This book presents a collection of meta-studies, reviews, and scientometric analyses that together reveal a fresh picture about the past, present, and future of computing education research (CER) as a field of science. The book begins with three chapters that discuss and summarise meta-research about the foundations of CER, its disciplinary identity, and use of research methodologies and theories. Based on this, the book proceeds with several scientometric analyses, which explore authors and their collaboration networks, dissemination practices, international collaboration, and shifts in research focus over the years. Analyses of dissemination are deepened in two chapters that focus on some of the most influential publication venues of CER. The book also contains a series of country-, or region-level analyses, including chapters that focus on the evolution of CER in the Baltic Region, Finland, Australasia, Israel, and in the UK & Ireland. Two chapters present case studies of influential CER initiatives in Sweden and Namibia. This book also includes chapters that focus on CER conducted at school level, and cover crucially important issues such as technology ethics, algorithmic bias, and their implications for CER.In all, this book contributes to building an understanding of the past, present and future of CER. This book also contributes new practical guidelines, highlights topical areas of research, shows who to connect with, where to publish, and gives ideas of innovative research niches. The book takes a unique methodological approach by presenting a combination of meta-studies, scientometric analyses of publication metadata, and large-scale studies about the evolution of CER in different geographical regions. This book is intended for educational practitioners, researchers, students, and anyone interested in CER. This book was written in collaboration with some of the leading experts of the field. |
computer science research opportunities for high school students: National Science Foundation Directory of NSF-supported Teacher Enhancement Projects , 1985 |
computer science research opportunities for high school students: Resources in Education , 2001 |
computer science research opportunities for high school students: ECEL 2018 17th European Conference on e-Learning Klimis Ntalianis, Antonios Andreatos, Cleo Sgouropoulou, 2018-11-01 The European Conference on e-Learning was established 17 years ago. It has been held in France, Portugal, England, The Netherlands, Greece and Denmark to mention only a few of the countries who have hosted it. ECEL is generally attended by participants from more than 40 countries and attracts an interesting combination of academic scholars, practitioners and individuals who are engaged in various aspects of e-Learning. Among other journals, the Electronic Journal of e-Learning publishes a special edition of the best papers presented at this conference. |
computer science research opportunities for high school students: Towards a Collaborative Society Through Creative Learning Therese Keane, Cathy Lewin, Torsten Brinda, Rosa Bottino, 2023-09-27 This book contains the revised selected, refereed papers from the IFIP World Conference on Computers in Education on Towards a Collaborative Society through Creative Learning, WCCE 2022, Hiroshima, Japan, August 20-24, 2022. A total of 61 papers (54 full papers and 7 short papers) were carefully reviewed and selected from 131 submissions. They were organized in topical sections as follows: Digital Education and Computing in Schools, Digital Education and Computing in Higher Education, National Policies and Plans for Digital Competence. |
computer science research opportunities for high school students: Science Education Peter Csermely, Korado Korlevic, Katalin Sulyok, 2007 Tells why to engage in scientific education of talented students as early as possible to develop the critical minds or scientific method judgments. This book discusses the multitudes of initiatives all around the world; stating that most of them work in isolation, often struggling with lack of resources and stay unrecognized to the general public. |
computer science research opportunities for high school students: The Comer School Development Program Pat Coulter, 1993 |
computer science research opportunities for high school students: Computer Science Logo Style: Symbolic computing Brian Harvey, 1997 This series is for people--adults and teenagers--who are interested in computer programming because it's fun. The three volumes use the Logo programming language as the vehicle for an exploration of computer science from the perspective of symbolic computation and artificial intelligence. Logo is a dialect of Lisp, a language used in the most advanced research projects in computer science, especially in artificial intelligence. Throughout the series, functional programming techniques (including higher order functions and recursion) are emphasized, but traditional sequential programming is also used when appropriate.In the second edition, the first two volumes have been rearranged so that illustrative case studies appear with the techniques they demonstrate. Volume 1 includes a new chapter about higher order functions, and the recursion chapters have been reorganized for greater clarity. Volume 2 includes a new tutorial chapter about macros, an exclusive capability of Berkeley Logo, and two new projects. Throughout the series, the larger program examples have been rewritten for greater readability by more extensive use of data abstraction.Volume 1 Symbolic Computing, is addressed to a reader who has used computers and wants to learn the ideas behind them. Symbolic computing is the manipulation of words and sentences, in contrast both to the graphics most people associate with Logo and to the numerical computation with which more traditional languages such as Pascal and C++ are most comfortable. This volume is well known for its clear and thorough presentation of recursion, a key idea in computer science that other texts treat as arcane and difficult.The Logo programs in these books and the author's free Berkeley Logo interpreter are available via the Internet or on diskette. |
computer science research opportunities for high school students: Materials Science and Engineering at the Naval Research Laboratory Naval Research Laboratory (U.S.), |
computer science research opportunities for high school students: Scientific, Technical, and Literacy Education and Training and H.R. 3122, the Science and Technological Literacy Act United States. Congress. House. Committee on Science, Space, and Technology. Subcommittee on Science, Research, and Technology, 1990 |
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …