Advertisement
computer science for biologists: Practical Computing for Biologists Steven H.D. Haddock, Casey W. Dunn, 2011-04-22 Practical Computing for Biologists shows you how to use many freely available computing tools to work more powerfully and effectively. The book was born out of the authors' own experience in developing tools for their research and helping other biologists with their computational problems. Many of the techniques are relevant to molecular bioinformatics but the scope of the book is much broader, covering topics and techniques that are applicable to a range of scientific endeavours. Twenty-two chapters organized into six parts address the following topics (and more; see Contents): • Searching with regular expressions • The Unix command line • Python programming and debugging • Creating and editing graphics • Databases • Performing analyses on remote servers • Working with electronics While the main narrative focuses on Mac OS X, most of the concepts and examples apply to any operating system. Where there are differences for Windows and Linux users, parallel instructions are provided in the margin and in an appendix. The book is designed to be used as a self-guided resource for researchers, a companion book in a course, or as a primary textbook. Practical Computing for Biologists will free you from the most frustrating and time-consuming aspects of data processing so you can focus on the pleasures of scientific inquiry. |
computer science for biologists: A Computer Scientist's Guide to Cell Biology William W. Cohen, 2007-07-23 This book is designed specifically as a guide for Computer Scientists needing an introduction to Cell Biology. The text explores three different facets of biology: biological systems, experimental methods, and language and nomenclature. The author discusses what biologists are trying to determine from their experiments, how various experimental procedures are used and how they relate to accepted concepts in computer science, and the vocabulary necessary to read and understand current literature in biology. The book is an invaluable reference tool and an excellent starting point for a more comprehensive examination of cell biology. |
computer science for biologists: Computing Skills for Biologists Stefano Allesina, Madlen Wilmes, 2019-01-15 A concise introduction to key computing skills for biologists While biological data continues to grow exponentially in size and quality, many of today’s biologists are not trained adequately in the computing skills necessary for leveraging this information deluge. In Computing Skills for Biologists, Stefano Allesina and Madlen Wilmes present a valuable toolbox for the effective analysis of biological data. Based on the authors’ experiences teaching scientific computing at the University of Chicago, this textbook emphasizes the automation of repetitive tasks and the construction of pipelines for data organization, analysis, visualization, and publication. Stressing practice rather than theory, the book’s examples and exercises are drawn from actual biological data and solve cogent problems spanning the entire breadth of biological disciplines, including ecology, genetics, microbiology, and molecular biology. Beginners will benefit from the many examples explained step-by-step, while more seasoned researchers will learn how to combine tools to make biological data analysis robust and reproducible. The book uses free software and code that can be run on any platform. Computing Skills for Biologists is ideal for scientists wanting to improve their technical skills and instructors looking to teach the main computing tools essential for biology research in the twenty-first century. Excellent resource for acquiring comprehensive computing skills Both novice and experienced scientists will increase efficiency by building automated and reproducible pipelines for biological data analysis Code examples based on published data spanning the breadth of biological disciplines Detailed solutions provided for exercises in each chapter Extensive companion website |
computer science for biologists: Computing for Biologists Ran Libeskind-Hadas, Eliot Bush, 2014-09-22 Computing is revolutionizing the practice of biology. This book, which assumes no prior computing experience, provides students with the tools to write their own Python programs and to understand fundamental concepts in computational biology and bioinformatics. Each major part of the book begins with a compelling biological question, followed by the algorithmic ideas and programming tools necessary to explore it: the origins of pathogenicity are examined using gene finding, the evolutionary history of sex determination systems is studied using sequence alignment, and the origin of modern humans is addressed using phylogenetic methods. In addition to providing general programming skills, this book explores the design of efficient algorithms, simulation, NP-hardness, and the maximum likelihood method, among other key concepts and methods. Easy-to-read and designed to equip students with the skills to write programs for solving a range of biological problems, the book is accompanied by numerous programming exercises, available at www.cs.hmc.edu/CFB. |
computer science for biologists: Python Programming for Biology Tim J. Stevens, Wayne Boucher, 2015-02-12 Do you have a biological question that could be readily answered by computational techniques, but little experience in programming? Do you want to learn more about the core techniques used in computational biology and bioinformatics? Written in an accessible style, this guide provides a foundation for both newcomers to computer programming and those interested in learning more about computational biology. The chapters guide the reader through: a complete beginners' course to programming in Python, with an introduction to computing jargon; descriptions of core bioinformatics methods with working Python examples; scientific computing techniques, including image analysis, statistics and machine learning. This book also functions as a language reference written in straightforward English, covering the most common Python language elements and a glossary of computing and biological terms. This title will teach undergraduates, postgraduates and professionals working in the life sciences how to program with Python, a powerful, flexible and easy-to-use language. |
computer science for biologists: Algorithms in Structural Molecular Biology Bruce R. Donald, 2023-08-15 An overview of algorithms important to computational structural biology that addresses such topics as NMR and design and analysis of proteins.Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules. Each chapter offers a concise overview of important concepts, focusing on a key topic in the field. Four chapters offer a short course in algorithmic and computational issues related to NMR structural biology, giving the reader a useful toolkit with which to approach the fascinating yet thorny computational problems in this area. A recurrent theme is understanding the interplay between biophysical experiments and computational algorithms. The text emphasizes the mathematical foundations of structural biology while maintaining a balance between algorithms and a nuanced understanding of experimental data. Three emerging areas, particularly fertile ground for research students, are highlighted: NMR methodology, design of proteins and other molecules, and the modeling of protein flexibility. The next generation of computational structural biologists will need training in geometric algorithms, provably good approximation algorithms, scientific computation, and an array of techniques for handling noise and uncertainty in combinatorial geometry and computational biophysics. This book is an essential guide for young scientists on their way to research success in this exciting field. |
computer science for biologists: Perl Programming for Biologists D. Curtis Jamison, 2003-07-14 Working on the assumption that the reader has no formal training in programming, Perl Programming for Biologists demonstrates how Perl is used to solve biological problems. Each chapter opens with a set of learning objectives, provides numerous review questions and self-study exercises, and concludes with a bulleted summary of key points. The author incorporates numerous real-life examples throughout the text. Upon completing the book, readers are able to quickly perform such tasks as correcting recurring errors in spreadsheets, scanning a Fasta sequence for every occurrence of an EcoRI site, adapting other writers' scripts to one's own purposes, and most important, writing reusable and maintainable scripts that spare the rote repetition of code. |
computer science for biologists: Developing Bioinformatics Computer Skills Cynthia Gibas, Per Jambeck, 2001 This practical, hands-on guide shows how to develop a structured approach to biological data and the tools needed to analyze it. It's aimed at scientists and students learning computational approaches to biological data, as well as experienced biology researchers starting to use computers to handle data. |
computer science for biologists: Hands on Data Science for Biologists Using Python Yasha Hasija, Rajkumar Chakraborty, 2021-04-08 Hands-on Data Science for Biologists using Python has been conceptualized to address the massive data handling needs of modern-day biologists. With the advent of high throughput technologies and consequent availability of omics data, biological science has become a data-intensive field. This hands-on textbook has been written with the inception of easing data analysis by providing an interactive, problem-based instructional approach in Python programming language. The book starts with an introduction to Python and steadily delves into scrupulous techniques of data handling, preprocessing, and visualization. The book concludes with machine learning algorithms and their applications in biological data science. Each topic has an intuitive explanation of concepts and is accompanied with biological examples. Features of this book: The book contains standard templates for data analysis using Python, suitable for beginners as well as advanced learners. This book shows working implementations of data handling and machine learning algorithms using real-life biological datasets and problems, such as gene expression analysis; disease prediction; image recognition; SNP association with phenotypes and diseases. Considering the importance of visualization for data interpretation, especially in biological systems, there is a dedicated chapter for the ease of data visualization and plotting. Every chapter is designed to be interactive and is accompanied with Jupyter notebook to prompt readers to practice in their local systems. Other avant-garde component of the book is the inclusion of a machine learning project, wherein various machine learning algorithms are applied for the identification of genes associated with age-related disorders. A systematic understanding of data analysis steps has always been an important element for biological research. This book is a readily accessible resource that can be used as a handbook for data analysis, as well as a platter of standard code templates for building models. |
computer science for biologists: A Primer for Computational Biology Shawn T. O'Neil, 2017-12-21 A Primer for Computational Biology aims to provide life scientists and students the skills necessary for research in a data-rich world. The text covers accessing and using remote servers via the command-line, writing programs and pipelines for data analysis, and provides useful vocabulary for interdisciplinary work. The book is broken into three parts: Introduction to Unix/Linux: The command-line is the natural environment of scientific computing, and this part covers a wide range of topics, including logging in, working with files and directories, installing programs and writing scripts, and the powerful pipe operator for file and data manipulation. Programming in Python: Python is both a premier language for learning and a common choice in scientific software development. This part covers the basic concepts in programming (data types, if-statements and loops, functions) via examples of DNA-sequence analysis. This part also covers more complex subjects in software development such as objects and classes, modules, and APIs. Programming in R: The R language specializes in statistical data analysis, and is also quite useful for visualizing large datasets. This third part covers the basics of R as a programming language (data types, if-statements, functions, loops and when to use them) as well as techniques for large-scale, multi-test analyses. Other topics include S3 classes and data visualization with ggplot2. |
computer science for biologists: Algorithms on Strings, Trees, and Sequences Dan Gusfield, 1997-05-28 String algorithms are a traditional area of study in computer science. In recent years their importance has grown dramatically with the huge increase of electronically stored text and of molecular sequence data (DNA or protein sequences) produced by various genome projects. This book is a general text on computer algorithms for string processing. In addition to pure computer science, the book contains extensive discussions on biological problems that are cast as string problems, and on methods developed to solve them. It emphasises the fundamental ideas and techniques central to today's applications. New approaches to this complex material simplify methods that up to now have been for the specialist alone. With over 400 exercises to reinforce the material and develop additional topics, the book is suitable as a text for graduate or advanced undergraduate students in computer science, computational biology, or bio-informatics. Its discussion of current algorithms and techniques also makes it a reference for professionals. |
computer science for biologists: Computational Cell Biology Christopher P. Fall, Eric S. Marland, John M. Wagner, John J. Tyson, 2007-06-04 This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool. |
computer science for biologists: Computational Molecular Biology S. Istrail, P. Pevzner, R. Shamir, 2003-04-02 This volume contains papers demonstrating the variety and richness of computational problems motivated by molecular biology. The application areas within biology that give rise to the problems studied in these papers include solid molecular modeling, sequence comparison, phylogeny, evolution, mapping, DNA chips, protein folding and 2D gel technology. The mathematical techniques used are algorithmics, combinatorics, optimization, probability, graph theory, complexity and applied mathematics. This is the fourth volume in the Discrete Applied Mathematics series on computational molecular biology, which is devoted to combinatorial and algorithmic techniques in computational molecular biology. This series publishes novel research results on the mathematical and algorithmic foundations of the inherently discrete aspects of computational biology. Key features: . protein folding . phylogenetic inference . 2-dimensional gel analysis . graphical models for sequencing by hybridisation . dynamic visualization of molecular surfaces . problems and algorithms in sequence alignment This book is a reprint of Discrete Applied Mathematics Volume 127, Number 1. |
computer science for biologists: Essential Computing Skills for Biologists Fenglou Mao, Ziling Wang (MD), Xizeng Mao, Yanbin Yin, 2016-12-31 This book presents the most important skills for anyone who wants to do quantitative analysis on biological data, especially for high-throughput omics data. Three topics are covered in this book: (1) Essential knowledge and skills necessary to use a Linux computer; (2) Write programs in Perl, and the use of BioPerl to write bioinformatics Perl programs; (3) Write programs in R, and the use of R to analyze data and generate pictures. |
computer science for biologists: An Introduction to Computational Systems Biology Karthik Raman, 2021-05-30 This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others. |
computer science for biologists: Introduction to Computational Molecular Biology João Carlos Setubal, João Meidanis, 1997 Basic concepts of molecular biology. Strings, graphs, and algorithms. Sequence comparasion and database search. Fragment assembly of DNA. Physical mapping of DNA. Phylogenetic trees. Genome rearrangements. Molecular structure prediction. epilogue: computing with DNA. Answers to selected exercises. References. index. |
computer science for biologists: Catalyzing Inquiry at the Interface of Computing and Biology National Research Council, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Committee on Frontiers at the Interface of Computing and Biology, 2006-01-01 Advances in computer science and technology and in biology over the last several years have opened up the possibility for computing to help answer fundamental questions in biology and for biology to help with new approaches to computing. Making the most of the research opportunities at the interface of computing and biology requires the active participation of people from both fields. While past attempts have been made in this direction, circumstances today appear to be much more favorable for progress. To help take advantage of these opportunities, this study was requested of the NRC by the National Science Foundation, the Department of Defense, the National Institutes of Health, and the Department of Energy. The report provides the basis for establishing cross-disciplinary collaboration between biology and computing including an analysis of potential impediments and strategies for overcoming them. The report also presents a wealth of examples that should encourage students in the biological sciences to look for ways to enable them to be more effective users of computing in their studies. |
computer science for biologists: Bioinformatics and Computational Biology Basant K. Tiwary, 2021-11-23 This textbook introduces fundamental concepts of bioinformatics and computational biology to the students and researchers in biology, medicine, veterinary science, agriculture, and bioengineering . The respective chapters provide detailed information on biological databases, sequence alignment, molecular evolution, next-generation sequencing, systems biology, and statistical computing using R. The book also presents a case-based discussion on clinical, veterinary, agricultural bioinformatics, and computational bioengineering for application-based learning in the respective fields. Further, it offers readers guidance on reconstructing and analysing biological networks and highlights computational methods used in systems medicine and genome-wide association mapping of diseases. Given its scope, this textbook offers an essential introductory book on bioinformatics and computational biology for undergraduate and graduate students in the life sciences, botany, zoology, physiology, biotechnology, bioinformatics, and genomic science as well as systems biology, bioengineering and the agricultural, and veterinary sciences. |
computer science for biologists: On Growth, Form and Computers Sanjeev Kumar, Peter J. Bentley, 2003-10-03 Conceived for both computer scientists and biologists alike, this collection of 22 essays highlights the important new role that computers play in developmental biology research. Essays show how through computer modeling, researchers gain further insight into developmental processes. Featured essays also cover their use in designing computer algorithms to tackle computer science problems in areas like neural network design, robot control, evolvable hardware, and more. Peter Bentley, noted for his prolific research on evolutionary computation, and Sanjeev Kumar head up a respected team to guide readers through these very complex and fascinating disciplines.* Covers both developmental biology and computational development -- the only book of its kind!* Provides introductory material and more detailed information on BOTH disciplines * Includes contribututions from Richard Dawkins, Lewis Wolpert, Ian Stewart, and many other experts |
computer science for biologists: Statistical Modeling and Machine Learning for Molecular Biology Alan Moses, 2017-01-06 • Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics |
computer science for biologists: Digital Biology Peter J. Bentley, 2010-05-11 Imagine a future world where computers can create universes -- digital environments made from binary ones and zeros. Imagine that within these universes there exist biological forms that reproduce, grow, and think. Imagine plantlike forms, ant colonies, immune systems, and brains, all adapting, evolving, and getting better at solving problems. Imagine if our computers became greenhouses for a new kind of nature. Just think what digital biology could do for us. Perhaps it could evolve new designs for us, think up ways to detect fraud using digital neurons, or solve scheduling problems with ants. Perhaps it could detect hackers with immune systems or create music from the patterns of growth of digital seashells. Perhaps it would allow our computers to become creative and inventive. Now stop imagining. digital biology is an intriguing glimpse into the future of technology by one of the most creative thinkers working in computer science today. As Peter J. Bentley explains, the next giant step in computing technology is already under way as computer scientists attempt to create digital universes that replicate the natural world. Within these digital universes, we will evolve solutions to problems, construct digital brains that can learn and think, and use immune systems to trap and destroy computer viruses. The biological world is the model for the next generation of computer software. By adapting the principles of biology, computer scientists will make it possible for computers to function as the natural world does. In practical terms, this will mean that we will soon have smart devices, such as houses that will keep the temperature as we like it and automobiles that will start only for drivers they recognize (through voice recognition or other systems) and that will navigate highways safely and with maximum fuel efficiency. Computers will soon be powerful enough and small enough that they can become part of clothing. Digital agents will be able to help us find a bank or restaurant in a city that we have never visited before, even as we walk through the airport. Miniature robots may even be incorporated into our bodies to monitor our health. Digital Biology is also an exploration of biology itself from a new perspective. We must understand how nature works in its most intimate detail before we can use these same biological processes inside our computers. Already scientists engaged in this work have gained new insights into the elegant simplicity of the natural universe. This is a visionary book, written in accessible, nontechnical language, that explains how cutting-edge computer science will shape our world in the coming decades. |
computer science for biologists: Modeling in Computational Biology and Biomedicine Frédéric Cazals, Pierre Kornprobst, 2012-11-06 Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines. Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience. |
computer science for biologists: Computational Biology and Bioinformatics Ka-Chun Wong, 2016-04-27 The advances in biotechnology such as the next generation sequencing technologies are occurring at breathtaking speed. Advances and breakthroughs give competitive advantages to those who are prepared. However, the driving force behind the positive competition is not only limited to the technological advancement, but also to the companion data analy |
computer science for biologists: Methods in Computational Biology Ross Carlson, Herbert Sauro, 2019-07-03 Modern biology is rapidly becoming a study of large sets of data. Understanding these data sets is a major challenge for most life sciences, including the medical, environmental, and bioprocess fields. Computational biology approaches are essential for leveraging this ongoing revolution in omics data. A primary goal of this Special Issue, entitled “Methods in Computational Biology”, is the communication of computational biology methods, which can extract biological design principles from complex data sets, described in enough detail to permit the reproduction of the results. This issue integrates interdisciplinary researchers such as biologists, computer scientists, engineers, and mathematicians to advance biological systems analysis. The Special Issue contains the following sections: • Reviews of Computational Methods • Computational Analysis of Biological Dynamics: From Molecular to Cellular to Tissue/Consortia Levels • The Interface of Biotic and Abiotic Processes • Processing of Large Data Sets for Enhanced Analysis • Parameter Optimization and Measurement |
computer science for biologists: Python for Biologists Martin Jones, 2013 Python for biologists is a complete programming course for beginners that will give you the skills you need to tackle common biological and bioinformatics problems. |
computer science for biologists: Integer Linear Programming in Computational and Systems Biology Dan Gusfield, 2019-06-13 This hands-on tutorial text for non-experts demonstrates biological applications of a versatile modeling and optimization technique. |
computer science for biologists: Computational Systems Biology Andres Kriete, Roland Eils, 2013-11-26 This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function. |
computer science for biologists: Cancer Systems Biology Edwin Wang, 2010-05-04 The unprecedented amount of data produced with high-throughput experimentation forces biologists to employ mathematical representation and computation to glean meaningful information in systems-level biology. Applying this approach to the underlying molecular mechanisms of tumorgenesis, cancer research is enjoying a series of new discoveries and biological insights. Unique in its dualistic approach, this book introduces the concepts and theories of systems biology and their applications in cancer research. It presents basic cancer biology and cutting-edge topics of cancer research for computational biologists alongside systems biology analysis tools for experimental biologists. |
computer science for biologists: Computer Simulation and Data Analysis in Molecular Biology and Biophysics Victor Bloomfield, 2009-06-05 This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive. |
computer science for biologists: Introduction to MATLAB® for Biologists Cerian Ruth Webb, Mirela Domijan, 2019-08-01 This textbook takes you from the very first time you open MATLAB® through to a position where you can comfortably integrate this computer language into your research or studies. The book will familiarise you with the MATLAB interface, show you how to use the program ́s built-in functions and carefully guide you towards creating your own functions and scripts so that you can use MATLAB as a sophisticated tool to support your own research. A central aim of this book is to provide you with the core knowledge and skills required to become a confident MATLAB user so that you can find and make use of the many specialist functions and toolboxes that have been developed to support a wide range of biological applications. Examples presented within the book are selected to be relevant to biological scientists and they illustrate some of the many ways the program can be incorporated into, and used to enhance, your own research and studies. The textbook is a must-have for students and researchers in the biological sciences. It will also appeal to readers of all backgrounds who are looking for an introduction to MATLAB which is suitable for those with little or no experience of programming. |
computer science for biologists: Advances in Computational Biology H.O. Villar, 1996-05-31 The second volume in a series which aims to focus on advances in computational biology. This volume discusses such topics as: statistical analysis of protein sequences; progress in large-scale sequence analysis; and the architecture of loops in proteins. |
computer science for biologists: Introduction to Computational Biology Bernhard Haubold, Thomas Wiehe, 2006-08-09 Written with the advanced undergraduate in mind, this book introduces into the field of Bioinformatics. The authors explain the computational and conceptional background to the analysis of large-scale sequence data. Many of the corresponding analysis methods are rooted in evolutionary thinking, which serves as a common thread throughout the book. The focus is on methods of comparative genomics and subjects covered include: alignments, gene finding, phylogeny, and the analysis of single nucleotide polymorphisms (SNPs). The volume contains exercises, questions & answers to selected problems. |
computer science for biologists: BIO2010 National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century, 2003-02-13 Biological sciences have been revolutionized, not only in the way research is conductedâ€with the introduction of techniques such as recombinant DNA and digital technologyâ€but also in how research findings are communicated among professionals and to the public. Yet, the undergraduate programs that train biology researchers remain much the same as they were before these fundamental changes came on the scene. This new volume provides a blueprint for bringing undergraduate biology education up to the speed of today's research fast track. It includes recommendations for teaching the next generation of life science investigators, through: Building a strong interdisciplinary curriculum that includes physical science, information technology, and mathematics. Eliminating the administrative and financial barriers to cross-departmental collaboration. Evaluating the impact of medical college admissions testing on undergraduate biology education. Creating early opportunities for independent research. Designing meaningful laboratory experiences into the curriculum. The committee presents a dozen brief case studies of exemplary programs at leading institutions and lists many resources for biology educators. This volume will be important to biology faculty, administrators, practitioners, professional societies, research and education funders, and the biotechnology industry. |
computer science for biologists: Algebraic and Combinatorial Computational Biology Raina Robeva, Matthew Macauley, 2018-10-08 Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code |
computer science for biologists: A Course in Mathematical Biology Gerda de Vries, Thomas Hillen, Mark Lewis, Johannes M?ller, Birgitt Sch?nfisch, 2006-07-01 This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?. |
computer science for biologists: A Computer Scientist's Guide to Cell Biology William W. Cohen, Charles K. Cohen, 2024-08-22 Unlike the structured world of computer science, biology is complex, evolving, and often lacks clean abstract models. This book aims to serve as a guide for computer scientists who need to understand cell biology, breaking the field into three parts: biological mechanics, experimental methods, and language/nomenclature. While biological mechanics, which investigates cellular-level details, is covered by many texts, this book also focuses on experimental methods – how biologists conduct experiments and gather data - and on helping the reader understand the language and terminology of biology, which is rich but challenging for non-biologists. A Computer Scientist's Guide to Cell Biology uses a metaphor of biology as a strange land with an unfamiliar language and customs. The goal of the book is to provide a high-level introduction to cell biology, simplifying concepts and relating them to familiar ideas from computer science, so that working computer scientists can more effectively understand read recent research papers and results. This Second Edition contains a number of updates, including discussions of CRISPR, advances in DNA Sequencing, and mRNA vaccines. It serves as an easy-to-read travel guide for computer scientists navigating the intricate and sometimes perplexing terrain of cell biology, offering insights into experimental methods and helping bridge the gap between the structured world of computer science and the complexities of biological systems. |
computer science for biologists: Computational Genomics with R Altuna Akalin, 2020-12-16 Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015. |
computer science for biologists: Python for the Life Sciences Alexander Lancaster, Gordon Webster, 2019-09-27 Treat yourself to a lively, intuitive, and easy-to-follow introduction to computer programming in Python. The book was written specifically for biologists with little or no prior experience of writing code - with the goal of giving them not only a foundation in Python programming, but also the confidence and inspiration to start using Python in their own research. Virtually all of the examples in the book are drawn from across a wide spectrum of life science research, from simple biochemical calculations and sequence analysis, to modeling the dynamic interactions of genes and proteins in cells, or the drift of genes in an evolving population. Best of all, Python for the Life Sciences shows you how to implement all of these projects in Python, one of the most popular programming languages for scientific computing. If you are a life scientist interested in learning Python to jump-start your research, this is the book for you. What You'll Learn Write Python scripts to automate your lab calculations Search for important motifs in genome sequences Use object-oriented programming with Python Study mining interaction network data for patterns Review dynamic modeling of biochemical switches Who This Book Is For Life scientists with little or no programming experience, including undergraduate and graduate students, postdoctoral researchers in academia and industry, medical professionals, and teachers/lecturers. “A comprehensive introduction to using Python for computational biology... A lovely book with humor and perspective” -- John Novembre, Associate Professor of Human Genetics, University of Chicago and MacArthur Fellow “Fun, entertaining, witty and darn useful. A magical portal to the big data revolution” -- Sandro Santagata, Assistant Professor in Pathology, Harvard Medical School “Alex and Gordon’s enthusiasm for Python is contagious” -- Glenys Thomson Professor of Integrative Biology, University of California, Berkeley |
computer science for biologists: Practical Applications of Computational Biology & Bioinformatics, 15th International Conference (PACBB 2021) Miguel Rocha, Florentino Fdez-Riverola, Mohd Saberi Mohamad, Roberto Casado-Vara, 2021-08-27 This book features novel research papers spanning many different subfields in bioinformatics and computational biology, presenting the latest research on the practical applications to promote fruitful interactions between young researchers in different areas related to the field. Clearly, biology is increasingly becoming a science of information, requiring tools from the computational sciences. To address these challenges, we have seen the emergence of a new generation of interdisciplinary scientists with a strong background in the biological and computational sciences. PACBB'21 expects to contribute to this effort by encouraging a successful collaboration of researchers in different areas related to bioinformatics. The PACBB'21 technical program included 17 papers covering many different subfields in bioinformatics and computational biology. Therefore, this conference, held in Salamanca (Spain), definitely promotes the collaboration of scientists from different research groups and with different backgrounds (computer scientists, mathematicians, biologists) to reach breakthrough solutions for these challenges. |
computer science for biologists: An Introduction to Bioinformatics Algorithms Neil C. Jones, Pavel A. Pevzner, 2004-08-06 An introductory text that emphasizes the underlying algorithmic ideas that are driving advances in bioinformatics. This introductory text offers a clear exposition of the algorithmic principles driving advances in bioinformatics. Accessible to students in both biology and computer science, it strikes a unique balance between rigorous mathematics and practical techniques, emphasizing the ideas underlying algorithms rather than offering a collection of apparently unrelated problems. The book introduces biological and algorithmic ideas together, linking issues in computer science to biology and thus capturing the interest of students in both subjects. It demonstrates that relatively few design techniques can be used to solve a large number of practical problems in biology, and presents this material intuitively. An Introduction to Bioinformatics Algorithms is one of the first books on bioinformatics that can be used by students at an undergraduate level. It includes a dual table of contents, organized by algorithmic idea and biological idea; discussions of biologically relevant problems, including a detailed problem formulation and one or more solutions for each; and brief biographical sketches of leading figures in the field. These interesting vignettes offer students a glimpse of the inspirations and motivations for real work in bioinformatics, making the concepts presented in the text more concrete and the techniques more approachable.PowerPoint presentations, practical bioinformatics problems, sample code, diagrams, demonstrations, and other materials can be found at the Author's website. |
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can perform …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent parts, …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) who …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including desktops, …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …