Computer Scientist Education Requirements

Advertisement



  computer scientist education requirements: Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Policy and Global Affairs, Board on Higher Education and Workforce, Committee on the Growth of Computer Science Undergraduate Enrollments, 2018-04-28 The field of computer science (CS) is currently experiencing a surge in undergraduate degree production and course enrollments, which is straining program resources at many institutions and causing concern among faculty and administrators about how best to respond to the rapidly growing demand. There is also significant interest about what this growth will mean for the future of CS programs, the role of computer science in academic institutions, the field as a whole, and U.S. society more broadly. Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments seeks to provide a better understanding of the current trends in computing enrollments in the context of past trends. It examines drivers of the current enrollment surge, relationships between the surge and current and potential gains in diversity in the field, and the potential impacts of responses to the increased demand for computing in higher education, and it considers the likely effects of those responses on students, faculty, and institutions. This report provides recommendations for what institutions of higher education, government agencies, and the private sector can do to respond to the surge and plan for a strong and sustainable future for the field of CS in general, the health of the institutions of higher education, and the prosperity of the nation.
  computer scientist education requirements: HT THINK LIKE A COMPUTER SCIEN Jeffrey Elkner, Allen B. Downey, Chris Meyers, 2016-10-04 The goal of this book is to teach you to think like a computer scientist. This way of thinking combines some of the best features of mathematics, engineering, and natural science. Like mathematicians, computer scientists use formal languages to denote ideas (specifically computations). Like engineers, they design things, assembling components into systems and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of complex systems, form hypotheses, and test predictions. The single most important skill for a computer scientist is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills. That's why this chapter is called, The way of the program. On one level, you will be learning to program, a useful skill by itself. On another level, you will use programming as a means to an end. As we go along, that end will become clearer.
  computer scientist education requirements: Classic Computer Science Problems in Java David Kopec, 2020-12-21 Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. Summary Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. You’ll work through a series of exercises based in computer science fundamentals that are designed to improve your software development abilities, improve your understanding of artificial intelligence, and even prepare you to ace an interview. As you work through examples in search, clustering, graphs, and more, you'll remember important things you've forgotten and discover classic solutions to your new problems! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Whatever software development problem you’re facing, odds are someone has already uncovered a solution. This book collects the most useful solutions devised, guiding you through a variety of challenges and tried-and-true problem-solving techniques. The principles and algorithms presented here are guaranteed to save you countless hours in project after project. About the book Classic Computer Science Problems in Java is a master class in computer programming designed around 55 exercises that have been used in computer science classrooms for years. You’ll work through hands-on examples as you explore core algorithms, constraint problems, AI applications, and much more. What's inside Recursion, memoization, and bit manipulation Search, graph, and genetic algorithms Constraint-satisfaction problems K-means clustering, neural networks, and adversarial search About the reader For intermediate Java programmers. About the author David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. Table of Contents 1 Small problems 2 Search problems 3 Constraint-satisfaction problems 4 Graph problems 5 Genetic algorithms 6 K-means clustering 7 Fairly simple neural networks 8 Adversarial search 9 Miscellaneous problems 10 Interview with Brian Goetz
  computer scientist education requirements: Think Java Allen B. Downey, Chris Mayfield, 2016-05-06 Currently used at many colleges, universities, and high schools, this hands-on introduction to computer science is ideal for people with little or no programming experience. The goal of this concise book is not just to teach you Java, but to help you think like a computer scientist. You’ll learn how to program—a useful skill by itself—but you’ll also discover how to use programming as a means to an end. Authors Allen Downey and Chris Mayfield start with the most basic concepts and gradually move into topics that are more complex, such as recursion and object-oriented programming. Each brief chapter covers the material for one week of a college course and includes exercises to help you practice what you’ve learned. Learn one concept at a time: tackle complex topics in a series of small steps with examples Understand how to formulate problems, think creatively about solutions, and write programs clearly and accurately Determine which development techniques work best for you, and practice the important skill of debugging Learn relationships among input and output, decisions and loops, classes and methods, strings and arrays Work on exercises involving word games, graphics, puzzles, and playing cards
  computer scientist education requirements: INTRODUCTION TO ARTIFICIAL INTELLIGENCE, Second Edition AKERKAR, RAJENDRA, 2014-07-18 This comprehensive text acquaints the readers with the important aspects of artificial intelligence (AI) and intelligent systems and guides them towards a better understanding of the subject. The text begins with a brief introduction to artificial intelligence, including application areas, its history and future, and programming. It then deals with symbolic logic, knowledge acquisition, representation and reasoning. The text also lucidly explains AI technologies such as computer vision, natural language processing, pattern recognition and speech recognition. Topics such as expert systems, neural networks, constraint programming and case-based reasoning are also discussed in the book. In the Second Edition, the contents and presentation have been improved thoroughly and in addition six new chapters providing a simulating and inspiring synthesis of new artificial intelligence and an appendix on AI tools have been introduced. The treatment throughout the book is primarily tailored to the curriculum needs of B.E./B.Tech. students in Computer Science and Engineering, B.Sc. (Hons.) and M.Sc. students in Computer Science, and MCA students. The book is also useful for computer professionals interested in exploring the field of artificial intelligence. Key Features • Exposes the readers to real-world applications of AI. • Concepts are duly supported by examples and cases. • Provides appendices on PROLOG, LISP and AI Tools. • Incorporates most recommendations of the Curriculum Committee on Computer Science/Engineering for AI and Intelligent Systems. • Exercises provided will help readers apply what they have learned.
  computer scientist education requirements: Handbook of Research on Integrating Computer Science and Computational Thinking in K-12 Education Keengwe, Jared, Wachira, Patrick, 2019-12-13 As technology continues to develop and prove its importance in modern society, certain professions are acclimating. Aspects such as computer science and computational thinking are becoming essential areas of study. Implementing these subject areas into teaching practices is necessary for younger generations to adapt to the developing world. There is a critical need to examine the pedagogical implications of these technological skills and implement them into the global curriculum. The Handbook of Research on Integrating Computer Science and Computational Thinking in K-12 Education is a collection of innovative research on the methods and applications of computer science curriculum development within primary and secondary education. While highlighting topics including pedagogical implications, comprehensive techniques, and teacher preparation models, this book is ideally designed for teachers, IT consultants, curriculum developers, instructional designers, educational software developers, higher education faculty, administrators, policymakers, researchers, and graduate students.
  computer scientist education requirements: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success.
  computer scientist education requirements: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
  computer scientist education requirements: Guide to the Software Engineering Body of Knowledge (Swebok(r)) IEEE Computer Society, 2014 In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)).
  computer scientist education requirements: Early Computer Science Education – Goals and Success Criteria for Pre-Primary and Primary Education Nadine Bergner, Hilde Köster, Johannes Magenheim, Kathrin Müller, Ralf Romeike, Ulrik Schroeder, Carsten Schulte, 2023-04-03 “Scientific Studies on the Work of the ‘Haus der kleinen Forscher’ Foundation” is a regularly published series of scientific reports authored by distinguished experts from the field of early education. This series serves to pursue professional dialogue between the Foundation, academia and practice, with the aim of lending sound support to all child-care centres, after-school care centres and primary schools in Germany in their educational mission. This ninth volume of the series, with a foreword by Ilan Chabay, deals with the goals and requirements of computer science education in the elementary and primary sector. In their expert report, Nadine Bergner, Hilde Köster, Johannes Magenheim, Kathrin Müller, Ralf Romeike, Ulrik Schroeder and Carsten Schulte specify the pedagogical and content-related goal dimensions of computer science education at child-care centres and primary schools. In addition to establishing a theoretical basis for various goal dimensions, the authors discuss the success criteria for effective and efficient early computer science education in practice. They also provide recommendations for the further development of the Foundation’s offerings and scientific accompaniment of the work of the Foundation in the field of computer science. In their expert recommendation, Nadine Bergner and Kathrin Müller describe a selection of informatics systems for children at child-care centres and primary schools and offer suggestions for particularly suitable systems and their use in elementary and primary education based on professional criteria. The final chapter of the volume describes the implementation of these professional recommendations in the programmes of the “Haus der kleinen Forscher” Foundation – with and without computers.
  computer scientist education requirements: The New Rules of Work Alexandra Cavoulacos, Kathryn Minshew, 2017 In this definitive guide to the ever-changing modern workplace, Kathryn Minshew and Alexandra Cavoulacos, the co-founders of popular career website TheMuse.com, show how to play the game by the New Rules. The Muse is known for sharp, relevant, and get-to-the-point advice on how to figure out exactly what your values and your skills are and how they best play out in the marketplace. Now Kathryn and Alex have gathered all of that advice and more in The New Rules of Work. Through quick exercises and structured tips, the authors will guide you as you sort through your countless options; communicate who you are and why you are valuable; and stand out from the crowd. The New Rules of Work shows how to choose a perfect career path, land the best job, and wake up feeling excited to go to work every day-- whether you are starting out in your career, looking to move ahead, navigating a mid-career shift, or anywhere in between--
  computer scientist education requirements: System Architecture Wolfgang J. Paul, Christoph Baumann, Petro Lutsyk, Sabine Schmaltz, 2016-10-04 The pillars of the bridge on the cover of this book date from the Roman Empire and they are in daily use today, an example of conventional engineering at its best. Modern commodity operating systems are examples of current system programming at its best, with bugs discovered and fixed on a weekly or monthly basis. This book addresses the question of whether it is possible to construct computer systems that are as stable as Roman designs. The authors successively introduce and explain specifications, constructions and correctness proofs of a simple MIPS processor; a simple compiler for a C dialect; an extension of the compiler handling C with inline assembly, interrupts and devices; and the virtualization layer of a small operating system kernel. A theme of the book is presenting system architecture design as a formal discipline, and in keeping with this the authors rely on mathematics for conciseness and precision of arguments to an extent common in other engineering fields. This textbook is based on the authors' teaching and practical experience, and it is appropriate for undergraduate students of electronics engineering and computer science. All chapters are supported with exercises and examples.
  computer scientist education requirements: Programming from the Ground Up Jonathan Bartlett, 2009-09-24 Programming from the Ground Up uses Linux assembly language to teach new programmers the most important concepts in programming. It takes you a step at a time through these concepts: * How the processor views memory * How the processor operates * How programs interact with the operating system * How computers represent data internally * How to do low-level and high-level optimization Most beginning-level programming books attempt to shield the reader from how their computer really works. Programming from the Ground Up starts by teaching how the computer works under the hood, so that the programmer will have a sufficient background to be successful in all areas of programming. This book is being used by Princeton University in their COS 217 Introduction to Programming Systems course.
  computer scientist education requirements: Introduction To Algorithms Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, 2001 An extensively revised edition of a mathematically rigorous yet accessible introduction to algorithms.
  computer scientist education requirements: Jacob K. Javits Gifted and Talented Students Education Program , 1998
  computer scientist education requirements: Structure and Interpretation of Computer Programs Harold Abelson, Gerald Jay Sussman, 2022-05-03 A new version of the classic and widely used text adapted for the JavaScript programming language. Since the publication of its first edition in 1984 and its second edition in 1996, Structure and Interpretation of Computer Programs (SICP) has influenced computer science curricula around the world. Widely adopted as a textbook, the book has its origins in a popular entry-level computer science course taught by Harold Abelson and Gerald Jay Sussman at MIT. SICP introduces the reader to central ideas of computation by establishing a series of mental models for computation. Earlier editions used the programming language Scheme in their program examples. This new version of the second edition has been adapted for JavaScript. The first three chapters of SICP cover programming concepts that are common to all modern high-level programming languages. Chapters four and five, which used Scheme to formulate language processors for Scheme, required significant revision. Chapter four offers new material, in particular an introduction to the notion of program parsing. The evaluator and compiler in chapter five introduce a subtle stack discipline to support return statements (a prominent feature of statement-oriented languages) without sacrificing tail recursion. The JavaScript programs included in the book run in any implementation of the language that complies with the ECMAScript 2020 specification, using the JavaScript package sicp provided by the MIT Press website.
  computer scientist education requirements: Computer Science Education Sue Sentance, Erik Barendsen, Nicol R. Howard, Carsten Schulte, 2023-02-23 Drawing together the most up-to-date research from experts all across the world, the second edition of Computer Science Education offers the most up-to-date coverage available on this developing subject, ideal for building confidence of new pre-service and in-service educators teaching a new discipline. It provides an international overview of key concepts, pedagogical approaches and assessment practices. Highlights of the second edition include: - New sections on machine learning and data-driven (epistemic) programming - A new focus on equity and inclusion in computer science education - Chapters updated throughout, including a revised chapter on relating ethical and societal aspects to knowledge-rich aspects of computer science education - A new set of chapters on the learning of programming, including design, pedagogy and misconceptions - A chapter on the way we use language in the computer science classroom. The book is structured to support the reader with chapter outlines, synopses and key points. Explanations of key concepts, real-life examples and reflective points keep the theory grounded in classroom practice. The book is accompanied by a companion website, including online summaries for each chapter, 3-minute video summaries by each author and an archived chapter on taxonomies and competencies from the first edition.
  computer scientist education requirements: Computer Science Handbook Allen B. Tucker, 2004-06-28 When you think about how far and fast computer science has progressed in recent years, it's not hard to conclude that a seven-year old handbook may fall a little short of the kind of reference today's computer scientists, software engineers, and IT professionals need. With a broadened scope, more emphasis on applied computing, and more than 70 chap
  computer scientist education requirements: Software Engineering for Internet Applications Eve Astrid Andersson, Philip Greenspun, Andrew Grumet, 2006 After completing this self-contained course on server-based Internet applications software that grew out of an MIT course, students who start with only the knowledge of how to write and debug a computer program will have learned how to build sophisticated Web-based applications.
  computer scientist education requirements: Big Data and Hadoop Mayank Bhusan, 2018-06-02 The book contains the latest trend in IT industry 'BigData and Hadoop'. It explains how big is 'Big Data' and why everybody is trying to implement this into their IT project.It includes research work on various topics, theoretical and practical approach, each component of the architecture is described along with current industry trends.Big Data and Hadoop have taken together are a new skill as per the industry standards. Readers will get a compact book along with the industry experience and would be a reference to help readers.KEY FEATURES Overview Of Big Data, Basics of Hadoop, Hadoop Distributed File System, HBase, MapReduce, HIVE: The Dataware House Of Hadoop, PIG: The Higher Level Programming Environment, SQOOP: Importing Data From Heterogeneous Sources, Flume, Ozzie, Zookeeper & Big Data Stream Mining, Chapter-wise Questions & Previous Years Questions
  computer scientist education requirements: Computer and Information Technology Prasad Yarlagadda, Seung Bok Choi, Yun Hae Kim, 2014-05 Selected, peer reviewed papers from the International Forum on Computer and Information Technology (IFCIT 2013), December 24-25, 2013, Shenzhen, China
  computer scientist education requirements: Qualification Standards for Positions Under the General Schedule United States. Office of Personnel Management. Occupational Standards Branch, 1979
  computer scientist education requirements: Computer Science Illuminated Nell B. Dale, John Lewis, 2013 Revised and updated with the latest information in the field, the Fifth Edition of best-selling Computer Science Illuminated continues to provide students with an engaging breadth-first overview of computer science principles and provides a solid foundation for those continuing their study in this dynamic and exciting discipline. Authored by two of today's most respected computer science educators, Nell Dale and John Lewis, the text carefully unfolds the many layers of computing from a language-neutral perspective, beginning with the information layer, progressing through the hardware, programming, operating systems, application, and communication layers, and ending with a discussion on the limitations of computing. Separate program language chapters are available as bundle items for instructors who would like to explore a particular programming language with their students. Ideal for introductory computing and computer science courses, the fifth edition's thorough presentation of computing systems provides computer science majors with a solid foundation for further study, and offers non-majors a comprehensive and complete introduction to computing. New Features of the Fifth Edition: - Includes a NEW chapter on computer security (chapter 17) to provide readers with the latest information, including discussions on preventing unauthorized access and guidelines for creating effective passwords, types of malware anti-virus software, problems created by poor programming, protecting your online information including data collection issues with Facebook, Google, etc., and security issues with mobile and portable devices. - A NEW section on cloud computing (chapter 15) offers readers an overview of the latest way in which businesses and users interact with computers and mobile devices. - The section on social networks (moved to chapter 16) has been rewritten to include up-to-date information, including new data on Google+ and Facebook. - The sections covering HTML have been updated to include HTML5. - Includes revised and updated Did You Know callouts in the chapter margins. - The updated Ethical Issues at the end of each chapter have been revised to tie the content to the recently introduced tenth strand recommended by the ACM stressing the importance of computer ethics. Instructor Resources: -Answers to the end of chapter exercises -Answers to the lab exercises -PowerPoint Lecture Outlines -PowerPoint Image Bank -Test Bank Every new copy is packaged with a free access code to the robust Student Companion Website featuring: Animated Flashcards; Relevant Web Links; Crossword Puzzles; Interactive Glossary; Step by step tutorial on web page development; Digital Lab Manual; R. Mark Meyer's labs, Explorations in Computer Science; Additional programming chapters, including Alice, C++, Java, JavaScript, Pascal, Perl, Python, Ruby, SQL, and VB.NET; C++ Language Essentials labs; Java Language Essentials labs; Link to Download Pep/8
  computer scientist education requirements: Computer Science Education in the 21st Century Tony Greening, 2012-12-06 The world is experiencing unprecedented rapidity of change, originating from pervasive technological developments. This book considers the effects of such rapid change from within computing disciplines, by allowing computing educationalists to deliver a considered verdict on the future of their discipline. The targeted future, the year 2020, was chosen to be distant enough to encourage authors to risk being visionary, while being close enough to ensure some anchorage to reality. The result is a scholarly set of contributions expressing the visions, hopes, concerns, predictions and analyses of trends for the future.
  computer scientist education requirements: How the Internet Became Commercial Shane Greenstein, 2015-10-20 In less than a decade, the Internet went from being a series of loosely connected networks used by universities and the military to the powerful commercial engine it is today. This book describes how many of the key innovations that made this possible came from entrepreneurs and iconoclasts who were outside the mainstream—and how the commercialization of the Internet was by no means a foregone conclusion at its outset. Shane Greenstein traces the evolution of the Internet from government ownership to privatization to the commercial Internet we know today. This is a story of innovation from the edges. Greenstein shows how mainstream service providers that had traditionally been leaders in the old-market economy became threatened by innovations from industry outsiders who saw economic opportunities where others didn't—and how these mainstream firms had no choice but to innovate themselves. New models were tried: some succeeded, some failed. Commercial markets turned innovations into valuable products and services as the Internet evolved in those markets. New business processes had to be created from scratch as a network originally intended for research and military defense had to deal with network interconnectivity, the needs of commercial users, and a host of challenges with implementing innovative new services. How the Internet Became Commercial demonstrates how, without any central authority, a unique and vibrant interplay between government and private industry transformed the Internet.
  computer scientist education requirements: Higher Education Computer Science Jenny Carter, Michael O'Grady, Clive Rosen, 2023-05-29 The march towards on-line and blended teaching—present before the Covid-19 pandemic—has been accelerated by it, and there is no going back. Students and staff may object, but the economic drive towards “greater productivity” will inevitably result in less face-to-face (f2f) instruction. Therefore, it is incumbent for those delivering this precious, in-person resource to make maximum use of time...which raises the question, “how”? The second edition of Higher Education Computer Science offers some potential answers. It also addresses other questions, such as “why have f2f teaching at all?” “what is the purpose of f2f?” and “what is the appropriate balance between the two?” The first edition began to offer suggestions for optimising limited opportunities to get together with students. Aligned with that, this unique new volume examines how to use the technology available to maximum advantage: For example, resources such as Moocs and other on-line instructional materials can provide invaluable pedagogic support. In addition, the book addresses ‘problem-based learning,’ using robotics in the teaching of programming, and a multidisciplinary approach to data science. Although it includes a chapter on distance learning, there is greater emphasis placed on the soft, transferable skills and employability skills that are best delivered in person. Further, the work provides several examples of putting theory into practice when teaching computer science at both undergraduate and postgraduate levels. Written by experienced practitioners, each chapter tackles a particular teaching activity or topic within computing, presented in such a way that other practitioners can use. As such, this new volume will be an invaluable resource to those who want to protect and optimise in-person teaching.
  computer scientist education requirements: Stuck in the Shallow End, updated edition Jane Margolis, 2017-03-03 Why so few African American and Latino/a students study computer science: updated edition of a book that reveals the dynamics of inequality in American schools. The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a field of study and profession. In Stuck in the Shallow End, Jane Margolis and coauthors look at the daily experiences of students and teachers in three Los Angeles public high schools: an overcrowded urban high school, a math and science magnet school, and a well-funded school in an affluent neighborhood. They find an insidious “virtual segregation” that maintains inequality. The race gap in computer science, Margolis discovers, is one example of the way students of color are denied a wide range of occupational and educational futures. Stuck in the Shallow End is a story of how inequality is reproduced in America—and how students and teachers, given the necessary tools, can change the system. Since the 2008 publication of Stuck in the Shallow End, the book has found an eager audience among teachers, school administrators, and academics. This updated edition offers a new preface detailing the progress in making computer science accessible to all, a new postscript, and discussion questions (coauthored by Jane Margolis and Joanna Goode).
  computer scientist education requirements: Optimized C++ Kurt Guntheroth, 2016-04-27 In today’s fast and competitive world, a program’s performance is just as important to customers as the features it provides. This practical guide teaches developers performance-tuning principles that enable optimization in C++. You’ll learn how to make code that already embodies best practices of C++ design run faster and consume fewer resources on any computer—whether it’s a watch, phone, workstation, supercomputer, or globe-spanning network of servers. Author Kurt Guntheroth provides several running examples that demonstrate how to apply these principles incrementally to improve existing code so it meets customer requirements for responsiveness and throughput. The advice in this book will prove itself the first time you hear a colleague exclaim, “Wow, that was fast. Who fixed something?” Locate performance hot spots using the profiler and software timers Learn to perform repeatable experiments to measure performance of code changes Optimize use of dynamically allocated variables Improve performance of hot loops and functions Speed up string handling functions Recognize efficient algorithms and optimization patterns Learn the strengths—and weaknesses—of C++ container classes View searching and sorting through an optimizer’s eye Make efficient use of C++ streaming I/O functions Use C++ thread-based concurrency features effectively
  computer scientist education requirements: The Carnegie-Mellon Curriculum for Undergraduate Computer Science Mary Shaw, S.D. Brookes, M. Donner, J. Driscoll, M. Mauldin, R. Pausch, W.L. Scherlis, A.Z. Spector, 2012-12-06 This curriculum and its description were developed during the period 1981 - 1984
  computer scientist education requirements: The Minimum You Need to Know about Logic to Work in IT Roland Hughes, 2007 This book is part of aaThe Minimum You Need to Knowaa family of books by Logikal Solutions. As the family expands they will cover an increasing variety of topics. This book is designed to be used as a text book for classes in logic from high school to college level. It should be one of the first courses you have on IT and this should be one of the first books you read when starting in IT. Not only does this book cover flow charting and pseudocode, it teaches the reader to think before they start mapping out the logic to solve a problem. The author of this book is an industry veteran with nearly 20 years in the field. It has been his experience that recent graduates, from any country, are nearly useless at problem solving. If they cannot point, click, and drag, they cannot solve the problem. This book is an attempt to teach them how to solve the problem. An instructoraas guide is available for schools looking to make this book the basis of coursework.
  computer scientist education requirements: National Educational Technology Standards for Students International Society for Technology in Education, 2007 This booklet includes the full text of the ISTE Standards for Students, along with the Essential Conditions, profiles and scenarios.
  computer scientist education requirements: Occupational Outlook Handbook , 2008
  computer scientist education requirements: Computer Science in K-12 Shuchi Grover, 2020-04 Coding teaches our students the essence of logical thinking and problem solving while also preparing them for a world in which computing is becoming increasingly pervasive. While there's excitement and enthusiasm about programming becoming an intrinsic part of K-12 curricula the world over, there's also growing anxiety about preparing teachers to teach effectively at all grade levels.This book strives to be an essential, enduring, practical guide for every K-12 teacher anywhere who is either teaching or planning to teach computer science and programming at any grade level. To this end, readers will discover:? An A-to-Z organization that affords comprehensive insight into teaching introductory programming.? 26 chapters that cover foundational concepts, practices and well-researched pedagogies related to teaching introductory programming as an integral part of K-12 computer science. Cumulatively these chapters address the two salient building blocks of effective teaching of introductory programming-what content to teach (concepts and practices) and how to teach (pedagogy).? Concrete ideas and rich grade-appropriate examples inspired by practice and research for classroom use.? Perspectives and experiences shared by educators and scholars who are actively practicing and/or examiningthe teaching of computer science and programming in K-12 classrooms.
  computer scientist education requirements: Java Programming Ralph Bravaco, Shai Simonson, 2009-02-01 Java Programming, From The Ground Up, with its flexible organization, teaches Java in a way that is refreshing, fun, interesting and still has all the appropriate programming pieces for students to learn. The motivation behind this writing is to bring a logical, readable, entertaining approach to keep your students involved. Each chapter has a Bigger Picture section at the end of the chapter to provide a variety of interesting related topics in computer science. The writing style is conversational and not overly technical so it addresses programming concepts appropriately. Because of the flexibile organization of the text, it can be used for a one or two semester introductory Java programming class, as well as using Java as a second language. The text contains a large variety of carefully designed exercises that are more effective than the competition.
  computer scientist education requirements: Occupational Outlook Handbook, 2002-2003 United States. Department of Labor, 2002 This book is an up-to-date resource for career information, giving details on all major jobs in the United States.
  computer scientist education requirements: Education and Training for the Information Technology Workforce , 2003
  computer scientist education requirements: Coding Literacy Annette Vee, 2017-07-28 How the theoretical tools of literacy help us understand programming in its historical, social and conceptual contexts. The message from educators, the tech community, and even politicians is clear: everyone should learn to code. To emphasize the universality and importance of computer programming, promoters of coding for everyone often invoke the concept of “literacy,” drawing parallels between reading and writing code and reading and writing text. In this book, Annette Vee examines the coding-as-literacy analogy and argues that it can be an apt rhetorical frame. The theoretical tools of literacy help us understand programming beyond a technical level, and in its historical, social, and conceptual contexts. Viewing programming from the perspective of literacy and literacy from the perspective of programming, she argues, shifts our understandings of both. Computer programming becomes part of an array of communication skills important in everyday life, and literacy, augmented by programming, becomes more capacious. Vee examines the ways that programming is linked with literacy in coding literacy campaigns, considering the ideologies that accompany this coupling, and she looks at how both writing and programming encode and distribute information. She explores historical parallels between writing and programming, using the evolution of mass textual literacy to shed light on the trajectory of code from military and government infrastructure to large-scale businesses to personal use. Writing and coding were institutionalized, domesticated, and then established as a basis for literacy. Just as societies demonstrated a “literate mentality” regardless of the literate status of individuals, Vee argues, a “computational mentality” is now emerging even though coding is still a specialized skill.
  computer scientist education requirements: Hackers & Painters Paul Graham, 2004-05-18 The author examines issues such as the rightness of web-based applications, the programming language renaissance, spam filtering, the Open Source Movement, Internet startups and more. He also tells important stories about the kinds of people behind technical innovations, revealing their character and their craft.
  computer scientist education requirements: A to Z of Computer Scientists Harry Henderson, 2014-05-14 Profiles more than 100 scientists from around the world who made important contributions to the study of computer science, including Howard Aiken, Steve Case, Steve Jobs, and Ted Nelson.
  computer scientist education requirements: Encyclopedia of Computer Science and Technology Jack Belzer, Albert G. Holzman, Allen Kent, 1977-02-01 This comprehensive reference work provides immediate, fingertip access to state-of-the-art technology in nearly 700 self-contained articles written by over 900 international authorities. Each article in the Encyclopedia features current developments and trends in computers, software, vendors, and applications...extensive bibliographies of leading figures in the field, such as Samuel Alexander, John von Neumann, and Norbert Wiener...and in-depth analysis of future directions.
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …

Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …

What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …

Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …

Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.

What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …

Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …

Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …

What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …

Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …

Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.

What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …