Advertisement
computer science for software engineering: Software Engineering for Science Jeffrey C. Carver, Neil P. Chue Hong, George K. Thiruvathukal, 2016-11-03 Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software. |
computer science for software engineering: Computing Handbook Teofilo Gonzalez, Jorge Diaz-Herrera, Allen Tucker, 2014-05-07 The first volume of this popular handbook mirrors the modern taxonomy of computer science and software engineering as described by the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS). Written by established leading experts and influential young researchers, it examines the elements involved in designing and implementing software, new areas in which computers are being used, and ways to solve computing problems. The book also explores our current understanding of software engineering and its effect on the practice of software development and the education of software professionals. |
computer science for software engineering: Serverless Handbook Swizec Teller, 2021-06-27 Serverless Handbook for frontend engineers is the resource I wish I had jumping into serverless. A guide borne of experience and pain. No academic bullshit where you're not sure if the author ever used this stuff in production. I have. From baby side-projects to high traffic data processing monsters. As Google likes to say: serverless architectures, ]from prototype to production to planet-scale Here's what early readers had to say. - Serverless Handbook taught me high-leveled topics. I don't like specific courses with source code (unless it's the exactly thing I want to build) but these chapters helped me to feel like i'm not a total noob anymore. The hand-drawn diagrams and high-leveled descriptions gave me the feeling that i don't have any critical knowledge gaps anymore - I'm using these skills on some serverless projects in a dayjob. Also very convenient to use with my side projects. - The code examples! I like that you included a lot of code examples. It sparked my interest in serverless. Since reading the book I've taken a few courses/workshops in serverless but this was the book that started the serverless journey for me. Can't wait to build a micro SaaS app with my friends Serverless Handbook takes you from backend beginner to solid full-stack engineer. It shows you the mindsets and tactics to use with any backend. It talks about distributed data processing, designing a REST API, how to build GraphQL, handling authentication, and keeping your code secure. Every chapter helps you choose what to do. Because your project is unique and understanding beats cookie-cutter recipes. This book is a why, not a how. But there's enough how to start you off: ) Serverless Handbook is everything I wish I knew about backend programming 10 years ago. |
computer science for software engineering: The Productive Programmer Neal Ford, 2008-07-03 Anyone who develops software for a living needs a proven way to produce it better, faster, and cheaper. The Productive Programmer offers critical timesaving and productivity tools that you can adopt right away, no matter what platform you use. Master developer Neal Ford not only offers advice on the mechanics of productivity-how to work smarter, spurn interruptions, get the most out your computer, and avoid repetition-he also details valuable practices that will help you elude common traps, improve your code, and become more valuable to your team. You'll learn to: Write the test before you write the code Manage the lifecycle of your objects fastidiously Build only what you need now, not what you might need later Apply ancient philosophies to software development Question authority, rather than blindly adhere to standards Make hard things easier and impossible things possible through meta-programming Be sure all code within a method is at the same level of abstraction Pick the right editor and assemble the best tools for the job This isn't theory, but the fruits of Ford's real-world experience as an Application Architect at the global IT consultancy ThoughtWorks. Whether you're a beginner or a pro with years of experience, you'll improve your work and your career with the simple and straightforward principles in The Productive Programmer. |
computer science for software engineering: Modern Software Engineering David Farley, 2021-11-16 Improve Your Creativity, Effectiveness, and Ultimately, Your Code In Modern Software Engineering, continuous delivery pioneer David Farley helps software professionals think about their work more effectively, manage it more successfully, and genuinely improve the quality of their applications, their lives, and the lives of their colleagues. Writing for programmers, managers, and technical leads at all levels of experience, Farley illuminates durable principles at the heart of effective software development. He distills the discipline into two core exercises: learning and exploration and managing complexity. For each, he defines principles that can help you improve everything from your mindset to the quality of your code, and describes approaches proven to promote success. Farley's ideas and techniques cohere into a unified, scientific, and foundational approach to solving practical software development problems within realistic economic constraints. This general, durable, and pervasive approach to software engineering can help you solve problems you haven't encountered yet, using today's technologies and tomorrow's. It offers you deeper insight into what you do every day, helping you create better software, faster, with more pleasure and personal fulfillment. Clarify what you're trying to accomplish Choose your tools based on sensible criteria Organize work and systems to facilitate continuing incremental progress Evaluate your progress toward thriving systems, not just more legacy code Gain more value from experimentation and empiricism Stay in control as systems grow more complex Achieve rigor without too much rigidity Learn from history and experience Distinguish good new software development ideas from bad ones Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. |
computer science for software engineering: Software Engineering at Google Titus Winters, Tom Manshreck, Hyrum Wright, 2020-02-28 Today, software engineers need to know not only how to program effectively but also how to develop proper engineering practices to make their codebase sustainable and healthy. This book emphasizes this difference between programming and software engineering. How can software engineers manage a living codebase that evolves and responds to changing requirements and demands over the length of its life? Based on their experience at Google, software engineers Titus Winters and Hyrum Wright, along with technical writer Tom Manshreck, present a candid and insightful look at how some of the worldâ??s leading practitioners construct and maintain software. This book covers Googleâ??s unique engineering culture, processes, and tools and how these aspects contribute to the effectiveness of an engineering organization. Youâ??ll explore three fundamental principles that software organizations should keep in mind when designing, architecting, writing, and maintaining code: How time affects the sustainability of software and how to make your code resilient over time How scale affects the viability of software practices within an engineering organization What trade-offs a typical engineer needs to make when evaluating design and development decisions |
computer science for software engineering: Real-World Software Projects for Computer Science and Engineering Students Varun Gupta, Anh Nguyen-Duc, 2021-02-24 Developing projects outside of a classroom setting can be intimidating for students and is not always a seamless process. Real-World Software Projects for Computer Science and Engineering Students is a quick, easy source for tackling such issues. Filling a critical gap in the research literature, the book: Is ideal for academic project supervisors. Helps researchers conduct interdisciplinary research. Guides computer science students on undertaking and implementing research-based projects This book explains how to develop highly complex, industry-specific projects touching on real-world complexities of software developments. It shows how to develop projects for students who have not yet had the chance to gain real-world experience, providing opportunity to become familiar with the skills needed to implement projects using standard development methodologies. The book is also a great source for teachers of undergraduate students in software engineering and computer science as it can help students prepare for the risk and uncertainty that is typical of software development in industrial settings. |
computer science for software engineering: Software Engineering and Testing B. B. Agarwal, S. P. Tayal, Mahesh Gupta, 2010 This book is designed for use as an introductory software engineering course or as a reference for programmers. Up-to-date text uses both theory applications to design reliable, error-free software. Includes a companion CD-ROM with source code third-party software engineering applications. |
computer science for software engineering: Software Engineering Education Lionel E. Deimel, 1990-04-06 |
computer science for software engineering: A Concise Introduction to Software Engineering Pankaj Jalote, 2008-10-17 An introductory course on Software Engineering remains one of the hardest subjects to teach largely because of the wide range of topics the area enc- passes. I have believed for some time that we often tend to teach too many concepts and topics in an introductory course resulting in shallow knowledge and little insight on application of these concepts. And Software Engineering is ?nally about application of concepts to e?ciently engineer good software solutions. Goals I believe that an introductory course on Software Engineering should focus on imparting to students the knowledge and skills that are needed to successfully execute a commercial project of a few person-months e?ort while employing proper practices and techniques. It is worth pointing out that a vast majority of the projects executed in the industry today fall in this scope—executed by a small team over a few months. I also believe that by carefully selecting the concepts and topics, we can, in the course of a semester, achieve this. This is the motivation of this book. The goal of this book is to introduce to the students a limited number of concepts and practices which will achieve the following two objectives: – Teach the student the skills needed to execute a smallish commercial project. |
computer science for software engineering: SOFTWARE ENGINEERING: AN ENGINEERING APPROACH Peters, 2007-03 Market_Desc: · Programmers· Software Engineers· Requirements Engineers· Software Quality Engineers Special Features: · Offers detailed coverage of software measures. Exposes students to quantitative methods of identifying important features of software products and processes· Complete Case Study. Through an air traffic control study, students can trace the application of methods and practices in each chapter· Problems. A broad range of problems and references follow each chapter· Glossary of technical terms and acronyms facilitate review of basic ideas· Example code given in C++ and Java· References to related web pages make it easier for students to expand horizons About The Book: This book is the first comprehensive study of a quantitative approach to software engineering, outlining prescribed software design practices and measures necessary to assess software quality, cost, and reliability. It also introduces Computational Intelligence, which can be applied to the development of software systems. |
computer science for software engineering: Perspectives on Data Science for Software Engineering Tim Menzies, Laurie Williams, Thomas Zimmermann, 2016-07-14 Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains |
computer science for software engineering: Dictionary of Computer Science, Engineering and Technology Philip A. Laplante, 2017-12-19 A complete lexicon of technical information, the Dictionary of Computer Science, Engineering, and Technology provides workable definitions, practical information, and enhances general computer science and engineering literacy. It spans various disciplines and industry sectors such as: telecommunications, information theory, and software and hardware systems. If you work with, or write about computers, this dictionary is the single most important resource you can put on your shelf. The dictionary addresses all aspects of computing and computer technology from multiple perspectives, including the academic, applied, and professional vantage points. Including more than 8,000 terms, it covers all major topics from artificial intelligence to programming languages, from software engineering to operating systems, and from database management to privacy issues. The definitions provided are detailed rather than concise. Written by an international team of over 80 contributors, this is the most comprehensive and easy-to-read reference of its kind. If you need to know the definition of anything related to computers you will find it in the Dictionary of Computer Science, Engineering, and Technology. |
computer science for software engineering: Computer Science and Educational Software Design Pierre Tchounikine, 2011-06-27 Developing educational software requires thinking, problematizing, representing, modeling, implementing and analyzing pedagogical objectives and issues, as well as conceptual models and software architectures. Computer scientists face the difficulty of understanding the particular issues and phenomena to be taken into account in educational software projects and of avoiding a naïve technocentered perspective. On the other hand, actors with backgrounds in human or social sciences face the difficulty of understanding software design and implementation issues, and how computer scientists engage in these tasks. Tchounikine argues that these difficulties cannot be solved by building a kind of “general theory” or “general engineering methodology” to be adopted by all actors for all projects: educational software projects may correspond to very different realities, and may be conducted within very different perspectives and with very different matters of concern. Thus the issue of understanding each others’ perspectives and elaborating some common ground is to be considered in context, within the considered project or perspective. To this end, he provides the reader with a framework and means for actively taking into account the relationships between pedagogical settings and software, and for working together in a multidisciplinary way to develop educational software. His book is for actors engaged in research or development projects which require inventing, designing, adapting, implementing or analyzing educational software. The core audience is Master’s and PhD students, researchers and engineers from computer science or human and social sciences (e.g., education, psychology, pedagogy, philosophy, communications or sociology) interested in the issues raised by educational software design and analysis and in the variety of perspectives that may be adopted. |
computer science for software engineering: Guide to the Software Engineering Body of Knowledge (Swebok(r)) IEEE Computer Society, 2014 In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)). |
computer science for software engineering: Informatics in Schools. Fundamentals of Computer Science and Software Engineering Sergei N. Pozdniakov, Valentina Dagienė, 2018-10-10 This book constitutes the proceedings of the 11th International Conference on Informatics in Schools: Situation, Evolution and Perspectives, ISSEP 2018, held in St. Petersburg, Russia, in October 2018. The 29 full papers presented in this volume were carefully reviewed and selected from 74 submissions. They were organized in topical sections named: role of programming and algorithmics in informatics for pupils of all ages; national concepts of teaching informatics; teacher education in informatics; contests and competitions in informatics; socio-psychological aspects of teaching informatics; and computer tools in teaching and studying informatics. |
computer science for software engineering: Formal Foundations for Software Engineering Methods Heinrich Hußmann, 1997-09-23 In this book, Hussmann builds a bridge between the pragmatic methods for the design of information systems and the formal, mathematical background. Firstly, the principal feasibility of an integration of the different methods is demonstrated. Secondly, the formalism is used as a systematic semantic analysis of the concepts in SSADM, a British standard structured software engineering method. Thirdly, a way of obtaining a hybrid formal-pragmatic specification using a combination of SSADM notations and formal (SPECTRUM) specifications is shown. This well-written book encourages scientists and software engineers to apply formal methods to practical software development problems. |
computer science for software engineering: Computer Games and Software Engineering Kendra M. L. Cooper, Walt Scacchi, 2015-05-08 Computer games represent a significant software application domain for innovative research in software engineering techniques and technologies. Game developers, whether focusing on entertainment-market opportunities or game-based applications in non-entertainment domains, thus share a common interest with software engineers and developers on how to |
computer science for software engineering: Software Engineering and Computer Games Rudy von Bitter Rucker, 2003 This book solves the dilemma of wanting to learn Windows-based sorfware engineering without knowing Windows programming. The basics in Windows programming are explained alongside ideas of object-oriented sortware engineering. (Midwest). |
computer science for software engineering: Experimentation in Software Engineering Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, Anders Wesslén, 2012-06-16 Like other sciences and engineering disciplines, software engineering requires a cycle of model building, experimentation, and learning. Experiments are valuable tools for all software engineers who are involved in evaluating and choosing between different methods, techniques, languages and tools. The purpose of Experimentation in Software Engineering is to introduce students, teachers, researchers, and practitioners to empirical studies in software engineering, using controlled experiments. The introduction to experimentation is provided through a process perspective, and the focus is on the steps that we have to go through to perform an experiment. The book is divided into three parts. The first part provides a background of theories and methods used in experimentation. Part II then devotes one chapter to each of the five experiment steps: scoping, planning, execution, analysis, and result presentation. Part III completes the presentation with two examples. Assignments and statistical material are provided in appendixes. Overall the book provides indispensable information regarding empirical studies in particular for experiments, but also for case studies, systematic literature reviews, and surveys. It is a revision of the authors’ book, which was published in 2000. In addition, substantial new material, e.g. concerning systematic literature reviews and case study research, is introduced. The book is self-contained and it is suitable as a course book in undergraduate or graduate studies where the need for empirical studies in software engineering is stressed. Exercises and assignments are included to combine the more theoretical material with practical aspects. Researchers will also benefit from the book, learning more about how to conduct empirical studies, and likewise practitioners may use it as a “cookbook” when evaluating new methods or techniques before implementing them in their organization. |
computer science for software engineering: Computer, Network, Software, and Hardware Engineering with Applications Norman F. Schneidewind, 2012-03-27 There are many books on computers, networks, and software engineering but none that integrate the three with applications. Integration is important because, increasingly, software dominates the performance, reliability, maintainability, and availability of complex computer and systems. Books on software engineering typically portray software as if it exists in a vacuum with no relationship to the wider system. This is wrong because a system is more than software. It is comprised of people, organizations, processes, hardware, and software. All of these components must be considered in an integrative fashion when designing systems. On the other hand, books on computers and networks do not demonstrate a deep understanding of the intricacies of developing software. In this book you will learn, for example, how to quantitatively analyze the performance, reliability, maintainability, and availability of computers, networks, and software in relation to the total system. Furthermore, you will learn how to evaluate and mitigate the risk of deploying integrated systems. You will learn how to apply many models dealing with the optimization of systems. Numerous quantitative examples are provided to help you understand and interpret model results. This book can be used as a first year graduate course in computer, network, and software engineering; as an on-the-job reference for computer, network, and software engineers; and as a reference for these disciplines. |
computer science for software engineering: Software Engineering: Effective Teaching and Learning Approaches and Practices Ellis, Heidi J.C., Demurjian, Steven A., Naveda, J. Fernando, 2008-10-31 Over the past decade, software engineering has developed into a highly respected field. Though computing and software engineering education continues to emerge as a prominent interest area of study, few books specifically focus on software engineering education itself. Software Engineering: Effective Teaching and Learning Approaches and Practices presents the latest developments in software engineering education, drawing contributions from over 20 software engineering educators from around the globe. Encompassing areas such as student assessment and learning, innovative teaching methods, and educational technology, this much-needed book greatly enhances libraries with its unique research content. |
computer science for software engineering: Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2017-12-01 Professionals in the interdisciplinary field of computer science focus on the design, operation, and maintenance of computational systems and software. Methodologies and tools of engineering are utilized alongside computer applications to develop efficient and precise information databases. Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications is a comprehensive reference source for the latest scholarly material on trends, techniques, and uses of various technology applications and examines the benefits and challenges of these computational developments. Highlighting a range of pertinent topics such as utility computing, computer security, and information systems applications, this multi-volume book is ideally designed for academicians, researchers, students, web designers, software developers, and practitioners interested in computer systems and software engineering. |
computer science for software engineering: Software Engineer's Reference Book John A McDermid, 2013-10-22 Software Engineer's Reference Book provides the fundamental principles and general approaches, contemporary information, and applications for developing the software of computer systems. The book is comprised of three main parts, an epilogue, and a comprehensive index. The first part covers the theory of computer science and relevant mathematics. Topics under this section include logic, set theory, Turing machines, theory of computation, and computational complexity. Part II is a discussion of software development methods, techniques and technology primarily based around a conventional view of the software life cycle. Topics discussed include methods such as CORE, SSADM, and SREM, and formal methods including VDM and Z. Attention is also given to other technical activities in the life cycle including testing and prototyping. The final part describes the techniques and standards which are relevant in producing particular classes of application. The text will be of great use to software engineers, software project managers, and students of computer science. |
computer science for software engineering: Advances in Computer and Information Sciences and Engineering Tarek Sobh, 2008-08-15 Advances in Computer and Information Sciences and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Software Engineering, Computer Engineering, and Systems Engineering and Sciences. Advances in Computer and Information Sciences and Engineering includes selected papers from the conference proceedings of the International Conference on Systems, Computing Sciences and Software Engineering (SCSS 2007) which was part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering (CISSE 2007). |
computer science for software engineering: Computers: Systems & Applications P. Sudharshan & J. Jeyabalan, 2004 Computers: Systems & Applications has been designed for the course on Fundamentals/Introduction of Computers for both undergraduate and postgraduate students of all universities in India. It integrates all the basic concepts and latest information about computers. The contents of the book are student-friendly and give a complete coverage of computers, and the latest advancements in the field of information technology. |
computer science for software engineering: Software Engineering Richard W. Selby, 2007-06-04 This is the most authoritative archive of Barry Boehm's contributions to software engineering. Featuring 42 reprinted articles, along with an introduction and chapter summaries to provide context, it serves as a how-to reference manual for software engineering best practices. It provides convenient access to Boehm's landmark work on product development and management processes. The book concludes with an insightful look to the future by Dr. Boehm. |
computer science for software engineering: Computer Engineering for Babies Chase Roberts, 2021-10-20 An introduction to computer engineering for babies. Learn basic logic gates with hands on examples of buttons and an output LED. |
computer science for software engineering: Software Design for Flexibility Chris Hanson, Gerald Jay Sussman, 2021-03-09 Strategies for building large systems that can be easily adapted for new situations with only minor programming modifications. Time pressures encourage programmers to write code that works well for a narrow purpose, with no room to grow. But the best systems are evolvable; they can be adapted for new situations by adding code, rather than changing the existing code. The authors describe techniques they have found effective--over their combined 100-plus years of programming experience--that will help programmers avoid programming themselves into corners. The authors explore ways to enhance flexibility by: Organizing systems using combinators to compose mix-and-match parts, ranging from small functions to whole arithmetics, with standardized interfaces Augmenting data with independent annotation layers, such as units of measurement or provenance Combining independent pieces of partial information using unification or propagation Separating control structure from problem domain with domain models, rule systems and pattern matching, propagation, and dependency-directed backtracking Extending the programming language, using dynamically extensible evaluators |
computer science for software engineering: Design Patterns Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, 1995 Software -- Software Engineering. |
computer science for software engineering: A Philosophy of Software Design John K. Ousterhout, 2021 This book addresses the topic of software design: how to decompose complex software systems into modules (such as classes and methods) that can be implemented relatively independently. The book first introduces the fundamental problem in software design, which is managing complexity. It then discusses philosophical issues about how to approach the software design process and it presents a collection of design principles to apply during software design. The book also introduces a set of red flags that identify design problems. You can apply the ideas in this book to minimize the complexity of large software systems, so that you can write software more quickly and cheaply.--Amazon. |
computer science for software engineering: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
computer science for software engineering: Game Programming Patterns Robert Nystrom, 2014-11-03 The biggest challenge facing many game programmers is completing their game. Most game projects fizzle out, overwhelmed by the complexity of their own code. Game Programming Patterns tackles that exact problem. Based on years of experience in shipped AAA titles, this book collects proven patterns to untangle and optimize your game, organized as independent recipes so you can pick just the patterns you need. You will learn how to write a robust game loop, how to organize your entities using components, and take advantage of the CPUs cache to improve your performance. You'll dive deep into how scripting engines encode behavior, how quadtrees and other spatial partitions optimize your engine, and how other classic design patterns can be used in games. |
computer science for software engineering: Building a Career in Software Daniel Heller, 2020-09-27 Software engineering education has a problem: universities and bootcamps teach aspiring engineers to write code, but they leave graduates to teach themselves the countless supporting tools required to thrive in real software companies. Building a Career in Software is the solution, a comprehensive guide to the essential skills that instructors don't need and professionals never think to teach: landing jobs, choosing teams and projects, asking good questions, running meetings, going on-call, debugging production problems, technical writing, making the most of a mentor, and much more. In over a decade building software at companies such as Apple and Uber, Daniel Heller has mentored and managed tens of engineers from a variety of training backgrounds, and those engineers inspired this book with their hundreds of questions about career issues and day-to-day problems. Designed for either random access or cover-to-cover reading, it offers concise treatments of virtually every non-technical challenge you will face in the first five years of your career—as well as a selection of industry-focused technical topics rarely covered in training. Whatever your education or technical specialty, Building a Career in Software can save you years of trial and error and help you succeed as a real-world software professional. What You Will Learn Discover every important nontechnical facet of professional programming as well as several key technical practices essential to the transition from student to professional Build relationships with your employer Improve your communication, including technical writing, asking good questions, and public speaking Who This Book is For Software engineers either early in their careers or about to transition to the professional world; that is, all graduates of computer science or software engineering university programs and all software engineering boot camp participants. |
computer science for software engineering: Software Engineering Doug Bell, 2000 Software Engineering: A Programming Approach provides a unique introduction to software engineering for all students of computer science and its related disciplines. It is also ideal for practitioners in the software industry who wish to keep track of new developments in the discipline. The third edition is an update of the original text written by Bell, Morrey and Pugh and further develops the programming approach taken by these authors. The new edition however, being updated by a single author, presents a more coherent and fully integrated text. It also includes recent developments in the field and new chapters include those on: formal development, software management, prototyping, process models and user interface design. The programming approach emphasized in this text builds on the readerAs understanding of small-scale programming and extends this knowledge into the realm of large-scale software engineering. This helps the student to understand the current challenges of software engineering as well as developing an understanding of the broad range of techniques and tools that are currently available in the industry. Particular features of the third edition are: - a pragmatic, non-mathematical approach - an overview of the software development process is included - self-test questions in each chapter ensure understanding of the topic - extensive exercises are provided at the end of each chapter - an accompanying website extends and updates material in the book - use of Java throughout as an illustrative programming language - consistent use of UML as a design notation Douglas Bell is a lecturer at Sheffield Hallam University, England. He hasauthored and co-authored a number of texts including, most recently, Java for Students. |
computer science for software engineering: Python for Software Design Allen Downey, 2009-03-09 Python for Software Design is a concise introduction to software design using the Python programming language. The focus is on the programming process, with special emphasis on debugging. The book includes a wide range of exercises, from short examples to substantial projects, so that students have ample opportunity to practice each new concept. |
computer science for software engineering: Optimized C++ Kurt Guntheroth, 2016-04-27 In today’s fast and competitive world, a program’s performance is just as important to customers as the features it provides. This practical guide teaches developers performance-tuning principles that enable optimization in C++. You’ll learn how to make code that already embodies best practices of C++ design run faster and consume fewer resources on any computer—whether it’s a watch, phone, workstation, supercomputer, or globe-spanning network of servers. Author Kurt Guntheroth provides several running examples that demonstrate how to apply these principles incrementally to improve existing code so it meets customer requirements for responsiveness and throughput. The advice in this book will prove itself the first time you hear a colleague exclaim, “Wow, that was fast. Who fixed something?” Locate performance hot spots using the profiler and software timers Learn to perform repeatable experiments to measure performance of code changes Optimize use of dynamically allocated variables Improve performance of hot loops and functions Speed up string handling functions Recognize efficient algorithms and optimization patterns Learn the strengths—and weaknesses—of C++ container classes View searching and sorting through an optimizer’s eye Make efficient use of C++ streaming I/O functions Use C++ thread-based concurrency features effectively |
computer science for software engineering: Software Engineering Perspectives in Computer Game Development Kendra M. L. Cooper, 2021-07-05 Featuring contributions from leading experts in software engineering, this edited book provides a comprehensive introduction to computer game software development. It is a complex, interdisciplinary field that relies on contributions from a wide variety of disciplines including arts and humanities, behavioural sciences, business, engineering, physical sciences, mathematics, etc. The book focuses on the emerging research at the intersection of game and software engineering communities. A brief history of game development is presented, which considers the shift from the development of rare games in isolated research environments in the 1950s to their ubiquitous presence in popular culture today. A summary is provided of the latest peer-reviewed research results in computer game development that have been reported at multiple levels of maturity (workshops, conferences, and journals). The core chapters of the book are devoted to sharing emerging research at the intersection of game development and software engineering. In addition, future research opportunities on new software engineering methods for games and serious educational games for software engineering education are highlighted. As an ideal reference for software engineers, developers, educators, and researchers, this book explores game development topics from software engineering and education perspectives. Key Features: Includes contributions from leading academic experts in the community Presents a current collection of emerging research at the intersection of games and software engineering Considers the interdisciplinary field from two broad perspectives: software engineering methods for game development and serious games for software engineering education Provides a snapshot of the recent literature (i.e., 2015-2020) on game development from software engineering perspectives |
computer science for software engineering: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
computer science for software engineering: Facts and Fallacies of Software Engineering Robert L. Glass, 2003 Regarding the controversial and thought-provoking assessments in this handbook, many software professionals might disagree with the authors, but all will embrace the debate. Glass identifies many of the key problems hampering success in this field. Each fact is supported by insightful discussion and detailed references. |
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can perform …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent parts, …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) who …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including desktops, …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …