Advertisement
computer science education degree: Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Policy and Global Affairs, Board on Higher Education and Workforce, Committee on the Growth of Computer Science Undergraduate Enrollments, 2018-04-28 The field of computer science (CS) is currently experiencing a surge in undergraduate degree production and course enrollments, which is straining program resources at many institutions and causing concern among faculty and administrators about how best to respond to the rapidly growing demand. There is also significant interest about what this growth will mean for the future of CS programs, the role of computer science in academic institutions, the field as a whole, and U.S. society more broadly. Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments seeks to provide a better understanding of the current trends in computing enrollments in the context of past trends. It examines drivers of the current enrollment surge, relationships between the surge and current and potential gains in diversity in the field, and the potential impacts of responses to the increased demand for computing in higher education, and it considers the likely effects of those responses on students, faculty, and institutions. This report provides recommendations for what institutions of higher education, government agencies, and the private sector can do to respond to the surge and plan for a strong and sustainable future for the field of CS in general, the health of the institutions of higher education, and the prosperity of the nation. |
computer science education degree: Computer Science Education Research Sally Fincher, Marian Petre, 2004-01-01 This book provides an overview of how to approach computer science education research from a pragmatic perspective. It represents the diversity of traditions and approaches inherent in this interdisciplinary area, while also providing a structure within which to make sense of that diversity. It provides multiple 'entry points'- to literature, to methods, to topics Part One, 'The Field and the Endeavor', frames the nature and conduct of research in computer science education. Part Two, 'Perspectives and Approaches', provides a number of grounded chapters on particular topics or themes, written by experts in each domain. These chapters cover the following topics: * design * novice misconceptions * programming environments for novices * algorithm visualisation * a schema theory view on learning to program * critical theory as a theoretical approach to computer science education research Juxtaposed and taken together, these chapters indicate just how varied the perspectives and research approaches can be. These chapters, too, act as entry points, with illustrations drawn from published work. |
computer science education degree: Jacob K. Javits Gifted and Talented Students Education Program , 1998 |
computer science education degree: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success. |
computer science education degree: Blown to Bits Harold Abelson, Ken Ledeen, Harry R. Lewis, 2008 'Blown to Bits' is about how the digital explosion is changing everything. The text explains the technology, why it creates so many surprises and why things often don't work the way we expect them to. It is also about things the information explosion is destroying: old assumptions about who is really in control of our lives. |
computer science education degree: Computer Science Education Sue Sentance, Erik Barendsen, Nicol R. Howard, Carsten Schulte, 2023-02-23 Drawing together the most up-to-date research from experts all across the world, the second edition of Computer Science Education offers the most up-to-date coverage available on this developing subject, ideal for building confidence of new pre-service and in-service educators teaching a new discipline. It provides an international overview of key concepts, pedagogical approaches and assessment practices. Highlights of the second edition include: - New sections on machine learning and data-driven (epistemic) programming - A new focus on equity and inclusion in computer science education - Chapters updated throughout, including a revised chapter on relating ethical and societal aspects to knowledge-rich aspects of computer science education - A new set of chapters on the learning of programming, including design, pedagogy and misconceptions - A chapter on the way we use language in the computer science classroom. The book is structured to support the reader with chapter outlines, synopses and key points. Explanations of key concepts, real-life examples and reflective points keep the theory grounded in classroom practice. The book is accompanied by a companion website, including online summaries for each chapter, 3-minute video summaries by each author and an archived chapter on taxonomies and competencies from the first edition. |
computer science education degree: Stuck in the Shallow End, updated edition Jane Margolis, 2017-03-03 Why so few African American and Latino/a students study computer science: updated edition of a book that reveals the dynamics of inequality in American schools. The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a field of study and profession. In Stuck in the Shallow End, Jane Margolis and coauthors look at the daily experiences of students and teachers in three Los Angeles public high schools: an overcrowded urban high school, a math and science magnet school, and a well-funded school in an affluent neighborhood. They find an insidious “virtual segregation” that maintains inequality. The race gap in computer science, Margolis discovers, is one example of the way students of color are denied a wide range of occupational and educational futures. Stuck in the Shallow End is a story of how inequality is reproduced in America—and how students and teachers, given the necessary tools, can change the system. Since the 2008 publication of Stuck in the Shallow End, the book has found an eager audience among teachers, school administrators, and academics. This updated edition offers a new preface detailing the progress in making computer science accessible to all, a new postscript, and discussion questions (coauthored by Jane Margolis and Joanna Goode). |
computer science education degree: The Cambridge Handbook of Computing Education Research Sally A. Fincher, Anthony V. Robins, 2019-02-21 This Handbook describes the extent and shape of computing education research today. Over fifty leading researchers from academia and industry (including Google and Microsoft) have contributed chapters that together define and expand the evidence base. The foundational chapters set the field in context, articulate expertise from key disciplines, and form a practical guide for new researchers. They address what can be learned empirically, methodologically and theoretically from each area. The topic chapters explore issues that are of current interest, why they matter, and what is already known. They include discussion of motivational context, implications for practice, and open questions which might suggest future research. The authors provide an authoritative introduction to the field which is essential reading for policy makers, as well as both new and established researchers. |
computer science education degree: Structure and Interpretation of Computer Programs Harold Abelson, Gerald Jay Sussman, 2022-05-03 A new version of the classic and widely used text adapted for the JavaScript programming language. Since the publication of its first edition in 1984 and its second edition in 1996, Structure and Interpretation of Computer Programs (SICP) has influenced computer science curricula around the world. Widely adopted as a textbook, the book has its origins in a popular entry-level computer science course taught by Harold Abelson and Gerald Jay Sussman at MIT. SICP introduces the reader to central ideas of computation by establishing a series of mental models for computation. Earlier editions used the programming language Scheme in their program examples. This new version of the second edition has been adapted for JavaScript. The first three chapters of SICP cover programming concepts that are common to all modern high-level programming languages. Chapters four and five, which used Scheme to formulate language processors for Scheme, required significant revision. Chapter four offers new material, in particular an introduction to the notion of program parsing. The evaluator and compiler in chapter five introduce a subtle stack discipline to support return statements (a prominent feature of statement-oriented languages) without sacrificing tail recursion. The JavaScript programs included in the book run in any implementation of the language that complies with the ECMAScript 2020 specification, using the JavaScript package sicp provided by the MIT Press website. |
computer science education degree: Software Engineering for Internet Applications Eve Astrid Andersson, Philip Greenspun, Andrew Grumet, 2006 After completing this self-contained course on server-based Internet applications software that grew out of an MIT course, students who start with only the knowledge of how to write and debug a computer program will have learned how to build sophisticated Web-based applications. |
computer science education degree: Ember.js Cookbook Erik Hanchett, 2016-02-29 Arm yourself with over 65 hands-on recipes to master the skills of building scalable web applications with Ember.js About This Book This book is your one-stop solution to the key features of Ember.js. Become skilled in the art of building web-apps in a fraction of the code you'd write in other frameworks. Build JavaScript apps that don't break the web! Our 100 recipes will make this a cakewalk for you! This books makes learning Ember.js easy by breaking down each topic into simple-to-understand recipes Who This Book Is For Anyone who wants to explore Ember.js and wishes to get hands on making sophisticated web apps with less coding will find this book handy. Prior experience in Coding and familiarity with JavaScript is recommended. If you've heard of Ember.js or are just curious on how a single-page application framework works, then this book is for you. What You Will Learn Skip the boilerplate code with Ember CLI generators Create a component with actions and events Set up a model with Ember Data using fixture data Create several different types of test cases and run them Manage and set up user authentication using Ember Simple Auth Add animated transitions to your app with Liquid Fire Set up a service and initializer with dependency injection Create a working chat application Set up an Ember Service and initializer with dependency injection Create a working chat application In Detail Ember.js is an open source JavaScript framework that will make you more productive. It uses common idioms and practices, making it simple to create amazing single-page applications. It also lets you create code in a modular way using the latest JavaScript features. Not only that, it has a great set of APIs to get any task done. The Ember.js community is welcoming newcomers and is ready to help you when needed. This book provides in-depth explanations on how to use the Ember.js framework to take you from beginner to expert. You'll start with some basic topics and by the end of the book, you'll know everything you need to know to build a fully operational Ember application. We'll begin by explaining key points on how to use the Ember.js framework and the associated tools. You'll learn how to effectively use Ember CLI and how to create and deploy your application. We'll take a close look at the Ember object model and templates by examining bindings and observers. We'll then move onto Ember components, models, and Ember Data. We'll show you examples on how to connect to RESTful databases. Next we'll get to grips with testing with integration and acceptance tests using QUnit. We will conclude by covering authentication, services, and Ember add-ons. We'll explore advanced topics such as services and initializers, and how to use them together to build real-time applications. Style and approach Each recipe in this book will make it that much easier to understand Ember.js. Recipe after recipe, you will learn the concepts of Ember.js by following the simple step-by-step processes |
computer science education degree: The Science of Computing Matti Tedre, 2014-12-03 The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field’s champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing’s central debates and portrays a broad perspective of the discipline. The book first looks at computing as a formal, theoretical discipline that is in many ways similar to mathematics, yet different in crucial ways. It traces a number of discussions about the theoretical nature of computing from the field’s intellectual origins in mathematical logic to modern views of the role of theory in computing. The book then explores the debates about computing as an engineering discipline, from the central technical innovations to the birth of the modern technical paradigm of computing to computing’s arrival as a new technical profession to software engineering gradually becoming an academic discipline. It presents arguments for and against the view of computing as engineering within the context of software production and analyzes the clash between the theoretical and practical mindsets. The book concludes with the view of computing as a science in its own right—not just as a tool for other sciences. It covers the early identity debates of computing, various views of computing as a science, and some famous characterizations of the discipline. It also addresses the experimental computer science debate, the view of computing as a natural science, and the algorithmization of sciences. |
computer science education degree: Codeless Data Structures and Algorithms Armstrong Subero, 2020-02-13 In the era of self-taught developers and programmers, essential topics in the industry are frequently learned without a formal academic foundation. A solid grasp of data structures and algorithms (DSA) is imperative for anyone looking to do professional software development and engineering, but classes in the subject can be dry or spend too much time on theory and unnecessary readings. Regardless of your programming language background, Codeless Data Structures and Algorithms has you covered. In this book, author Armstrong Subero will help you learn DSAs without writing a single line of code. Straightforward explanations and diagrams give you a confident handle on the topic while ensuring you never have to open your code editor, use a compiler, or look at an integrated development environment. Subero introduces you to linear, tree, and hash data structures and gives you important insights behind the most common algorithms that you can directly apply to your own programs. Codeless Data Structures and Algorithms provides you with the knowledge about DSAs that you will need in the professional programming world, without using any complex mathematics or irrelevant information. Whether you are a new developer seeking a basic understanding of the subject or a decision-maker wanting a grasp of algorithms to apply to your projects, this book belongs on your shelf. Quite often, a new, refreshing, and unpretentious approach to a topic is all you need to get inspired. What You'll LearnUnderstand tree data structures without delving into unnecessary details or going into too much theoryGet started learning linear data structures with a basic discussion on computer memory Study an overview of arrays, linked lists, stacks and queues Who This Book Is ForThis book is for beginners, self-taught developers and programmers, and anyone who wants to understand data structures and algorithms but don’t want to wade through unnecessary details about quirks of a programming language or don’t have time to sit and read a massive book on the subject. This book is also useful for non-technical decision-makers who are curious about how algorithms work. |
computer science education degree: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
computer science education degree: Vue.js in Action Erik Hanchett, Ben Listwon, 2018-09-10 Summary Web pages are rich with data and graphics, and it's challenging to maintain a smooth and quick user experience. Vue.js in Action teaches you how to build a fast, flowing web UI with the Vue.js framework. As you move through the book, you'll put your skills to practice by building a complete web store application with product listings, a checkout process, and an administrative interface. About the technology Vue.js is a lightweight frontend framework, offering easy two-way data binding, a reactive UI, and a common-sense project structure. It uses UI patterns and modern HTML to deliver impossibly fast page loads and silky smooth transitions—all from a tiny code footprint. It’s a delight to develop in Vue using ordinary JavaScript and its integrated Vuex state management tool. About the book Vue.js in Action is your guide to building modern web apps. You’ll start by exploring the reactive UI model while you get comfortable with Vue’s unique features. Then, you’ll go deeper as you build a shopping cart with an admin interface and the ability to manage stock! Finally, you’ll extend your app, adding transitions, tests, and other key features until it’s production ready. What's inside Clearly annotated code and illustrations Modeling data and consuming APIs Easy state management with Vuex Creating custom directives About the reader Written for web developers with some experience in JavaScript, HTML, and CSS. About the author Erik Hanchett and Benjamin Listwon are experienced web engineers and fearless explorers of new ideas. Vue.js is a front-end framework that builds on many of the reactive UI ideas introduced in React.js. Vue.js in Action teaches readers to build fast, flowing web UI with the Vue.js framework. As they move through the book, readers put their skills to practice by building a complete web store application with product listings, a checkout process, and an administrative interface! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. |
computer science education degree: Computer Science in K-12 Shuchi Grover, 2020-04 Coding teaches our students the essence of logical thinking and problem solving while also preparing them for a world in which computing is becoming increasingly pervasive. While there's excitement and enthusiasm about programming becoming an intrinsic part of K-12 curricula the world over, there's also growing anxiety about preparing teachers to teach effectively at all grade levels.This book strives to be an essential, enduring, practical guide for every K-12 teacher anywhere who is either teaching or planning to teach computer science and programming at any grade level. To this end, readers will discover:? An A-to-Z organization that affords comprehensive insight into teaching introductory programming.? 26 chapters that cover foundational concepts, practices and well-researched pedagogies related to teaching introductory programming as an integral part of K-12 computer science. Cumulatively these chapters address the two salient building blocks of effective teaching of introductory programming-what content to teach (concepts and practices) and how to teach (pedagogy).? Concrete ideas and rich grade-appropriate examples inspired by practice and research for classroom use.? Perspectives and experiences shared by educators and scholars who are actively practicing and/or examiningthe teaching of computer science and programming in K-12 classrooms. |
computer science education degree: Learner-Centered Design of Computing Education MARK GUZDIAL, 2022-05-31 Computing education is in enormous demand. Many students (both children and adult) are realizing that they will need programming in the future. This book presents the argument that they are not all going to use programming in the same way and for the same purposes. What do we mean when we talk about teaching everyone to program? When we target a broad audience, should we have the same goals as computer science education for professional software developers? How do we design computing education that works for everyone? This book proposes use of a learner-centered design approach to create computing education for a broad audience. It considers several reasons for teaching computing to everyone and how the different reasons lead to different choices about learning goals and teaching methods. The book reviews the history of the idea that programming isn't just for the professional software developer. It uses research studies on teaching computing in liberal arts programs, to graphic designers, to high school teachers, in order to explore the idea that computer science for everyone requires us to re-think how we teach and what we teach. The conclusion describes how we might create computing education for everyone. |
computer science education degree: Creative Coding in Python Sheena Vaidyanathan, 2018-12-18 Creative Coding in Python presents over 30 creative projects that teach kids how to code in the easy and intuitive programming language, Python. Creative Coding in Python teaches the fundamentals of computer programming and demonstrates how to code 30+ fun, creative projects using Python, a free, intuitive, open-source programming language that's one of the top five most popular worldwide and one of the most popular Google search terms in the U.S. Computer science educator Sheena Vaidyanathan helps kids understand the fundamental ideas of computer programming and the process of computational thinking using illustrations, flowcharts, and pseudocode, then shows how to apply those essentials to code exciting projects in Python: Chatbots: Discover variables, strings, integers, and more to design conversational programs. Geometric art: Use turtle graphics to create original masterpieces. Interactive fiction: Explore booleans and conditionals to invent create your own adventure games. Dice games: Reuse code to devise games of chance. Arcade games and apps: Understand GUI (graphical user interfaces) and create your own arcade games and apps. What’s next? Look at exciting ways to use your powerful new skills and expand your knowledge of coding in Python. Creative Coding in Python gives kids the tools they need to create their own computer programs. |
computer science education degree: Computer Science Principles Kevin Hare, 2022-04 |
computer science education degree: Calculus Revisited R.W. Carroll, 2002-12-31 In this book the details of many calculations are provided for access to work in quantum groups, algebraic differential calculus, noncommutative geometry, fuzzy physics, discrete geometry, gauge theory, quantum integrable systems, braiding, finite topological spaces, some aspects of geometry and quantum mechanics and gravity. |
computer science education degree: Coding Literacy Annette Vee, 2017-07-28 How the theoretical tools of literacy help us understand programming in its historical, social and conceptual contexts. The message from educators, the tech community, and even politicians is clear: everyone should learn to code. To emphasize the universality and importance of computer programming, promoters of coding for everyone often invoke the concept of “literacy,” drawing parallels between reading and writing code and reading and writing text. In this book, Annette Vee examines the coding-as-literacy analogy and argues that it can be an apt rhetorical frame. The theoretical tools of literacy help us understand programming beyond a technical level, and in its historical, social, and conceptual contexts. Viewing programming from the perspective of literacy and literacy from the perspective of programming, she argues, shifts our understandings of both. Computer programming becomes part of an array of communication skills important in everyday life, and literacy, augmented by programming, becomes more capacious. Vee examines the ways that programming is linked with literacy in coding literacy campaigns, considering the ideologies that accompany this coupling, and she looks at how both writing and programming encode and distribute information. She explores historical parallels between writing and programming, using the evolution of mass textual literacy to shed light on the trajectory of code from military and government infrastructure to large-scale businesses to personal use. Writing and coding were institutionalized, domesticated, and then established as a basis for literacy. Just as societies demonstrated a “literate mentality” regardless of the literate status of individuals, Vee argues, a “computational mentality” is now emerging even though coding is still a specialized skill. |
computer science education degree: Computer Science Education in the 21st Century Tony Greening, 2012-12-06 The world is experiencing unprecedented rapidity of change, originating from pervasive technological developments. This book considers the effects of such rapid change from within computing disciplines, by allowing computing educationalists to deliver a considered verdict on the future of their discipline. The targeted future, the year 2020, was chosen to be distant enough to encourage authors to risk being visionary, while being close enough to ensure some anchorage to reality. The result is a scholarly set of contributions expressing the visions, hopes, concerns, predictions and analyses of trends for the future. |
computer science education degree: How to Prove It Daniel J. Velleman, 2006-01-16 Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians. |
computer science education degree: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. |
computer science education degree: INTRODUCTION TO ARTIFICIAL INTELLIGENCE, Second Edition AKERKAR, RAJENDRA, 2014-07-18 This comprehensive text acquaints the readers with the important aspects of artificial intelligence (AI) and intelligent systems and guides them towards a better understanding of the subject. The text begins with a brief introduction to artificial intelligence, including application areas, its history and future, and programming. It then deals with symbolic logic, knowledge acquisition, representation and reasoning. The text also lucidly explains AI technologies such as computer vision, natural language processing, pattern recognition and speech recognition. Topics such as expert systems, neural networks, constraint programming and case-based reasoning are also discussed in the book. In the Second Edition, the contents and presentation have been improved thoroughly and in addition six new chapters providing a simulating and inspiring synthesis of new artificial intelligence and an appendix on AI tools have been introduced. The treatment throughout the book is primarily tailored to the curriculum needs of B.E./B.Tech. students in Computer Science and Engineering, B.Sc. (Hons.) and M.Sc. students in Computer Science, and MCA students. The book is also useful for computer professionals interested in exploring the field of artificial intelligence. Key Features • Exposes the readers to real-world applications of AI. • Concepts are duly supported by examples and cases. • Provides appendices on PROLOG, LISP and AI Tools. • Incorporates most recommendations of the Curriculum Committee on Computer Science/Engineering for AI and Intelligent Systems. • Exercises provided will help readers apply what they have learned. |
computer science education degree: How to Design Programs, second edition Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, 2018-05-25 A completely revised edition, offering new design recipes for interactive programs and support for images as plain values, testing, event-driven programming, and even distributed programming. This introduction to programming places computer science at the core of a liberal arts education. Unlike other introductory books, it focuses on the program design process, presenting program design guidelines that show the reader how to analyze a problem statement, how to formulate concise goals, how to make up examples, how to develop an outline of the solution, how to finish the program, and how to test it. Because learning to design programs is about the study of principles and the acquisition of transferable skills, the text does not use an off-the-shelf industrial language but presents a tailor-made teaching language. For the same reason, it offers DrRacket, a programming environment for novices that supports playful, feedback-oriented learning. The environment grows with readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks. This second edition has been completely revised. While the book continues to teach a systematic approach to program design, the second edition introduces different design recipes for interactive programs with graphical interfaces and batch programs. It also enriches its design recipes for functions with numerous new hints. Finally, the teaching languages and their IDE now come with support for images as plain values, testing, event-driven programming, and even distributed programming. |
computer science education degree: Digital Game-Based Learning Marc Prensky, 2007-03-01 Today's workforce is quicker, sharper, more visually oriented, and more technology-savvy than ever. To truly benefit from the Digital Natives' learning power and enthusiasm, traditional training methods must adapt to the way people learn today. Written by the founder of Games2train, this innovative book is filled with examples and information to meet the demands of both educators and employers. |
computer science education degree: Computers and the World of the Future Martin Greenberger, Massachusetts Institute of Technology. School of Industrial Management, 1964 Writers including Vannevar Bush and Herbert A. Simon discuss the impact of the computer in its first twenty years. Writers discuss the extraordinary growth of the computer in its first twenty years and its use in fields as diverse as medicine and economics, management and physics. Employed in areas once thought to be exclusively the province of the human mind, the computer rendered profound changes in the traditional ways and means of decision making. Contributors C.P. Snow, Walter A. Rosenblith, Norbert Wiener, Vannevar Bush, Herbert A. Simon, Howard W. Johnson, Marvin L. Minsky, Peter Elias, J. C. R. Licklider, Elting E. Morison, Philip M. Morse, Jay W. Forrester, Grace M. Hopper, Alan J. Perlis, John R. Pierce, Robert C. Sprague, Claude E. Shannon, Charles C. Holt, John G. Kemeny, Donald J. Marquis, Gene M. Amdahl, Sidney S. Alexander, Robert M. Fano, and others |
computer science education degree: Crafting Interpreters Robert Nystrom, 2021-07-27 Despite using them every day, most software engineers know little about how programming languages are designed and implemented. For many, their only experience with that corner of computer science was a terrifying compilers class that they suffered through in undergrad and tried to blot from their memory as soon as they had scribbled their last NFA to DFA conversion on the final exam. That fearsome reputation belies a field that is rich with useful techniques and not so difficult as some of its practitioners might have you believe. A better understanding of how programming languages are built will make you a stronger software engineer and teach you concepts and data structures you'll use the rest of your coding days. You might even have fun. This book teaches you everything you need to know to implement a full-featured, efficient scripting language. You'll learn both high-level concepts around parsing and semantics and gritty details like bytecode representation and garbage collection. Your brain will light up with new ideas, and your hands will get dirty and calloused. Starting from main(), you will build a language that features rich syntax, dynamic typing, garbage collection, lexical scope, first-class functions, closures, classes, and inheritance. All packed into a few thousand lines of clean, fast code that you thoroughly understand because you wrote each one yourself. |
computer science education degree: Unlocking the Clubhouse Jane Margolis, Allan Fisher, 2003-02-28 Understanding and overcoming the gender gap in computer science education. The information technology revolution is transforming almost every aspect of society, but girls and women are largely out of the loop. Although women surf the Web in equal numbers to men and make a majority of online purchases, few are involved in the design and creation of new technology. It is mostly men whose perspectives and priorities inform the development of computing innovations and who reap the lion's share of the financial rewards. As only a small fraction of high school and college computer science students are female, the field is likely to remain a male clubhouse, absent major changes. In Unlocking the Clubhouse, social scientist Jane Margolis and computer scientist and educator Allan Fisher examine the many influences contributing to the gender gap in computing. The book is based on interviews with more than 100 computer science students of both sexes from Carnegie Mellon University, a major center of computer science research, over a period of four years, as well as classroom observations and conversations with hundreds of college and high school faculty. The interviews capture the dynamic details of the female computing experience, from the family computer kept in a brother's bedroom to women's feelings of alienation in college computing classes. The authors investigate the familial, educational, and institutional origins of the computing gender gap. They also describe educational reforms that have made a dramatic difference at Carnegie Mellon—where the percentage of women entering the School of Computer Science rose from 7% in 1995 to 42% in 2000—and at high schools around the country. |
computer science education degree: Principles of Mathematics Carl Barnett Allendoerfer, Cletus Odia Oakley, 1953 |
computer science education degree: Topics, Computer Education for Colleges of Education Jean B. Rogers, 1983 The first of 18 papers in this collection is a committee report of a workshop held in Kansas City, Missouri, June 26-27, 1982, to consider instructional uses of computers in pre-college education and what colleges of education should be doing. In Computer Education and Colleges of Education, J. Philip East provides an overview of the issues involved. Papers submitted by workshop participants prior to the meeting are then presented: Computer Literate Teachers--a Possible Dream (James E. Beamer); Computer Education at Arizona State University (Gary Bitter); Computer Related Teaching and Research in the Faculty of Education at the University of Calgary: Achievements, Present Developments and Predictions for the Future (Ann Brebner); Graduate Degree Programs in Computer Education for Elementary and Secondary Teachers (Robert L. Burke); Computers and Teacher Education: From Cow Trail to Expressway (George H. Culp); Computers in the College of Education, University of Illinois (J. Richard Dennis and Esther Steinberg); Computer Education for Elementary Schools: A Course for Teachers (J. Philip East); The Challenge of Computer Education to Teacher Education--An Australian Perspective (Graham Ferres); Computing and Education at the University of Maryland (James T. Fey and Linda P. Rosen); An Undergraduate Minor and Graduate Program in Computers in Education (Susan Friel and Nancy Roberts); Implementing a Program to Train (Retrain) Secondary Teachers--A Cooperative Effort between Education and Computer Science at Towson State University (Doris Keefe Lidtke); Computerizing the Teacher at North Texas State University (James L. Poirot and James J. Muro); Computers in Education at the University of Colorado--Boulder (Marc Swadener); Computing and Education at Teachers College (Robert P. Taylor); Teacher-Education Curriculum for the 80's (Barbara B. Wright and Richard C. Forcier); and Computers for Teachers: Activities at the University of Michigan School of Education (Karl L. Zinn and Carl F. Berger). (LMM) |
computer science education degree: Programming 101 Jeanine Meyer, 2018-06-15 Understand the importance of programming, even if you’ve never programmed before! This book will teach you the basics of programming using the Processing programming language. You will create your own Processing sketches, using personal images, themes, or hobbies that you enjoy. The chapters in the book will demonstrate the process of programming, starting with formulating an idea, planning, building on past projects, and refining the work, similar to writing an essay or composing a song. This approach will guide you to make use of logic and mathematics to produce beautiful effects. The term for program in Processing is sketch, though the sketches featured in this book are far more than static drawings; they incorporate interaction, animation, video, audio, and accessing files on the local computer and on the Web. Technical features are introduced and explained in the context of complete examples: games (Snake, Hangman, jigsaw, slingshot), making a collage of family images and video clips, preparing directions for folding an origami model, rotating objects in 3D, and others. Programming is a fun, creative, expressive pursuit. It requires attention to details and can be frustrating, but there is very little that compares to the satisfaction of building a program out of nothing and making it work (or taking an existing program and fixing a problem, or adding a feature and making it better). Programming 101 is your gateway to making this happen. What You Will Learn Gain basic programming skills Build fun and creative programs Use files for making a holiday card Combine videos, images, and graphics in a Processing sketch Who This Book Is For Anyone who has been thinking about trying programming, or has tried, but needs more motivation; anyone who wants to learn about the Processing language. |
computer science education degree: Readings in Database Systems Joseph M. Hellerstein, Michael Stonebraker, 2005 The latest edition of a popular text and reference on database research, with substantial new material and revision; covers classical literature and recent hot topics. Lessons from database research have been applied in academic fields ranging from bioinformatics to next-generation Internet architecture and in industrial uses including Web-based e-commerce and search engines. The core ideas in the field have become increasingly influential. This text provides both students and professionals with a grounding in database research and a technical context for understanding recent innovations in the field. The readings included treat the most important issues in the database area--the basic material for any DBMS professional. This fourth edition has been substantially updated and revised, with 21 of the 48 papers new to the edition, four of them published for the first time. Many of the sections have been newly organized, and each section includes a new or substantially revised introduction that discusses the context, motivation, and controversies in a particular area, placing it in the broader perspective of database research. Two introductory articles, never before published, provide an organized, current introduction to basic knowledge of the field; one discusses the history of data models and query languages and the other offers an architectural overview of a database system. The remaining articles range from the classical literature on database research to treatments of current hot topics, including a paper on search engine architecture and a paper on application servers, both written expressly for this edition. The result is a collection of papers that are seminal and also accessible to a reader who has a basic familiarity with database systems. |
computer science education degree: Programming from the Ground Up Jonathan Bartlett, 2009-09-24 Programming from the Ground Up uses Linux assembly language to teach new programmers the most important concepts in programming. It takes you a step at a time through these concepts: * How the processor views memory * How the processor operates * How programs interact with the operating system * How computers represent data internally * How to do low-level and high-level optimization Most beginning-level programming books attempt to shield the reader from how their computer really works. Programming from the Ground Up starts by teaching how the computer works under the hood, so that the programmer will have a sufficient background to be successful in all areas of programming. This book is being used by Princeton University in their COS 217 Introduction to Programming Systems course. |
computer science education degree: Architecture of a Database System Joseph M. Hellerstein, Michael Stonebraker, James Hamilton, 2007 Architecture of a Database System presents an architectural discussion of DBMS design principles, including process models, parallel architecture, storage system design, transaction system implementation, query processor and optimizer architectures, and typical shared components and utilities. |
computer science education degree: Computer Science Handbook Allen B. Tucker, 2004-06-28 When you think about how far and fast computer science has progressed in recent years, it's not hard to conclude that a seven-year old handbook may fall a little short of the kind of reference today's computer scientists, software engineers, and IT professionals need. With a broadened scope, more emphasis on applied computing, and more than 70 chap |
computer science education degree: Your First Year Teaching Computer Science Chris Gregg, 2021-01-15 Your First Year Teaching Computer Science is a comprehensive guide to teaching computer science geared to new instructors in the field. It can be used as a guide and a reference, and it provides multiple examples of how to construct teaching materials, how to prepare lectures, how to write assignments, how to train TAs, and how to advise students, among many other topics. It is both motivational and instructive, and it provides a foundation on which to become a great CS instructor. Teaching computer science involves more than just teaching the material, and this book details all of the other parts of teaching that you will need to know to do the job. If you are wondering where to begin as a computer science teacher, this is the book for you.Features-Serves as a comprehensive guide to teaching introductory computer science for new teachers, and experienced teachers can refer to it on specific points. -Provides examples of teaching materials, grading guides, multiple lists, and other valuable resource for helping new teachers to launch their first computer science courses. -Includes information about training TAs, holding office hours, advising students, and many other practical information that is not specifically about the technical part of teaching computer science. -Written in a conversational tone and is premised on the belief that teaching should be rewarding, fun, and engaging. |
computer science education degree: Software Engineering and Development Enrique A. Belini, 2009 Software engineering is one of the most knowledge intensive jobs. Thus, having a good knowledge management (KM) strategy in these organisations is very important. This book examines software processes from a knowledge perspective flow, in order to identify the particular knowledge needs of such processes to then be in a better position for proposing systems or strategies to address those needs. Its possible benefits are illustrated through the results of a study in a software maintenance process within a small software organisation. Furthermore, software product line architecture is regarded as one of the crucial piece of entity in software product lines. The authors of this book discuss the state of the art of software product line engineering from the perspectives of business, architecture, process and organisation. In recent years, domain-specific languages have been proposed for modelling applications on a high level of abstraction. Although the usage of domain-specific languages offers clear advantages, their design is a highly complex task. This book presents a pragmatic way for designing and using domain-specific languages. Other chapters in this book examine the development of numerical methodologies for inverse determination of material constitutive model parameters, discuss some of the reasons for the irrelevancy of software engineering to the robotic community, review the evolution of robotic software over time, and propose the use of Ant Colony Optimisation, a kind of metaheuristic algorithm, to find general property violations in concurrent systems using a explicit state model checker. |
computer science education degree: Words Their Way Donald R. Bear, Marcia Invernizzi, Shane Templeton, Francine R. Johnston, 2012 Words Their Way is a hands-on, developmentally driven approach to word study that illustrates how to integrate and teach children phonics, vocabulary, and spelling skills. This fifth edition features updated activities, expanded coverage of English learners, and emphasis on progress monitoring. |
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …
Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …
What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …
Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …
Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.
What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical …
Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this …
What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes …
Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top …
What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform …