Computer Vision Video Analysis

Advertisement



  computer vision video analysis: Machine Learning for Audio, Image and Video Analysis Francesco Camastra, Alessandro Vinciarelli, 2015-07-21 This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
  computer vision video analysis: Deep Learning for Computer Vision Rajalingappaa Shanmugamani, 2018-01-23 Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.
  computer vision video analysis: Academic Press Library in Signal Processing, Volume 6 , 2017-11-28 Academic Press Library in Signal Processing, Volume 6: Image and Video Processing and Analysis and Computer Vision is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in both image and video processing and analysis and computer vision. The book provides an invaluable starting point to the area through the insight and understanding that it provides. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. - Presents a quick tutorial of reviews of important and emerging topics of research - Explores core principles, technologies, algorithms and applications - Edited and contributed by international leading figures in the field - Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge
  computer vision video analysis: Machine Learning for Vision-Based Motion Analysis Liang Wang, Guoying Zhao, Li Cheng, Matti Pietikäinen, 2010-11-18 Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.
  computer vision video analysis: Decision Forests for Computer Vision and Medical Image Analysis Antonio Criminisi, J Shotton, 2013-01-30 This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.
  computer vision video analysis: Machine Learning in Computer Vision Nicu Sebe, Ira Cohen, Ashutosh Garg, Thomas S. Huang, 2005-10-04 The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
  computer vision video analysis: Computer Vision In Medical Imaging Chi Hau Chen, 2013-11-18 The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.
  computer vision video analysis: Video-Based Surveillance Systems Graeme A. Jones, Nikos Paragios, Carlo S. Regazzoni, 2012-12-06 Monitoring of public and private sites has increasingly become a very sensitive issue resulting in a patchwork of privacy laws varying from country to country -though all aimed at protecting the privacy of the citizen. It is important to remember, however, that monitoring and vi sual surveillance capabilities can also be employed to aid the citizen. The focus of current development is primarily aimed at public and cor porate safety applications including the monitoring of railway stations, airports, and inaccessible or dangerous environments. Future research effort, however, has already targeted citizen-oriented applications such as monitoring assistants for the aged and infirm, route-planning and congestion-avoidance tools, and a range of environment al monitoring applications. The latest generation of surveillance systems has eagerly adopted re cent technological developments to produce a fully digital pipeline of digital image acquisition, digital data transmission and digital record ing. The resultant surveillance products are highly-fiexihle, capahle of generating forensic-quality imagery, and ahle to exploit existing Internet and wide area network services to provide remote monitoring capability.
  computer vision video analysis: Real-Time Computer Vision Christopher M. Brown, Demetri Terzopoulos, 1995-03-30 This first book on real-time computer vision will interest all involved in the design and programming of visually guided systems.
  computer vision video analysis: Advanced Image and Video Processing Using MATLAB Shengrong Gong, Chunping Liu, Yi Ji, Baojiang Zhong, Yonggang Li, Husheng Dong, 2018-08-21 This book offers a comprehensive introduction to advanced methods for image and video analysis and processing. It covers deraining, dehazing, inpainting, fusion, watermarking and stitching. It describes techniques for face and lip recognition, facial expression recognition, lip reading in videos, moving object tracking, dynamic scene classification, among others. The book combines the latest machine learning methods with computer vision applications, covering topics such as event recognition based on deep learning,dynamic scene classification based on topic model, person re-identification based on metric learning and behavior analysis. It also offers a systematic introduction to image evaluation criteria showing how to use them in different experimental contexts. The book offers an example-based practical guide to researchers, professionals and graduate students dealing with advanced problems in image analysis and computer vision.
  computer vision video analysis: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications Alvaro Pardo, Josef Kittler, 2015-10-24 This book constitutes the refereed proceedings of the 20th Iberoamerican Congress on Pattern Recognition, CIARP 2015, held in Montevideo, Uruguay, in November 2015. The 95 papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on applications on pattern recognition; biometrics; computer vision; gesture recognition; image classification and retrieval; image coding, processing and analysis; segmentation, analysis of shape and texture; signals analysis and processing; theory of pattern recognition; video analysis, segmentation and tracking.
  computer vision video analysis: Computer Vision in Sports Thomas B. Moeslund, Graham Thomas, Adrian Hilton, 2015-01-19 The first book of its kind devoted to this topic, this comprehensive text/reference presents state-of-the-art research and reviews current challenges in the application of computer vision to problems in sports. Opening with a detailed introduction to the use of computer vision across the entire life-cycle of a sports event, the text then progresses to examine cutting-edge techniques for tracking the ball, obtaining the whereabouts and pose of the players, and identifying the sport being played from video footage. The work concludes by investigating a selection of systems for the automatic analysis and classification of sports play. The insights provided by this pioneering collection will be of great interest to researchers and practitioners involved in computer vision, sports analysis and media production.
  computer vision video analysis: Machine Learning for Computer Vision Roberto Cipolla, Sebastiano Battiato, Giovanni Maria Farinella, 2012-07-27 Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview of challenging areas with key references to the existing literature.
  computer vision video analysis: Computer Vision Applications Chetan Arora, Kaushik Mitra, 2019-11-14 This book constitutes the refereed proceedings of the third Workshop on Computer Vision Applications, WCVA 2018, held in Conjunction with ICVGIP 2018, in Hyderabad, India, in December 2018. The 10 revised full papers presented were carefully reviewed and selected from 32 submissions. The papers focus on computer vision; industrial applications; medical applications; and social applications.
  computer vision video analysis: Computer Vision Metrics Scott Krig, 2014-06-14 Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.
  computer vision video analysis: Video Analytics for Business Intelligence Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, 2012-04-07 Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the shop; and what are the frequent paths), and to measure operational efficiency for improving customer experience. Video analytics has the enormous potential for non-security oriented commercial applications. This book presents the latest developments on video analytics for business intelligence applications. It provides both academic and commercial practitioners an understanding of the state-of-the-art and a resource for potential applications and successful practice.
  computer vision video analysis: Visual Indexing and Retrieval Jenny Benois-Pineau, Frédéric Precioso, Matthieu Cord, 2012-04-05 The research in content-based indexing and retrieval of visual information such as images and video has become one of the most populated directions in the vast area of information technologies. Social networks such as YouTube, Facebook, FileMobile, and DailyMotion host and supply facilities for accessing a tremendous amount of professional and user generated data. The areas of societal activity, such as, video protection and security, also generate thousands and thousands of terabytes of visual content. This book presents the most recent results and important trends in visual information indexing and retrieval. It is intended for young researchers, as well as, professionals looking for an algorithmic solution to a problem.
  computer vision video analysis: Handbook Of Pattern Recognition And Computer Vision (2nd Edition) Chi Hau Chen, Louis-francois Pau, Patrick S P Wang, 1999-03-12 The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
  computer vision video analysis: Fusion in Computer Vision Bogdan Ionescu, Jenny Benois-Pineau, Tomas Piatrik, Georges Quénot, 2014-03-25 This book presents a thorough overview of fusion in computer vision, from an interdisciplinary and multi-application viewpoint, describing successful approaches, evaluated in the context of international benchmarks that model realistic use cases. Features: examines late fusion approaches for concept recognition in images and videos; describes the interpretation of visual content by incorporating models of the human visual system with content understanding methods; investigates the fusion of multi-modal features of different semantic levels, as well as results of semantic concept detections, for example-based event recognition in video; proposes rotation-based ensemble classifiers for high-dimensional data, which encourage both individual accuracy and diversity within the ensemble; reviews application-focused strategies of fusion in video surveillance, biomedical information retrieval, and content detection in movies; discusses the modeling of mechanisms of human interpretation of complex visual content.
  computer vision video analysis: Content-Based Analysis of Digital Video Alan Hanjalic, 2007-05-08 Content-Based Analysis Of Digital Video focuses on fundamental issues underlying the development of content access mechanisms for digital video. It treats topics that are critical to successfully automating the video content extraction and retrieval processes, and includes coverage of: - Video parsing, - Video content indexing and representation, - Affective video content analysis. In this well illustrated book the author integrates related information currently scattered throughout the literature and combines it with new ideas into a unified theoretical approach to video content analysis. The material also suggests ideas for future research. Systems developers, researchers and students working in the area of content-based analysis and retrieval of video and multimedia in general will find this book invaluable.
  computer vision video analysis: Computer Imaging Scott E Umbaugh, 2005-01-27 Computer Imaging: Digital Image Analysis and Processing brings together analysis and processing in a unified framework, providing a valuable foundation for understanding both computer vision and image processing applications. Taking an engineering approach, the text integrates theory with a conceptual and application-oriented style, allowing you to immediately understand how each topic fits into the overall structure of practical application development. Divided into five major parts, the book begins by introducing the concepts and definitions necessary to understand computer imaging. The second part describes image analysis and provides the tools, concepts, and models required to analyze digital images and develop computer vision applications. Part III discusses application areas for the processing of images, emphasizing human visual perception. Part IV delivers the information required to apply a CVIPtools environment to algorithm development. The text concludes with appendices that provide supplemental imaging information and assist with the programming exercises found in each chapter. The author presents topics as needed for understanding each practical imaging model being studied. This motivates the reader to master the topics and also makes the book useful as a reference. The CVIPtools software integrated throughout the book, now in a new Windows version, provides practical examples and encourages you to conduct additional exploration via tutorials and programming exercises provided with each chapter.
  computer vision video analysis: Introduction to Deep Learning Sandro Skansi, 2018-02-04 This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.
  computer vision video analysis: Generalized Principal Component Analysis René Vidal, Yi Ma, Shankar Sastry, 2016-04-11 This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.
  computer vision video analysis: Challenges and Applications for Implementing Machine Learning in Computer Vision Kashyap, Ramgopal, Kumar, A.V. Senthil, 2019-10-04 Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.
  computer vision video analysis: Fundamentals of Computer Vision Wesley E. Snyder, Hairong Qi, 2017-09-28 Computer vision has widespread and growing application including robotics, autonomous vehicles, medical imaging and diagnosis, surveillance, video analysis, and even tracking for sports analysis. This book equips the reader with crucial mathematical and algorithmic tools to develop a thorough understanding of the underlying components of any complete computer vision system and to design such systems. These components include identifying local features such as corners or edges in the presence of noise, edge preserving smoothing, connected component labeling, stereopsis, thresholding, clustering, segmentation, and describing and matching both shapes and scenes. The extensive examples include photographs of faces, cartoons, animal footprints, and angiograms, and each chapter concludes with homework exercises and suggested projects. Intended for advanced undergraduate and beginning graduate students, the text will also be of use to practitioners and researchers in a range of applications.
  computer vision video analysis: Computer Vision Using Local Binary Patterns Matti Pietikäinen, Abdenour Hadid, Guoying Zhao, Timo Ahonen, 2011-06-21 The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, biometrics, visual surveillance and video analysis. Computer Vision Using Local Binary Patterns provides a detailed description of the LBP methods and their variants both in spatial and spatiotemporal domains. This comprehensive reference also provides an excellent overview as to how texture methods can be utilized for solving different kinds of computer vision and image analysis problems. Source codes of the basic LBP algorithms, demonstrations, some databases and a comprehensive LBP bibliography can be found from an accompanying web site. Topics include: local binary patterns and their variants in spatial and spatiotemporal domains, texture classification and segmentation, description of interest regions, applications in image retrieval and 3D recognition - Recognition and segmentation of dynamic textures, background subtraction, recognition of actions, face analysis using still images and image sequences, visual speech recognition and LBP in various applications. Written by pioneers of LBP, this book is an essential resource for researchers, professional engineers and graduate students in computer vision, image analysis and pattern recognition. The book will also be of interest to all those who work with specific applications of machine vision.
  computer vision video analysis: Graph-Based Methods in Computer Vision: Developments and Applications Bai, Xiao, 2012-07-31 Computer vision, the science and technology of machines that see, has been a rapidly developing research area since the mid-1970s. It focuses on the understanding of digital input images in many forms, including video and 3-D range data. Graph-Based Methods in Computer Vision: Developments and Applications presents a sampling of the research issues related to applying graph-based methods in computer vision. These methods have been under-utilized in the past, but use must now be increased because of their ability to naturally and effectively represent image models and data. This publication explores current activity and future applications of this fascinating and ground-breaking topic.
  computer vision video analysis: Advanced Methods and Deep Learning in Computer Vision E. R. Davies, Matthew Turk, 2021-11-09 Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses
  computer vision video analysis: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  computer vision video analysis: Computer Vision with SAS Susan Kahler, 2020-07-22 Computer vision is a field of artificial intelligence that trains computers to interpret and understand the visual world. In recent years, computer vision has begun to rival and even surpass human visual abilities in many areas. SAS offers many different solutions to train computers to see by identifying and classifying objects, and several groundbreaking papers have been written to demonstrate these techniques. The papers included in this special collection demonstrate how the latest computer vision tools and techniques can be used to solve a variety of business problems.
  computer vision video analysis: Deep Learning for Computer Vision Jason Brownlee, 2019-04-04 Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.
  computer vision video analysis: Concept-Based Video Retrieval Cees G. M. Snoek, Marcel Worring, 2009 In this paper, we review 300 references on video retrieval, indicating when text-only solutions are unsatisfactory and showing the promising alternatives which are in majority concept-based. Therefore, central to our discussion is the notion of a semantic concept: an objective linguistic description of an observable entity. Specifically, we present our view on how its automated detection, selection under uncertainty, and interactive usage might solve the major scientific problem for video retrieval: the semantic gap. To bridge the gap, we lay down the anatomy of a concept-based video search engine. We present a component-wise decomposition of such an interdisciplinary multimedia system, covering influences from information retrieval, computer vision, machine learning, and human-computer interaction. For each of the components we review state-of-the-art solutions in the literature, each having different characteristics and merits. Because of these differences, we cannot understand the progress in video retrieval without serious evaluation efforts such as carried out in the NIST TRECVID benchmark. We discuss its data, tasks, results, and the many derived community initiatives in creating annotations and baselines for repeatable experiments. We conclude with our perspective on future challenges and opportunities.
  computer vision video analysis: Video Data Analysis Anne Nassauer, Nicolas M. Legewie, 2022-03-17 Video data is transforming the possibilities of social science research. Whether through mobile phone footage, body-worn cameras or public video surveillance, we have access to an ever-expanding pool of data on real-life situations and interactions. This book provides a flexible framework for working with video data and understanding what it says about social life. With examples from a range of real video research projects, the book showcases step-by-step how to analyse any kind of data, including both found and generated videos. It also includes a non-technical discussion of computer vision and its opportunities for social science research. With this book you will be able to: · Complete each step of the research process fully and efficiently, from data collection to management, analysis, and interpretation · Use video data in an ethical and effective way to maximise its impact · Utilise contemporary technology and accessible platforms such as YouTube, Twitter, Tik Tok and Facebook. This book is an ideal toolkit for researchers or postgraduate students across the social sciences working with video data as a part of their research projects. Accessible and practical, is written for qualitative and quantitative researchers, newcomers and experienced scholars. Features include interactive activities for different skill levels and ‘what to read next’ sections to help you engage further with the research mentioned in the book.
  computer vision video analysis: Deep Learning in Computer Vision Mahmoud Hassaballah, Ali Ismail Awad, 2020-03-23 Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
  computer vision video analysis: Feature Detectors and Motion Detection in Video Processing Dey, Nilanjan, Ashour, Amira, Patra, Prasenjit Kr., 2016-10-25 Video is one of the most important forms of multimedia available, as it is utilized for security purposes, to transmit information, promote safety, and provide entertainment. As motion is the most integral element in videos, it is important that motion detection systems and algorithms meet specific requirements to achieve accurate detection of real time events. Feature Detectors and Motion Detection in Video Processing explores innovative methods and approaches to analyzing and retrieving video images. Featuring empirical research and significant frameworks regarding feature detectors and descriptor algorithms, the book is a critical reference source for professionals, researchers, advanced-level students, technology developers, and academicians.
  computer vision video analysis: Computer Vision Simon J. D. Prince, 2012-06-18 A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.
  computer vision video analysis: Machine Learning for Human Motion Analysis: Theory and Practice Wang, Liang, Cheng, Li, Zhao, Guoying, 2009-12-31 This book highlights the development of robust and effective vision-based motion understanding systems, addressing specific vision applications such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval--Provided by publisher.
  computer vision video analysis: Vision with Direction Josef Bigun, 2006-02-09 Image analysis is a computational feat which humans show excellence in, in comp- ison with computers. Yet the list of applications that rely on automatic processing of images has been growing at a fast pace. Biometric authentication by face, ?ngerprint, and iris, online character recognition in cell phones as well as drug design tools are but a few of its benefactors appearing on the headlines. This is, of course, facilitated by the valuable output of the resarch community in the past 30 years. The pattern recognition and computer vision communities that study image analysis have large conferences, which regularly draw 1000 parti- pants. In a way this is not surprising, because much of the human-speci?c activities critically rely on intelligent use of vision. If routine parts of these activities can be automated, much is to be gained in comfort and sustainable development. The - search ?eld could equally be called visualintelligence because it concerns nearly all activities of awake humans. Humans use or rely on pictures or pictorial languages to represent, analyze, and develop abstract metaphors related to nearly every aspect of thinking and behaving, be it science, mathematics, philosopy, religion, music, or emotions. The present volume is an introductory textbook on signal analysis of visual c- putation for senior-level undergraduates or for graduate students in science and - gineering. My modest goal has been to present the frequently used techniques to analyze images in a common framework–directional image processing.
  computer vision video analysis: Low-Rank Models in Visual Analysis Zhouchen Lin, Hongyang Zhang, 2017-06-06 Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems. - Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications - Provides a full and clear explanation of the theory behind the models - Includes detailed proofs in the appendices
  computer vision video analysis: Group and Crowd Behavior for Computer Vision Vittorio Murino, Marco Cristani, Shishir Shah, Silvio Savarese, 2017-04-18 Group and Crowd Behavior for Computer Vision provides a multidisciplinary perspective on how to solve the problem of group and crowd analysis and modeling, combining insights from the social sciences with technological ideas in computer vision and pattern recognition. The book answers many unresolved issues in group and crowd behavior, with Part One providing an introduction to the problems of analyzing groups and crowds that stresses that they should not be considered as completely diverse entities, but as an aggregation of people. Part Two focuses on features and representations with the aim of recognizing the presence of groups and crowds in image and video data. It discusses low level processing methods to individuate when and where a group or crowd is placed in the scene, spanning from the use of people detectors toward more ad-hoc strategies to individuate group and crowd formations. Part Three discusses methods for analyzing the behavior of groups and the crowd once they have been detected, showing how to extract semantic information, predicting/tracking the movement of a group, the formation or disaggregation of a group/crowd and the identification of different kinds of groups/crowds depending on their behavior. The final section focuses on identifying and promoting datasets for group/crowd analysis and modeling, presenting and discussing metrics for evaluating the pros and cons of the various models and methods. This book gives computer vision researcher techniques for segmentation and grouping, tracking and reasoning for solving group and crowd modeling and analysis, as well as more general problems in computer vision and machine learning. - Presents the first book to cover the topic of modeling and analysis of groups in computer vision - Discusses the topics of group and crowd modeling from a cross-disciplinary perspective, using social science anthropological theories translated into computer vision algorithms - Focuses on group and crowd analysis metrics - Discusses real industrial systems dealing with the problem of analyzing groups and crowds
Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic …

Computer | Definition, History, Operating Systems, & Facts | Brita…
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and …

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central …

Computer - Wikipedia
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can …

Computer | Definition, History, Operating Systems, & Facts
A computer is a programmable device for processing, storing, and displaying information. Learn more in this article about modern digital electronic computers and their design, constituent …

What is a Computer?
Feb 6, 2025 · What is a Computer? A computer is a programmable device that stores, retrieves, and processes data. The term "computer" was originally given to humans (human computers) …

Micro Center - Computer & Electronics Retailer - Shop Now
Shop Micro Center for electronics, PCs, laptops, Apple products, and much more. Enjoy in-store pickup, top deals, and expert same-day tech support.

What is a Computer? - GeeksforGeeks
Apr 7, 2025 · A computer is an electronic device that processes, stores, and executes instructions to perform tasks. It includes key components such as the CPU (Central Processing Unit), RAM …

Computer Basics: What is a Computer? - GCFGlobal.org
What is a computer? A computer is an electronic device that manipulates information, or data. It has the ability to store, retrieve, and process data. You may already know that you can use a …

What is a Computer? (Definition & Meaning) - Webopedia
Oct 9, 2024 · A computer is a programmable machine that responds to specific instructions and uses hardware and software to perform tasks. Different types of computers, including …

Computer - Simple English Wikipedia, the free encyclopedia
A computer is a machine that uses electronics to input, process, store, and output data. Data is information such as numbers, words, and lists. Input of data means to read information from a …

Laptop & Desktop Computers - Staples
Buy the computer that fits your exact needs. Choose from laptops, desktops PCs, notebooks, and accessories. Invest in a quality computer for work or personal use.

What is Computer? Definition, Characteristics and Classification
Aug 7, 2024 · A computer is an electronic device wherein we need to input raw data to be processed with a set of programs to produce a desirable output. Computers have the ability to …