California Data Science Companies



  california data science companies: Data Science for Executives Nir Kaldero, 2018-10-12 We are in the 4th industrial revolution; companies need to figure out how to survive. In this exciting revolution, machine intelligence has had a more unprecedented impact on business than the internet, and it's the only path to corporate survival in the future. In Data Science for Executives, Nir Kaldero dispels the myths and confusion surrounding this game-changing technology and provides practical strategies for harnessing its profitable power. This essential tome provides illuminating case studies, important guiding principles, and effective on-the-ground actions for incorporating machine intelligence into your organization and employing it to enhance your business though the wealth of data that flows into your business. Leaders don't have to be scientists to unlock the power of AI technology that is already radically altering the industrial landscape. If you're ready to meet the challenges of this new revolution, this essential guide will help you take your business to the next level.
  california data science companies: Data Science on AWS Chris Fregly, Antje Barth, 2021-04-07 With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
  california data science companies: Florence the Data Scientist and Her Magical Bookmobile Ryan Kelly, 2021-04 Florence the Data Scientist and Her Magical Bookmobile is a picture book for young readers that explores and explains one of today's most important and fastest-growing professions: data science! How can recording and analyzing data for patterns help make predictions about the future? Join Beatrice as she finds out. Beatrice loves four different things: reading, science, dragons, and swings! When a mysterious bookmobile drives down her street, the driver Florence knows exactly what books will delight all the kids in the neighborhood. But how?! Beatrice watches the scene throughout the day to record and analyze each of her friend's responses to Florence's same questions. Is Florence a psychic? Or is there a logical pattern at play? Can Beatrice ensure she answers to get the outcome she craves? Florence the Data Scientist helps young readers (and their parents!) understand the amazing predictive power of recording and analyzing trends and data.
  california data science companies: Data science and digital service delivery in healthcare Koichi Fujiwara, Tetsuharu Nagamoto, Priit Kruus, 2023-02-07
  california data science companies: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.
  california data science companies: Data Science for COVID-19 Utku Kose, Deepak Gupta, Victor Hugo Costa de Albuquerque, Ashish Khanna, 2021-10-22 Data Science for COVID-19, Volume 2: Societal and Medical Perspectives presents the most current and leading-edge research into the applications of a variety of data science techniques for the detection, mitigation, treatment and elimination of the COVID-19 virus. At this point, Cognitive Data Science is the most powerful tool for researchers to fight COVID-19. Thanks to instant data-analysis and predictive techniques, including Artificial Intelligence, Machine Learning, Deep Learning, Data Mining, and computational modeling for processing large amounts of data, recognizing patterns, modeling new techniques, and improving both research and treatment outcomes is now possible. - Provides a leading-edge survey of Data Science techniques and methods for research, mitigation and the treatment of the COVID-19 virus - Integrates various Data Science techniques to provide a resource for COVID-19 researchers and clinicians around the world, including the wide variety of impacts the virus is having on societies and medical practice - Presents insights into innovative, data-oriented modeling and predictive techniques from COVID-19 researchers around the world, including geoprocessing and tracking, lab data analysis, and theoretical views on a variety of technical applications - Includes real-world feedback and user experiences from physicians and medical staff from around the world for medical treatment perspectives, public safety policies and impacts, sociological and psychological perspectives, the effects of COVID-19 in agriculture, economies, and education, and insights on future pandemics
  california data science companies: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
  california data science companies: Applied Univariate, Bivariate, and Multivariate Statistics Using Python Daniel J. Denis, 2021-04-30 Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.
  california data science companies: Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Matt Taddy, 2019-08-23 Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
  california data science companies: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
  california data science companies: Veridical Data Science Bin Yu, Rebecca L. Barter, 2024-10-15 Using real-world data case studies, this innovative and accessible textbook introduces an actionable framework for conducting trustworthy data science. Most textbooks present data science as a linear analytic process involving a set of statistical and computational techniques without accounting for the challenges intrinsic to real-world applications. Veridical Data Science, by contrast, embraces the reality that most projects begin with an ambiguous domain question and messy data; it acknowledges that datasets are mere approximations of reality while analyses are mental constructs. Bin Yu and Rebecca Barter employ the innovative Predictability, Computability, and Stability (PCS) framework to assess the trustworthiness and relevance of data-driven results relative to three sources of uncertainty that arise throughout the data science life cycle: the human decisions and judgment calls made during data collection, cleaning, and modeling. By providing real-world data case studies, intuitive explanations of common statistical and machine learning techniques, and supplementary R and Python code, Veridical Data Science offers a clear and actionable guide for conducting responsible data science. Requiring little background knowledge, this lucid, self-contained textbook provides a solid foundation and principled framework for future study of advanced methods in machine learning, statistics, and data science. Presents the Predictability, Computability, and Stability (PCS) methodology for producing trustworthy data-driven results Teaches how a data science project should be conducted from beginning to end, including extensive discussion of the data scientist's decision-making process Cultivates critical thinking throughout the entire data science life cycle Provides practical examples and illuminating case studies of real-world data analysis problems with associated code, exercises, and solutions Suitable for advanced undergraduate and graduate students, domain scientists, and practitioners
  california data science companies: Unblocked Alison McCauley, 2019-06-17 Understand the Blockchain Opportunity: No Technical Background Required. Remember thedawn of the internet? The advent of mobile and social media? Yet another digital revolution is nowunderway. Like its predecessors, blockchains are about to transform the way we live, work, and play,while disrupting entrenched industries and shattering conventional business models. Move past the hype and equip yourself to forecast how blockchains will change our world and impactyou and your business. Author Alison McCauley helps non-technical executives to understandhow this technology will trigger change, shift the balance of power, and bring competitiveadvantage to those who know how to leverage them. Unblocked explains: Why ignoring this technology exposes you to competitive disruption What this new technology revolution embraces—no technical background required How to prepare your organization to respond to the coming shift
  california data science companies: Directory of California Technology Companies , 2001
  california data science companies: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  california data science companies: Digital Transformation Thomas M. Siebel, 2019-07-09 The legendary Silicon Valley entrepreneur examines how both business and government organizations can harness the power of disruptive technologies. Tom Siebel, the billionaire technologist and founder of Siebel Systems, discusses how four technologies—elastic cloud computing, big data, artificial intelligence, and the internet of things—are fundamentally changing how business and government will operate in the 21st century. While this profound and fast-moving transformation can appear daunting to some, Siebel shows how organizations can not only survive, but thrive in the new digital landscape. In this authoritative yet accessible book, Siebel guides readers through the technologies driving digital transformation, and demonstrates how they can strategically exploit their powerful capabilities. He shows how leading enterprises such as Enel, 3M, Royal Dutch Shell, the U.S. Department of Defense, and others are applying AI and IoT with stunning results.
  california data science companies: Artificial Intelligence in Practice Bernard Marr, 2019-04-15 Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.
  california data science companies: Data Analytics for Business Fenio Annansingh, Joseph Bon Sesay, 2022-04-20 Data analytics underpin our modern data-driven economy. This textbook explains the relevance of data analytics at the firm and industry levels, tracing the evolution and key components of the field, and showing how data analytics insights can be leveraged for business results. The first section of the text covers key topics such as data analytics tools, data mining, business intelligence, customer relationship management, and cybersecurity. The chapters then take an industry focus, exploring how data analytics can be used in particular settings to strengthen business decision-making. A range of sectors are examined, including financial services, accounting, marketing, sport, health care, retail, transport, and education. With industry case studies, clear definitions of terminology, and no background knowledge required, this text supports students in gaining a solid understanding of data analytics and its practical applications. PowerPoint slides, a test bank of questions, and an instructor’s manual are also provided as online supplements. This will be a valuable text for undergraduate level courses in data analytics, data mining, business intelligence, and related areas.
  california data science companies: Fighting Churn with Data Carl S. Gold, 2020-12-22 The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. Summary The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. This hands-on guide is packed with techniques for converting raw data into measurable metrics, testing hypotheses, and presenting findings that are easily understandable to non-technical decision makers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Keeping customers active and engaged is essential for any business that relies on recurring revenue and repeat sales. Customer turnover—or “churn”—is costly, frustrating, and preventable. By applying the techniques in this book, you can identify the warning signs of churn and learn to catch customers before they leave. About the book Fighting Churn with Data teaches developers and data scientists proven techniques for stopping churn before it happens. Packed with real-world use cases and examples, this book teaches you to convert raw data into measurable behavior metrics, calculate customer lifetime value, and improve churn forecasting with demographic data. By following Zuora Chief Data Scientist Carl Gold’s methods, you’ll reap the benefits of high customer retention. What's inside Calculating churn metrics Identifying user behavior that predicts churn Using churn reduction tactics with customer segmentation Applying churn analysis techniques to other business areas Using AI for accurate churn forecasting About the reader For readers with basic data analysis skills, including Python and SQL. About the author Carl Gold (PhD) is the Chief Data Scientist at Zuora, Inc., the industry-leading subscription management platform. Table of Contents: PART 1 - BUILDING YOUR ARSENAL 1 The world of churn 2 Measuring churn 3 Measuring customers 4 Observing renewal and churn PART 2 - WAGING THE WAR 5 Understanding churn and behavior with metrics 6 Relationships between customer behaviors 7 Segmenting customers with advanced metrics PART 3 - SPECIAL WEAPONS AND TACTICS 8 Forecasting churn 9 Forecast accuracy and machine learning 10 Churn demographics and firmographics 11 Leading the fight against churn
  california data science companies: Artificial Intelligence and Machine Learning for EDGE Computing Rajiv Pandey, Sunil Kumar Khatri, Neeraj Kumar Singh, Parul Verma, 2022-04-26 Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alongside Edge Computing. Sections cover the growing number of devices and applications in diversified domains of industry, including gaming, speech recognition, medical diagnostics, robotics and computer vision and how they are being driven by Big Data, Artificial Intelligence, Machine Learning and distributed computing, may it be Cloud Computing or the evolving Fog and Edge Computing paradigms. Challenges covered include remote storage and computing, bandwidth overload due to transportation of data from End nodes to Cloud leading in latency issues, security issues in transporting sensitive medical and financial information across larger gaps in points of data generation and computing, as well as design features of Edge nodes to store and run AI/ML algorithms for effective rendering. - Provides a reference handbook on the evolution of distributed systems, including Cloud, Fog and Edge Computing - Integrates the various Artificial Intelligence and Machine Learning techniques for effective predictions at Edge rather than Cloud or remote Data Centers - Provides insight into the features and constraints in Edge Computing and storage, including hardware constraints and the technological/architectural developments that shall overcome those constraints
  california data science companies: Analytics and Knowledge Management Suliman Hawamdeh, Hsia-Ching Chang, 2018-08-06 The process of transforming data into actionable knowledge is a complex process that requires the use of powerful machines and advanced analytics technique. Analytics and Knowledge Management examines the role of analytics in knowledge management and the integration of big data theories, methods, and techniques into an organizational knowledge management framework. Its chapters written by researchers and professionals provide insight into theories, models, techniques, and applications with case studies examining the use of analytics in organizations. The process of transforming data into actionable knowledge is a complex process that requires the use of powerful machines and advanced analytics techniques. Analytics, on the other hand, is the examination, interpretation, and discovery of meaningful patterns, trends, and knowledge from data and textual information. It provides the basis for knowledge discovery and completes the cycle in which knowledge management and knowledge utilization happen. Organizations should develop knowledge focuses on data quality, application domain, selecting analytics techniques, and on how to take actions based on patterns and insights derived from analytics. Case studies in the book explore how to perform analytics on social networking and user-based data to develop knowledge. One case explores analyze data from Twitter feeds. Another examines the analysis of data obtained through user feedback. One chapter introduces the definitions and processes of social media analytics from different perspectives as well as focuses on techniques and tools used for social media analytics. Data visualization has a critical role in the advancement of modern data analytics, particularly in the field of business intelligence and analytics. It can guide managers in understanding market trends and customer purchasing patterns over time. The book illustrates various data visualization tools that can support answering different types of business questions to improve profits and customer relationships. This insightful reference concludes with a chapter on the critical issue of cybersecurity. It examines the process of collecting and organizing data as well as reviewing various tools for text analysis and data analytics and discusses dealing with collections of large datasets and a great deal of diverse data types from legacy system to social networks platforms.
  california data science companies: Envisioning the Data Science Discipline National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-03-05 The need to manage, analyze, and extract knowledge from data is pervasive across industry, government, and academia. Scientists, engineers, and executives routinely encounter enormous volumes of data, and new techniques and tools are emerging to create knowledge out of these data, some of them capable of working with real-time streams of data. The nation's ability to make use of these data depends on the availability of an educated workforce with necessary expertise. With these new capabilities have come novel ethical challenges regarding the effectiveness and appropriateness of broad applications of data analyses. The field of data science has emerged to address the proliferation of data and the need to manage and understand it. Data science is a hybrid of multiple disciplines and skill sets, draws on diverse fields (including computer science, statistics, and mathematics), encompasses topics in ethics and privacy, and depends on specifics of the domains to which it is applied. Fueled by the explosion of data, jobs that involve data science have proliferated and an array of data science programs at the undergraduate and graduate levels have been established. Nevertheless, data science is still in its infancy, which suggests the importance of envisioning what the field might look like in the future and what key steps can be taken now to move data science education in that direction. This study will set forth a vision for the emerging discipline of data science at the undergraduate level. This interim report lays out some of the information and comments that the committee has gathered and heard during the first half of its study, offers perspectives on the current state of data science education, and poses some questions that may shape the way data science education evolves in the future. The study will conclude in early 2018 with a final report that lays out a vision for future data science education.
  california data science companies: Information Technology - New Generations Shahram Latifi, 2018-04-12 This volume presents a collection of peer-reviewed, scientific articles from the 15th International Conference on Information Technology – New Generations, held at Las Vegas. The collection addresses critical areas of Machine Learning, Networking and Wireless Communications, Cybersecurity, Data Mining, Software Engineering, High Performance Computing Architectures, Computer Vision, Health, Bioinformatics, and Education.
  california data science companies: Tobacco Issues: California's antismoking advertisements and shareholder attempts to stop cigarette advertising United States. Congress. House. Committee on Energy and Commerce. Subcommittee on Transportation and Hazardous Materials, 1990
  california data science companies: Research Handbook in Data Science and Law Vanessa Mak, Eric Tjong Tjin Tai, Anna Berlee, 2024-08-06 This thoroughly updated Research Handbook examines the recent exponential growth of data use in society and its implications for legal research and practice. It explores contemporary research in the field of data science, as well as the operationalization of data for use in healthcare, urban governance and smart household devices, among others.
  california data science companies: Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics Patil, Bhushan, Vohra, Manisha, 2020-10-23 Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.
  california data science companies: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  california data science companies: Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Policy and Global Affairs, Board on Higher Education and Workforce, Committee on the Growth of Computer Science Undergraduate Enrollments, 2018-04-28 The field of computer science (CS) is currently experiencing a surge in undergraduate degree production and course enrollments, which is straining program resources at many institutions and causing concern among faculty and administrators about how best to respond to the rapidly growing demand. There is also significant interest about what this growth will mean for the future of CS programs, the role of computer science in academic institutions, the field as a whole, and U.S. society more broadly. Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments seeks to provide a better understanding of the current trends in computing enrollments in the context of past trends. It examines drivers of the current enrollment surge, relationships between the surge and current and potential gains in diversity in the field, and the potential impacts of responses to the increased demand for computing in higher education, and it considers the likely effects of those responses on students, faculty, and institutions. This report provides recommendations for what institutions of higher education, government agencies, and the private sector can do to respond to the surge and plan for a strong and sustainable future for the field of CS in general, the health of the institutions of higher education, and the prosperity of the nation.
  california data science companies: Roundtable on Data Science Postsecondary Education National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Division on Engineering and Physical Sciences, Board on Science Education, Computer Science and Telecommunications Board, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, 2020-10-02 Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting.
  california data science companies: Steward's Fork James K. Agee, 2007-07-05 Steward's Fork provides us with a comprehensive and highly readable guide to the natural and human history of the complex and insular Klamath Mountain Region, all done from a wonderfully personal perspective. Agee's love of this land, its waters, and its people is obvious; and this affection, combined with his lifetime of ecological study, brings great credibility to his perspectives on its future stewardship. An essential read for anyone interested in the natural resources, peoples, and future of the Klamath Mountains.—Jerry F. Franklin, coeditor of Towards Forest Sustainability and coauthor of Conserving Forest Biodiversity Steward's Fork brilliantly weaves the geological, biological and cultural histories of the Klamath Mountains into a compelling account of place. In a captivating and easy to read style, Agee demonstrates how place-based ecosystem management can help sustain the diverse needs of the region's unique land and people.—Michael P. Dombeck, Chief Emeritus, U.S. Forest Service and coauthor of From Conquest to Conservation
  california data science companies: 30-Second Data Science Liberty Vittert, 2020-09-29 30-Second Data Science covers 50 key elements in the field of data-gathering from basic to ethics, explained clearly and concisely.
  california data science companies: Growth Through Innovation Roman Boutellier, Mareike Heinzen, 2014-02-10 Capitalism produced entrepreneurs and property rights, the two basic pillars of innovation and growth. As the speed of technology is steadily increasing only radical innovation can be the name of the game. This book discusses technology and innovation trends by looking into historical examples and telling the latest business stories. It opens the discourse about pirates, pioneers, innovators and imitators; proposes the framework of dominant, science-driven and high-tech industry for innovation management and gives insights into intellectual property rights, industrial designs and technical risk management. Finally, it offers 8 important innovation principles for technology driven enterprises that have turned out to have a big effect on the outcome – and in the end on growth.
  california data science companies: Data Science in Context Alfred Z. Spector, Peter Norvig, Chris Wiggins, Jeannette M. Wing, 2022-10-20 Four leading experts convey the promise of data science and examine challenges in achieving its benefits and mitigating some harms.
  california data science companies: Adopting .NET 5 Hammad Arif, Habib Qureshi, 2020-12-30 A practical guide to building and upgrading new and legacy applications on cloud-native platforms using architectural best practices with .NET 5, C# 9, microservices, and ML.NET Key FeaturesGet up to speed with .NET 5's new improvements and featuresDiscover how to improve existing code design and enhance software maintainabilityExplore explanations and techniques for making programs easier to understand and changeBook Description .NET 5 is the unification of all .NET technologies in a single framework that can run on all platforms and provide a consistent experience to developers, regardless of the device, operating system (OS), or cloud platform they choose. By updating to .NET 5, you can build software that can quickly adapt to the rapidly changing demands of modern consumers and stay up to date on the latest technology trends in .NET. This book provides a comprehensive overview of all the technologies that will form the future landscape of .NET using practical examples based on real-world scenarios, along with best practices to help you migrate from legacy platforms. You’ll start by learning about Microsoft’s vision and rationale for the unification of the platforms. Then, you’ll cover all the new language enhancements in C# 9. As you advance, you’ll find out how you can align yourself with modern technology trends, focusing on everything from microservices to orchestrated containerized deployments. Finally, you’ll learn how to effectively integrate machine learning in .NET code. By the end of this .NET book, you’ll have gained a thorough understanding of the .NET 5 platform, together with a readiness to adapt to future .NET release cycles, and you’ll be able to make architectural decisions about porting legacy systems and code bases to a newer platform. What you will learnExplore the key performance improvement areas when migrating to modern architecturesUnderstand app design and development using .NET 5Discover how to shift from legacy to modern application design using microservices and cloud-native architectureExplore common migration pitfalls and make the right decisions in situations where multiple options are availableUnderstand the process of deploying .NET 5 code on serverless and containerized hosts, along with its benefitsFind out what ML.NET has to offer and build .NET apps that use machine learning servicesWho this book is for This book is for experienced developers as well as software architects who are looking to gain knowledge of the new features and capabilities of .NET 5, along with guidance on modern architectural patterns. If you’re a developer who has previously worked on .NET, WPF, ASP.NET, Entity Framework, or other popular .NET libraries, this book will help you understand the migration process for their modern counterparts. Although experience with .NET Core is not required, working knowledge of the C# language and .NET framework is assumed.
  california data science companies: Computational Intelligence and Deep Learning Methods for Neuro-rehabilitation Applications D. Jude Hemanth, 2023-11-14 Computational Intelligence and Deep Learning Methods for Neuro-rehabilitation Applications explores the different possibilities of providing AI based neuro-rehabilitation methods to treat neurological disorders. This book provides in-depth knowledge on the challenges and solutions associated with the different varieties of neuro-rehabilitation through the inclusion of case studies and real-time scenarios in different geographical locations. Beginning with an overview of neuro-rehabilitation applications, the book discusses the role of machine learning methods in brain function grading for adults with Mild Cognitive Impairment, Brain Computer Interface for post-stroke patients, developing assistive devices for paralytic patients, and cognitive treatment for spinal cord injuries. Topics also include AI-based video games to improve the brain performances in children with autism and ADHD, deep learning approaches and magnetoencephalography data for limb movement, EEG signal analysis, smart sensors, and the application of robotic concepts for gait control. - Incorporates artificial intelligence techniques into neuro-rehabilitation and presents novel ideas for this process - Provides in-depth case studies and state-of-the-art methods, along with the experimental study - Presents a block diagram based complete set-up in each chapter to help in real-time implementation
  california data science companies: Statistics for Data Science and Analytics Peter C. Bruce, Peter Gedeck, Janet Dobbins, 2024-11-05 Introductory statistics textbook with a focus on data science topics such as prediction, correlation, and data exploration Statistics for Data Science and Analytics is a comprehensive guide to statistical analysis using Python, presenting important topics useful for data science such as prediction, correlation, and data exploration. The authors provide an introduction to statistical science and big data, as well as an overview of Python data structures and operations. A range of statistical techniques are presented with their implementation in Python, including hypothesis testing, probability, exploratory data analysis, categorical variables, surveys and sampling, A/B testing, and correlation. The text introduces binary classification, a foundational element of machine learning, validation of statistical models by applying them to holdout data, and probability and inference via the easy-to-understand method of resampling and the bootstrap instead of using a myriad of “kitchen sink” formulas. Regression is taught both as a tool for explanation and for prediction. This book is informed by the authors’ experience designing and teaching both introductory statistics and machine learning at Statistics.com. Each chapter includes practical examples, explanations of the underlying concepts, and Python code snippets to help readers apply the techniques themselves. Statistics for Data Science and Analytics includes information on sample topics such as: Int, float, and string data types, numerical operations, manipulating strings, converting data types, and advanced data structures like lists, dictionaries, and sets Experiment design via randomizing, blinding, and before-after pairing, as well as proportions and percents when handling binary data Specialized Python packages like numpy, scipy, pandas, scikit-learn and statsmodels—the workhorses of data science—and how to get the most value from them Statistical versus practical significance, random number generators, functions for code reuse, and binomial and normal probability distributions Written by and for data science instructors, Statistics for Data Science and Analytics is an excellent learning resource for data science instructors prescribing a required intro stats course for their programs, as well as other students and professionals seeking to transition to the data science field.
  california data science companies: Data Mining and Exploration Chong Ho Alex Yu, 2022-10-27 This book introduces both conceptual and procedural aspects of cutting-edge data science methods, such as dynamic data visualization, artificial neural networks, ensemble methods, and text mining. There are at least two unique elements that can set the book apart from its rivals. First, most students in social sciences, engineering, and business took at least one class in introductory statistics before learning data science. However, usually these courses do not discuss the similarities and differences between traditional statistics and modern data science; as a result learners are disoriented by this seemingly drastic paradigm shift. In reaction, some traditionalists reject data science altogether while some beginning data analysts employ data mining tools as a “black box”, without a comprehensive view of the foundational differences between traditional and modern methods (e.g., dichotomous thinking vs. pattern recognition, confirmation vs. exploration, single method vs. triangulation, single sample vs. cross-validation etc.). This book delineates the transition between classical methods and data science (e.g. from p value to Log Worth, from resampling to ensemble methods, from content analysis to text mining etc.). Second, this book aims to widen the learner's horizon by covering a plethora of software tools. When a technician has a hammer, every problem seems to be a nail. By the same token, many textbooks focus on a single software package only, and consequently the learner tends to fit the problem with the tool, but not the other way around. To rectify the situation, a competent analyst should be equipped with a tool set, rather than a single tool. For example, when the analyst works with crucial data in a highly regulated industry, such as pharmaceutical and banking, commercial software modules (e.g., SAS) are indispensable. For a mid-size and small company, open-source packages such as Python would come in handy. If the research goal is to create an executive summary quickly, the logical choice is rapid model comparison. If the analyst would like to explore the data by asking what-if questions, then dynamic graphing in JMP Pro is a better option. This book uses concrete examples to explain the pros and cons of various software applications.
  california data science companies: Data Science in R Deborah Nolan, Duncan Temple Lang, 2015-04-21 Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and ComputationData Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts
  california data science companies: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
  california data science companies: Data Science for Genomics Amit Kumar Tyagi, Ajith Abraham, 2022-11-27 Data Science for Genomics presents the foundational concepts of data science as they pertain to genomics, encompassing the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, suggesting conclusions and supporting decision-making. Sections cover Data Science, Machine Learning, Deep Learning, data analysis, and visualization techniques. The authors then present the fundamentals of Genomics, Genetics, Transcriptomes and Proteomes as basic concepts of molecular biology, along with DNA and key features of the human genome, as well as the genomes of eukaryotes and prokaryotes. Techniques that are more specifically used for studying genomes are then described in the order in which they are used in a genome project, including methods for constructing genetic and physical maps. DNA sequencing methodology and the strategies used to assemble a contiguous genome sequence and methods for identifying genes in a genome sequence and determining the functions of those genes in the cell. Readers will learn how the information contained in the genome is released and made available to the cell, as well as methods centered on cloning and PCR. - Provides a detailed explanation of data science concepts, methods and algorithms, all reinforced by practical examples that are applied to genomics - Presents a roadmap of future trends suitable for innovative Data Science research and practice - Includes topics such as Blockchain technology for securing data at end user/server side - Presents real world case studies, open issues and challenges faced in Genomics, including future research directions and a separate chapter for Ethical Concerns
  california data science companies: Seismotectonics of the Central California Coast Ranges Ina B. Alterman, Richard B. McMullen, Lloyd S. Cluff, D. Burton Slemmons, 1994-01-01 Presents 12 papers from the 1987 GSA Symposium on the Seismotectonics of the Central California Coast Ranges. Topics include the tectonic setting of the offshore and onshore Santa Maria Basin and surrounding regions, the San Simeon/Hosgri fault system, soil stratigraphy techniques, geophysical instr
California - Wikipedia
California (/ ˌ k æ l ɪ ˈ f ɔːr n j ə /) is a state in the Western United States that lies on the Pacific Coast. It borders Oregon to the north, Nevada and Arizona to the east, and shares an …

California State Portal | CA.gov
CA.gov is the official website for the State of California. You can find and access California services, resources, and more.

California | Flag, Facts, Maps, Capital, Cities, & Destinations ...
2 days ago · California, constituent state of the United States of America. It was admitted as the 31st state of the union on September 9, 1850, and by the early 1960s it was the most populous …

Visit California - Official Travel & Tourism Website
Find things to do, places to visit, and experiences to explore at Visit California, the Golden State’s official tourism site. Learn about national parks, hotels, restaurants, beaches, mountains, cities, …

California Maps & Facts - World Atlas
May 16, 2024 · California, nicknamed the Golden State, sits on the United States Western coast. It borders the states of Arizona , Nevada , and Oregon . Additionally, it extends southward to …

Protests live updates: Marines make 1st temporary detention in LA
Jun 8, 2025 · Tensions are escalating between President Donald Trump and California Gov. Gavin Newsom as protests against Immigration and Customs Enforcement continue to grip Los Angeles …

Best Places to Visit in California for 2025 - U.S. News Travel
Apr 22, 2025 · Embark on an adventure with our guide to California's best places to visit. Experience stunning national parks, vibrant cities and serene beaches.

California | State Facts & History - Infoplease
Nov 30, 2023 · California, often referred to as the "Golden State," is known for a variety of attractions and landmarks. This includes its stunning Pacific coastline, the glamorous Hollywood …

California State Information - Symbols, Capital, Constitution, Flags ...
Blank Outline Maps: Find printable blank map of the State of California, without names, so you can quiz yourself on important locations, abbreviations, or state capital. City Guide: Visit California …

California - Simple English Wikipedia, the free encyclopedia
California, officially the State of California, is a state in the western part of the United States, along the Pacific Ocean. California is known for its Mexican food , Mexican culture, Cholo subculture …

California - Wikipedia
California (/ ˌ k æ l ɪ ˈ f ɔːr n j ə /) is a state in the Western United States that lies on the Pacific Coast. It borders Oregon to the north, Nevada and Arizona to the east, and shares an …

California State Portal | CA.gov
CA.gov is the official website for the State of California. You can find and access California services, resources, and more.

California | Flag, Facts, Maps, Capital, Cities, & Destinations ...
2 days ago · California, constituent state of the United States of America. It was admitted as the 31st state of the union on September 9, 1850, and by the early 1960s it was the most …

Visit California - Official Travel & Tourism Website
Find things to do, places to visit, and experiences to explore at Visit California, the Golden State’s official tourism site. Learn about national parks, hotels, restaurants, beaches, mountains, …

California Maps & Facts - World Atlas
May 16, 2024 · California, nicknamed the Golden State, sits on the United States Western coast. It borders the states of Arizona , Nevada , and Oregon . Additionally, it extends southward to …

Protests live updates: Marines make 1st temporary detention in LA
Jun 8, 2025 · Tensions are escalating between President Donald Trump and California Gov. Gavin Newsom as protests against Immigration and Customs Enforcement continue to grip …

Best Places to Visit in California for 2025 - U.S. News Travel
Apr 22, 2025 · Embark on an adventure with our guide to California's best places to visit. Experience stunning national parks, vibrant cities and serene beaches.

California | State Facts & History - Infoplease
Nov 30, 2023 · California, often referred to as the "Golden State," is known for a variety of attractions and landmarks. This includes its stunning Pacific coastline, the glamorous …

California State Information - Symbols, Capital, Constitution, Flags ...
Blank Outline Maps: Find printable blank map of the State of California, without names, so you can quiz yourself on important locations, abbreviations, or state capital. City Guide: Visit …

California - Simple English Wikipedia, the free encyclopedia
California, officially the State of California, is a state in the western part of the United States, along the Pacific Ocean. California is known for its Mexican food , Mexican culture, Cholo subculture …