Advertisement
can ai do math: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
can ai do math: Machine Intelligence in Design Automation Rohit Sharma, 2018-03-13 This book presents a hands-on approach for solving electronic design automation problems with modern machine intelligence techniques by including step-by-step development of commercial grade design applications including resistance estimation, capacitance estimation, cell classification and others using dataset extracted from designs at 20nm. It walks the reader step by step in building solution flow for EDA problems with Python and Tensorflow.Intended audience includes design automation engineers, managers, executives, research professionals, graduate students, Machine learning enthusiasts, EDA and CAD developers, mentors, and the merely inquisitive. It is organized to serve as a compendium to a beginner, a ready reference to intermediate and source for an expert. |
can ai do math: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
can ai do math: How Not to Be Wrong Jordan Ellenberg, 2014-05-29 A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description. |
can ai do math: Linear Algebra and Learning from Data Gilbert Strang, 2019-01-31 Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation. |
can ai do math: Research Directions in Computational Mechanics National Research Council, Division on Engineering and Physical Sciences, Board on Manufacturing and Engineering Design, Commission on Engineering and Technical Systems, U.S. National Committee on Theoretical and Applied Mechanics, 1991-02-01 Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States. |
can ai do math: Supervised Learning with Quantum Computers Maria Schuld, Francesco Petruccione, 2018-08-30 Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices. |
can ai do math: Calculus Made Easy Silvanus P. Thompson, Martin Gardner, 2014-03-18 Calculus Made Easy by Silvanus P. Thompson and Martin Gardner has long been the most popular calculus primer. This major revision of the classic math text makes the subject at hand still more comprehensible to readers of all levels. With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader. |
can ai do math: Deep Learning and the Game of Go Kevin Ferguson, Max Pumperla, 2019-01-06 Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning |
can ai do math: Behavioral Mathematics for Game AI Dave Mark, 2009 Human behavior is never an exact science, making the design and programming of artificial intelligence that seeks to replicate human behavior difficult. Usually, the answers cannot be found in sterile algorithms that are often the focus of artificial intelligence programming. However, by analyzing why people behave the way we do, we can break down the process into increasingly smaller components. We can model many of those individual components in the language of logic and mathematics and then reassemble them into larger, more involved decision-making processes. Drawing from classical game theory, Behavioral Mathematics for Game AI covers both the psychological foundations of human decisions and the mathematical modeling techniques that AI designers and programmers can use to replicate them. With examples from both real life and game situations, you'll explore topics such as utility, the fallacy of rational behavior, and the inconsistencies and contradictions that human behavior often exhibits. You'll examine various ways of using statistics, formulas, and algorithms to create believable simulations and to model these dynamic, realistic, and interesting behaviors in video games. Finally, you'll be introduced to a number of tools you can use in conjunction with standard AI algorithms to make it easier to utilize the mathematical models. |
can ai do math: The Creativity Code Marcus Du Sautoy, 2020-03-03 “A brilliant travel guide to the coming world of AI.” —Jeanette Winterson What does it mean to be creative? Can creativity be trained? Is it uniquely human, or could AI be considered creative? Mathematical genius and exuberant polymath Marcus du Sautoy plunges us into the world of artificial intelligence and algorithmic learning in this essential guide to the future of creativity. He considers the role of pattern and imitation in the creative process and sets out to investigate the programs and programmers—from Deep Mind and the Flow Machine to Botnik and WHIM—who are seeking to rival or surpass human innovation in gaming, music, art, and language. A thrilling tour of the landscape of invention, The Creativity Code explores the new face of creativity and the mysteries of the human code. “As machines outsmart us in ever more domains, we can at least comfort ourselves that one area will remain sacrosanct and uncomputable: human creativity. Or can we?...In his fascinating exploration of the nature of creativity, Marcus du Sautoy questions many of those assumptions.” —Financial Times “Fascinating...If all the experiences, hopes, dreams, visions, lusts, loves, and hatreds that shape the human imagination amount to nothing more than a ‘code,’ then sooner or later a machine will crack it. Indeed, du Sautoy assembles an eclectic array of evidence to show how that’s happening even now.” —The Times |
can ai do math: A Thousand Brains Jeff Hawkins, 2021-03-02 A bestselling author, neuroscientist, and computer engineer unveils a theory of intelligence that will revolutionize our understanding of the brain and the future of AI. For all of neuroscience's advances, we've made little progress on its biggest question: How do simple cells in the brain create intelligence? Jeff Hawkins and his team discovered that the brain uses maplike structures to build a model of the world—not just one model, but hundreds of thousands of models of everything we know. This discovery allows Hawkins to answer important questions about how we perceive the world, why we have a sense of self, and the origin of high-level thought. A Thousand Brains heralds a revolution in the understanding of intelligence. It is a big-think book, in every sense of the word. One of the Financial Times' Best Books of 2021 One of Bill Gates' Five Favorite Books of 2021 |
can ai do math: Doing Math with Python Amit Saha, 2015-08-01 Doing Math with Python shows you how to use Python to delve into high school–level math topics like statistics, geometry, probability, and calculus. You’ll start with simple projects, like a factoring program and a quadratic-equation solver, and then create more complex projects once you’ve gotten the hang of things. Along the way, you’ll discover new ways to explore math and gain valuable programming skills that you’ll use throughout your study of math and computer science. Learn how to: –Describe your data with statistics, and visualize it with line graphs, bar charts, and scatter plots –Explore set theory and probability with programs for coin flips, dicing, and other games of chance –Solve algebra problems using Python’s symbolic math functions –Draw geometric shapes and explore fractals like the Barnsley fern, the Sierpinski triangle, and the Mandelbrot set –Write programs to find derivatives and integrate functions Creative coding challenges and applied examples help you see how you can put your new math and coding skills into practice. You’ll write an inequality solver, plot gravity’s effect on how far a bullet will travel, shuffle a deck of cards, estimate the area of a circle by throwing 100,000 darts at a board, explore the relationship between the Fibonacci sequence and the golden ratio, and more. Whether you’re interested in math but have yet to dip into programming or you’re a teacher looking to bring programming into the classroom, you’ll find that Python makes programming easy and practical. Let Python handle the grunt work while you focus on the math. Uses Python 3 |
can ai do math: Linear Algebra and Optimization for Machine Learning Charu C. Aggarwal, 2020-05-13 This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning. |
can ai do math: Shape Jordan Ellenberg, 2021-05-25 An instant New York Times Bestseller! “Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning.” —The New York Times From the New York Times-bestselling author of How Not to Be Wrong—himself a world-class geometer—a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word geometrycomes from the Greek for measuring the world. If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how. |
can ai do math: The Math of Life and Death Kit Yates, 2021-04-27 Few of us really appreciate the full power of math--the extent to which its influence is not only in every office and every home, but also in every courtroom and hospital ward. In this ... book, Kit Yates explores the true stories of life-changing events in which the application--or misapplication--of mathematics has played a critical role: patients crippled by faulty genes and entrepreneurs bankrupted by faulty algorithms; innocent victims of miscarriages of justice; and the unwitting victims of software glitches--Publisher marketing. |
can ai do math: Foundations of Machine Learning, second edition Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, 2018-12-25 A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition. |
can ai do math: Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016-11-10 An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors. |
can ai do math: Pattern Theory David Mumford, Agnès Desolneux, 2010-08-09 Pattern theory is a distinctive approach to the analysis of all forms of real-world signals. At its core is the design of a large variety of probabilistic models whose samples reproduce the look and feel of the real signals, their patterns, and their variability. Bayesian statistical inference then allows you to apply these models in the analysis o |
can ai do math: Machine Learning Math ML and AI Academy, 2021-02-14 !! 55% OFF for Bookstores!! NOW at 29,95 instead of 39.95 !! Buy it NOW and let your customers get addicted to this awesome book! |
can ai do math: Visual Group Theory Nathan Carter, 2021-06-08 Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory. |
can ai do math: Multivariable Mathematics Theodore Shifrin, 2004-01-26 Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty. |
can ai do math: Hands-On Mathematics for Deep Learning Jay Dawani, 2020-06-12 A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook Description Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL. What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is for This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required. |
can ai do math: Weapons of Math Destruction Cathy O'Neil, 2016 A former Wall Street quantitative analyst sounds an alarm on mathematical modeling, a pervasive new force in society that threatens to undermine democracy and widen inequality,--NoveList. |
can ai do math: Perturbations, Optimization, and Statistics Tamir Hazan, George Papandreou, Daniel Tarlow, 2017-09-22 A description of perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees. In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview. Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks. |
can ai do math: Algorithms Are Not Enough Herbert L. Roitblat, 2020-10-13 Why a new approach is needed in the quest for general artificial intelligence. Since the inception of artificial intelligence, we have been warned about the imminent arrival of computational systems that can replicate human thought processes. Before we know it, computers will become so intelligent that humans will be lucky to kept as pets. And yet, although artificial intelligence has become increasingly sophisticated—with such achievements as driverless cars and humanless chess-playing—computer science has not yet created general artificial intelligence. In Algorithms Are Not Enough, Herbert Roitblat explains how artificial general intelligence may be possible and why a robopocalypse is neither imminent, nor likely. Existing artificial intelligence, Roitblat shows, has been limited to solving path problems, in which the entire problem consists of navigating a path of choices—finding specific solutions to well-structured problems. Human problem-solving, on the other hand, includes problems that consist of ill-structured situations, including the design of problem-solving paths themselves. These are insight problems, and insight is an essential part of intelligence that has not been addressed by computer science. Roitblat draws on cognitive science, including psychology, philosophy, and history, to identify the essential features of intelligence needed to achieve general artificial intelligence. Roitblat describes current computational approaches to intelligence, including the Turing Test, machine learning, and neural networks. He identifies building blocks of natural intelligence, including perception, analogy, ambiguity, common sense, and creativity. General intelligence can create new representations to solve new problems, but current computational intelligence cannot. The human brain, like the computer, uses algorithms; but general intelligence, he argues, is more than algorithmic processes. |
can ai do math: Rough Draft Math Amanda Jansen, 2023-10-10 Talking and writing about unfinished ideas is vital to learning mathematics, but most students only speak up when they think they have the right answer - especially middle school and high school students. Amanda Jansen and her collaborating teachers have developed a breakthrough approach to address this challenge. In Rough Draft Math: Revising to Learn, Jansen shares the power of infusing math class with the spirit of revision so that students feel comfortable thinking aloud as they problem-solve rather than talking only to perform right answers. Creating a Community of Learners: As part of the rough draft framework, a class of students becomes an equitable and inclusive community of thinkers, one where students feel safe to engage in discourse while developing mathematical competency and confidence Practical Application of Innovative Ideas: This book includes specific teaching techniques and a range of classroom vignettes showing rough draft math in action within a student-centered teaching approach. Children can develop solutions at their own pace and share thought processes behind their conclusions Classroom Tested: Jansen has developed the concept of rough draft math in collaboration with a diverse group of dynamic and reflective teachers. Rough Draft Math provides a blueprint for educators to allow free-thinking discussion while maintaining the mathematical learning goalsRough Draft Math, Jansen shows how to create an energetic classroom culture where students readily participate and share their evolving understanding while engaging in math talk, collaborative problem solving, and ongoing revision of ideas. ' |
can ai do math: Understanding Machine Learning Shai Shalev-Shwartz, Shai Ben-David, 2014-05-19 Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage. |
can ai do math: Artificial Intelligence and Scientific Method Donald Gillies, 1996-09-05 Artificial Intelligence and Scientific Method examines the remarkable advances made in the field of AI over the past twenty years, discussing their profound implications for philosophy. Taking a clear, non-technical approach, Donald Gillies shows how current views on scientific method are challenged by this recent research, and suggests a new framework for the study of logic. Finally, he draws on work by such seminal thinkers as Bacon, Gödel, Popper, Penrose, and Lucas, to address the hotly contested question of whether computers might become intellectually superior to human beings. |
can ai do math: What's the Use? Ian Stewart, 2021-08-17 See the world in a completely new way as an esteemed mathematician shows how math powers the world—from technology to health care and beyond. Almost all of us have sat in a math class, wondering when we'd ever need to know how to find the roots of a polynomial or graph imaginary numbers. And in one sense, we were right: if we needed to, we'd use a computer. But as Ian Stewart argues in What's the Use?, math isn't just about boring computations. Rather, it offers us new and profound insights into our world, allowing us to accomplish feats as significant as space exploration and organ donation. From the trigonometry that keeps a satellite in orbit to the prime numbers used by the world's most advanced security systems to the imaginary numbers that enable augmented reality, math isn't just relevant to our lives. It is the very fabric of our existence. |
can ai do math: Math for Deep Learning Ronald T. Kneusel, 2021-12-07 Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta. |
can ai do math: Foundations of Analysis Joseph L. Taylor, 2012 Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover. |
can ai do math: Mathematics without Apologies Michael Harris, 2017-05-30 An insightful reflection on the mathematical soul What do pure mathematicians do, and why do they do it? Looking beyond the conventional answers—for the sake of truth, beauty, and practical applications—this book offers an eclectic panorama of the lives and values and hopes and fears of mathematicians in the twenty-first century, assembling material from a startlingly diverse assortment of scholarly, journalistic, and pop culture sources. Drawing on his personal experiences and obsessions as well as the thoughts and opinions of mathematicians from Archimedes and Omar Khayyám to such contemporary giants as Alexander Grothendieck and Robert Langlands, Michael Harris reveals the charisma and romance of mathematics as well as its darker side. In this portrait of mathematics as a community united around a set of common intellectual, ethical, and existential challenges, he touches on a wide variety of questions, such as: Are mathematicians to blame for the 2008 financial crisis? How can we talk about the ideas we were born too soon to understand? And how should you react if you are asked to explain number theory at a dinner party? Disarmingly candid, relentlessly intelligent, and richly entertaining, Mathematics without Apologies takes readers on an unapologetic guided tour of the mathematical life, from the philosophy and sociology of mathematics to its reflections in film and popular music, with detours through the mathematical and mystical traditions of Russia, India, medieval Islam, the Bronx, and beyond. |
can ai do math: The Math of Neural Networks Michael Taylor, 2017-10-04 There are many reasons why neural networks fascinate us and have captivated headlines in recent years. They make web searches better, organize photos, and are even used in speech translation. Heck, they can even generate encryption. At the same time, they are also mysterious and mind-bending: how exactly do they accomplish these things ? What goes on inside a neural network?On a high level, a network learns just like we do, through trial and error. This is true regardless if the network is supervised, unsupervised, or semi-supervised. Once we dig a bit deeper though, we discover that a handful of mathematical functions play a major role in the trial and error process. It also becomes clear that a grasp of the underlying mathematics helps clarify how a network learns. In the following chapters we will unpack the mathematics that drive a neural network. To do this, we will use a feedforward network as our model and follow input as it moves through the network. |
can ai do math: Understanding Cognitive Psychology Dawson Coffey, 2019-06-05 Cognitive psychology is the study of the mental processes that affect behavior. Attention, memory, perception, language acquisition and metacognition are some of the mental processes that are studied under this field. It involves conducting psychological experiments with human subjects with the aim of gaining insights into how the human mind absorbs, processes and functions based on the inputs received from the outer world. Such studies are incorporated in applied domains of educational psychology, personality psychology, social psychology, developmental psychology, abnormal psychology and economics. This domain of psychology is closely related to applied psychology. This book is compiled in such a manner, that it will provide in-depth knowledge about the theory and practice of cognitive psychology. It unfolds the innovative aspects of this field, which will be crucial for the holistic understanding of the subject matter. This book, with its detailed analyses and data, will prove immensely beneficial to professionals and students involved in this area at various levels. |
can ai do math: The Princeton Companion to Mathematics Timothy Gowers, June Barrow-Green, Imre Leader, 2010-07-18 The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger |
can ai do math: What If? Randall Munroe, 2014 From the creator of the wildly popular webcomic xkcd, hilarious and informative answers to important questions you probably never thought to ask Millions of people visit xkcd.com each week to read Randall Munroe's iconic webcomic. His stick-figure drawings about science, technology, language, and love have an enormous, dedicated following, as do his deeply researched answers to his fans' strangest questions. The queries he receives range from merely odd to downright diabolical: - What if I took a swim in a spent-nuclear-fuel pool? - Could you build a jetpack using downward-firing machine guns? - What if a Richter 15 earthquake hit New York City? - Are fire tornadoes possible? His responses are masterpieces of clarity and wit, gleefully and accurately explaining everything from the relativistic effects of a baseball pitched at near the speed of light to the many horrible ways you could die while building a periodic table out of all the actual elements. The book features new and never-before-answered questions, along with the most popular answers from the xkcd website. What If? is an informative feast for xkcd fans and anyone who loves to ponder the hypothetical. |
can ai do math: Probability Inequalities Zhengyan Lin, Zhidong Bai, 2011-05-30 Inequality has become an essential tool in many areas of mathematical research, for example in probability and statistics where it is frequently used in the proofs. Probability Inequalities covers inequalities related with events, distribution functions, characteristic functions, moments and random variables (elements) and their sum. The book shall serve as a useful tool and reference for scientists in the areas of probability and statistics, and applied mathematics. Prof. Zhengyan Lin is a fellow of the Institute of Mathematical Statistics and currently a professor at Zhejiang University, Hangzhou, China. He is the prize winner of National Natural Science Award of China in 1997. Prof. Zhidong Bai is a fellow of TWAS and the Institute of Mathematical Statistics; he is a professor at the National University of Singapore and Northeast Normal University, Changchun, China. |
can ai do math: Probabilistic Machine Learning Kevin P. Murphy, 2022-03-01 A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach. |
can ai do math: Elements of Information Theory Thomas M. Cover, Joy A. Thomas, 2012-11-28 The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications. |
Canva: Visual Suite for Everyone
Educational organizations and nonprofits can enjoy premium Canva features for free. Templates for absolutely anything Customize an office template, or design something more personal, like …
Canva Free | Design anything, together and for free
Canva is always free for every individual. However, if you want to unlock premium features, individuals can upgrade to Canva Pro to easily create professional designs and content.
Free templates - Canva
Explore thousands of beautiful free templates. With Canva's drag and drop feature, you can customize your design for any occasion in just a few clicks.
Create beautiful graphics with Canva
Create anything in a snap, from presentations and logos to social media posts. Get inspired and see what you can do on Canva, no design skills or experience required. Start designing now
Canva Pro | Your all-in-one design solution
Auto-generate captions you can edit, animate, and style your way. Try Captions (opens in a new tab or window) Pro. Premium content. Access top-quality video, audio, and graphics from …
Canva: una Suite Visual para todo el mundo
Canva es una herramienta online de diseño gráfico de uso gratuito. Utilízala para crear publicaciones para redes sociales, presentaciones, carteles, vídeos, logos y mucho más.
Canva Create
Catch inspiring speakers, can’t-miss product workshops, and unforgettable moments.
Draw: Free Online Drawing Tool | Canva
Unleash your creativity with Draw, Canva’s free drawing tool. Draw lets you add customized drawings and graphics to your designs, so they stand out from the crowd. Or, you can use it to …
Canva: um Kit de Criação Visual para todo mundo
O Canva é uma ferramenta gratuita de design gráfico online que você pode usar para criar posts para redes sociais, apresentações, cartazes, vídeos, logotipos e muito mais.
Free printable resume templates you can customize | Canva
Land your dream job with captivating CVs you can professionally customize to reflect your true potential with Canva's free resume templates and easy-to-use design editor.
Canva: Visual Suite for Everyone
Educational organizations and nonprofits can enjoy premium Canva features for free. Templates for absolutely anything Customize an office template, or design something more personal, like …
Canva Free | Design anything, together and for free
Canva is always free for every individual. However, if you want to unlock premium features, individuals can upgrade to Canva Pro to easily create professional designs and content.
Free templates - Canva
Explore thousands of beautiful free templates. With Canva's drag and drop feature, you can customize your design for any occasion in just a few clicks.
Create beautiful graphics with Canva
Create anything in a snap, from presentations and logos to social media posts. Get inspired and see what you can do on Canva, no design skills or experience required. Start designing now
Canva Pro | Your all-in-one design solution
Auto-generate captions you can edit, animate, and style your way. Try Captions (opens in a new tab or window) Pro. Premium content. Access top-quality video, audio, and graphics from …
Canva: una Suite Visual para todo el mundo
Canva es una herramienta online de diseño gráfico de uso gratuito. Utilízala para crear publicaciones para redes sociales, presentaciones, carteles, vídeos, logos y mucho más.
Canva Create
Catch inspiring speakers, can’t-miss product workshops, and unforgettable moments.
Draw: Free Online Drawing Tool | Canva
Unleash your creativity with Draw, Canva’s free drawing tool. Draw lets you add customized drawings and graphics to your designs, so they stand out from the crowd. Or, you can use it to …
Canva: um Kit de Criação Visual para todo mundo
O Canva é uma ferramenta gratuita de design gráfico online que você pode usar para criar posts para redes sociais, apresentações, cartazes, vídeos, logotipos e muito mais.
Free printable resume templates you can customize | Canva
Land your dream job with captivating CVs you can professionally customize to reflect your true potential with Canva's free resume templates and easy-to-use design editor.