Can I Do Computer Science Without Maths

Advertisement



  can i do computer science without maths: Formalizing Common Sense John McCarthy, 1998 Extending over a period of 30 years, this is a collection of papers written by John McCarthy on artificial intelligence. They range from informal surveys written for a general audience to technical discussions of challenging research problems that should be of interest to specialists.
  can i do computer science without maths: Java Programming Ralph Bravaco, Shai Simonson, 2009-02-01 Java Programming, From The Ground Up, with its flexible organization, teaches Java in a way that is refreshing, fun, interesting and still has all the appropriate programming pieces for students to learn. The motivation behind this writing is to bring a logical, readable, entertaining approach to keep your students involved. Each chapter has a Bigger Picture section at the end of the chapter to provide a variety of interesting related topics in computer science. The writing style is conversational and not overly technical so it addresses programming concepts appropriately. Because of the flexibile organization of the text, it can be used for a one or two semester introductory Java programming class, as well as using Java as a second language. The text contains a large variety of carefully designed exercises that are more effective than the competition.
  can i do computer science without maths: Concrete Mathematics Ronald L. Graham, Donald E. Knuth, Oren Patashnik, 1994-02-28 This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. More concretely, the authors explain, it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems. The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
  can i do computer science without maths: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
  can i do computer science without maths: Mindset Carol S. Dweck, 2007-12-26 From the renowned psychologist who introduced the world to “growth mindset” comes this updated edition of the million-copy bestseller—featuring transformative insights into redefining success, building lifelong resilience, and supercharging self-improvement. “Through clever research studies and engaging writing, Dweck illuminates how our beliefs about our capabilities exert tremendous influence on how we learn and which paths we take in life.”—Bill Gates, GatesNotes “It’s not always the people who start out the smartest who end up the smartest.” After decades of research, world-renowned Stanford University psychologist Carol S. Dweck, Ph.D., discovered a simple but groundbreaking idea: the power of mindset. In this brilliant book, she shows how success in school, work, sports, the arts, and almost every area of human endeavor can be dramatically influenced by how we think about our talents and abilities. People with a fixed mindset—those who believe that abilities are fixed—are less likely to flourish than those with a growth mindset—those who believe that abilities can be developed. Mindset reveals how great parents, teachers, managers, and athletes can put this idea to use to foster outstanding accomplishment. In this edition, Dweck offers new insights into her now famous and broadly embraced concept. She introduces a phenomenon she calls false growth mindset and guides people toward adopting a deeper, truer growth mindset. She also expands the mindset concept beyond the individual, applying it to the cultures of groups and organizations. With the right mindset, you can motivate those you lead, teach, and love—to transform their lives and your own.
  can i do computer science without maths: How Not to Be Wrong Jordan Ellenberg, 2014-05-29 A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
  can i do computer science without maths: Sets, Logic and Maths for Computing David Makinson, 2012-02-27 This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.
  can i do computer science without maths: Mathematical Foundation of Computer Science Y. N. Singh, 2005 The Interesting Feature Of This Book Is Its Organization And Structure. That Consists Of Systematizing Of The Definitions, Methods, And Results That Something Resembling A Theory. Simplicity, Clarity, And Precision Of Mathematical Language Makes Theoretical Topics More Appealing To The Readers Who Are Of Mathematical Or Non-Mathematical Background. For Quick References And Immediate Attentions3⁄4Concepts And Definitions, Methods And Theorems, And Key Notes Are Presented Through Highlighted Points From Beginning To End. Whenever, Necessary And Probable A Visual Approach Of Presentation Is Used. The Amalgamation Of Text And Figures Make Mathematical Rigors Easier To Understand. Each Chapter Begins With The Detailed Contents, Which Are Discussed Inside The Chapter And Conclude With A Summary Of The Material Covered In The Chapter. Summary Provides A Brief Overview Of All The Topics Covered In The Chapter. To Demonstrate The Principles Better, The Applicability Of The Concepts Discussed In Each Topic Are Illustrated By Several Examples Followed By The Practice Sets Or Exercises.
  can i do computer science without maths: Think Stats Allen B. Downey, 2011-07-01 If you know how to program, you have the skills to turn data into knowledge using the tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts. Develop your understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Learn topics not usually covered in an introductory course, such as Bayesian estimation Import data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data
  can i do computer science without maths: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  can i do computer science without maths: Supervised Learning with Quantum Computers Maria Schuld, Francesco Petruccione, 2018-08-30 Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
  can i do computer science without maths: Discrete Mathematics for Computer Science Gary Haggard, John Schlipf, Sue Whitesides, 2006 Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career.
  can i do computer science without maths: Computer Graphics from Scratch Gabriel Gambetta, 2021-05-13 Computer Graphics from Scratch demystifies the algorithms used in modern graphics software and guides beginners through building photorealistic 3D renders. Computer graphics programming books are often math-heavy and intimidating for newcomers. Not this one. Computer Graphics from Scratch takes a simpler approach by keeping the math to a minimum and focusing on only one aspect of computer graphics, 3D rendering. You’ll build two complete, fully functional renderers: a raytracer, which simulates rays of light as they bounce off objects, and a rasterizer, which converts 3D models into 2D pixels. As you progress you’ll learn how to create realistic reflections and shadows, and how to render a scene from any point of view. Pseudocode examples throughout make it easy to write your renderers in any language, and links to live JavaScript demos of each algorithm invite you to explore further on your own. Learn how to: Use perspective projection to draw 3D objects on a 2D plane Simulate the way rays of light interact with surfaces Add mirror-like reflections and cast shadows to objects Render a scene from any camera position using clipping planes Use flat, Gouraud, and Phong shading to mimic real surface lighting Paint texture details onto basic shapes to create realistic-looking objects Whether you’re an aspiring graphics engineer or a novice programmer curious about how graphics algorithms work, Gabriel Gambetta’s simple, clear explanations will quickly put computer graphics concepts and rendering techniques within your reach. All you need is basic coding knowledge and high school math. Computer Graphics from Scratch will cover the rest.
  can i do computer science without maths: The Calculus Lifesaver Adrian Banner, 2007-03-25 For many students, calculus can be the most mystifying and frustrating course they will ever take. Based upon Adrian Banner's popular calculus review course at Princeton University, this book provides students with the essential tools they need not only to learn calculus, but also to excel at it.
  can i do computer science without maths: How to Design Programs, second edition Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, 2018-05-25 A completely revised edition, offering new design recipes for interactive programs and support for images as plain values, testing, event-driven programming, and even distributed programming. This introduction to programming places computer science at the core of a liberal arts education. Unlike other introductory books, it focuses on the program design process, presenting program design guidelines that show the reader how to analyze a problem statement, how to formulate concise goals, how to make up examples, how to develop an outline of the solution, how to finish the program, and how to test it. Because learning to design programs is about the study of principles and the acquisition of transferable skills, the text does not use an off-the-shelf industrial language but presents a tailor-made teaching language. For the same reason, it offers DrRacket, a programming environment for novices that supports playful, feedback-oriented learning. The environment grows with readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks. This second edition has been completely revised. While the book continues to teach a systematic approach to program design, the second edition introduces different design recipes for interactive programs with graphical interfaces and batch programs. It also enriches its design recipes for functions with numerous new hints. Finally, the teaching languages and their IDE now come with support for images as plain values, testing, event-driven programming, and even distributed programming.
  can i do computer science without maths: Mathematics for Computer Programmers Christine Benedyk Kay, 1984 Number systems I. Sets. Integer and real number sets. Format arithmetic. Algorithms. Solving problems using input. process, and output. Algorithms. Flowcharts. Algebraic applications for programming. Language of algebra. Algebraic expressions of not equal. Exponents. Equations. Advanced algebra concepts. Quadratic equations. Linear equations. Linear programming. Functions. Sequence and subscripted variables. Matrices. Binary systems. Number base concepts. Binary, octal, and hexadecimal numbers. Computer codes. Boolean algebra concepts. Mathematical logic. Boolean algebra and computer logic.
  can i do computer science without maths: ICT for GCSE Tim Roderick, Geoff Rushbrook, 2002-04-04 This is an illustrated summary book in full colour for classroom use and for examination revision, covering the requirements of GCSE Specifications from September 2001 in information technology/computing.
  can i do computer science without maths: The Math Myth Andrew Hacker, 2010-05-25 A New York Times–bestselling author looks at mathematics education in America—when it’s worthwhile, and when it’s not. Why do we inflict a full menu of mathematics—algebra, geometry, trigonometry, even calculus—on all young Americans, regardless of their interests or aptitudes? While Andrew Hacker has been a professor of mathematics himself, and extols the glories of the subject, he also questions some widely held assumptions in this thought-provoking and practical-minded book. Does advanced math really broaden our minds? Is mastery of azimuths and asymptotes needed for success in most jobs? Should the entire Common Core syllabus be required of every student? Hacker worries that our nation’s current frenzied emphasis on STEM is diverting attention from other pursuits and even subverting the spirit of the country. Here, he shows how mandating math for everyone prevents other talents from being developed and acts as an irrational barrier to graduation and careers. He proposes alternatives, including teaching facility with figures, quantitative reasoning, and understanding statistics. Expanding upon the author’s viral New York Times op-ed, The Math Myth is sure to spark a heated and needed national conversation—not just about mathematics but about the kind of people and society we want to be. “Hacker’s accessible arguments offer plenty to think about and should serve as a clarion call to students, parents, and educators who decry the one-size-fits-all approach to schooling.” —Publishers Weekly, starred review
  can i do computer science without maths: Infinite Words Dominique Perrin, Jean-Éric Pin, 2004-02-18 Infinite Words is an important theory in both Mathematics and Computer Sciences. Many new developments have been made in the field, encouraged by its application to problems in computer science. Infinite Words is the first manual devoted to this topic. Infinite Words explores all aspects of the theory, including Automata, Semigroups, Topology, Games, Logic, Bi-infinite Words, Infinite Trees and Finite Words. The book also looks at the early pioneering work of Büchi, McNaughton and Schützenberger. Serves as both an introduction to the field and as a reference book. Contains numerous exercises desgined to aid students and readers. Self-contained chapters provide helpful guidance for lectures.
  can i do computer science without maths: Statistics in Plain English Timothy C. Urdan, 2005 This book is meant to be a supplement to a more detailed statistics textbook, such as that recommended for a statistics course in the social sciences. Also, as a reference book to refresh your memory about statistical concepts.
  can i do computer science without maths: Discrete Mathematics Oscar Levin, 2016-08-16 This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the introduction to proof course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
  can i do computer science without maths: Foundation Mathematics for Computer Science John Vince, 2015-07-27 John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.
  can i do computer science without maths: What If? Randall Munroe, 2014 From the creator of the wildly popular webcomic xkcd, hilarious and informative answers to important questions you probably never thought to ask Millions of people visit xkcd.com each week to read Randall Munroe's iconic webcomic. His stick-figure drawings about science, technology, language, and love have an enormous, dedicated following, as do his deeply researched answers to his fans' strangest questions. The queries he receives range from merely odd to downright diabolical: - What if I took a swim in a spent-nuclear-fuel pool? - Could you build a jetpack using downward-firing machine guns? - What if a Richter 15 earthquake hit New York City? - Are fire tornadoes possible? His responses are masterpieces of clarity and wit, gleefully and accurately explaining everything from the relativistic effects of a baseball pitched at near the speed of light to the many horrible ways you could die while building a periodic table out of all the actual elements. The book features new and never-before-answered questions, along with the most popular answers from the xkcd website. What If? is an informative feast for xkcd fans and anyone who loves to ponder the hypothetical.
  can i do computer science without maths: The Nature of Computation Cristopher Moore, Stephan Mertens, 2011-08-11 Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid and playful explanation of the P vs. NP problem, explaining why it is so fundamental, and so hard to resolve. They then lead the reader through the complexity of mazes and games; optimization in theory and practice; randomized algorithms, interactive proofs, and pseudorandomness; Markov chains and phase transitions; and the outer reaches of quantum computing. At every turn, they use a minimum of formalism, providing explanations that are both deep and accessible. The book is intended for graduate and undergraduate students, scientists from other areas who have long wanted to understand this subject, and experts who want to fall in love with this field all over again.
  can i do computer science without maths: Constructive Analysis E. Bishop, Douglas Bridges, 2012-12-06 This work grew out of Errett Bishop's fundamental treatise 'Founda tions of Constructive Analysis' (FCA), which appeared in 1967 and which contained the bountiful harvest of a remarkably short period of research by its author. Truly, FCA was an exceptional book, not only because of the quantity of original material it contained, but also as a demonstration of the practicability of a program which most ma thematicians believed impossible to carry out. Errett's book went out of print shortly after its publication, and no second edition was produced by its publishers. Some years later, 'by a set of curious chances', it was agreed that a new edition of FCA would be published by Springer Verlag, the revision being carried out by me under Errett's supervision; at the same time, Errett gener ously insisted that I become a joint author. The revision turned out to be much more substantial than we had anticipated, and took longer than we would have wished. Indeed, tragically, Errett died before the work was completed. The present book is the result of our efforts. Although substantially based on FCA, it contains so much new material, and such full revision and expansion of the old, that it is essentially a new book. For this reason, and also to preserve the integrity of the original, I decided to give our joint work a title of its own. Most of the new material outside Chapter 5 originated with Errett.
  can i do computer science without maths: Building a Career in Software Daniel Heller, 2020-09-27 Software engineering education has a problem: universities and bootcamps teach aspiring engineers to write code, but they leave graduates to teach themselves the countless supporting tools required to thrive in real software companies. Building a Career in Software is the solution, a comprehensive guide to the essential skills that instructors don't need and professionals never think to teach: landing jobs, choosing teams and projects, asking good questions, running meetings, going on-call, debugging production problems, technical writing, making the most of a mentor, and much more. In over a decade building software at companies such as Apple and Uber, Daniel Heller has mentored and managed tens of engineers from a variety of training backgrounds, and those engineers inspired this book with their hundreds of questions about career issues and day-to-day problems. Designed for either random access or cover-to-cover reading, it offers concise treatments of virtually every non-technical challenge you will face in the first five years of your career—as well as a selection of industry-focused technical topics rarely covered in training. Whatever your education or technical specialty, Building a Career in Software can save you years of trial and error and help you succeed as a real-world software professional. What You Will Learn Discover every important nontechnical facet of professional programming as well as several key technical practices essential to the transition from student to professional Build relationships with your employer Improve your communication, including technical writing, asking good questions, and public speaking Who This Book is For Software engineers either early in their careers or about to transition to the professional world; that is, all graduates of computer science or software engineering university programs and all software engineering boot camp participants.
  can i do computer science without maths: Programming for Mathematicians Raymond Seroul, 2012-12-06 Aimed at teaching mathematics students how to program using their knowledge of mathematics, the entire books emphasis is on how to think when programming. Three methods for constructing an algorithm or a program are used: manipulation and enrichment of existing code; use of recurrent sequences; deferral of code writing, in order to deal with one difficulty at a time. Many theorems are mathematically proved and programmed, and the text concludes with an explanation of how a compiler works and how to compile by hand little programs. Intended for anyone who thinks mathematically and wants to program and play with mathematics.
  can i do computer science without maths: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success.
  can i do computer science without maths: What Can Be Computed? John MacCormick, 2018-05-01 An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
  can i do computer science without maths: Hackers & Painters Paul Graham, 2004-05-18 The author examines issues such as the rightness of web-based applications, the programming language renaissance, spam filtering, the Open Source Movement, Internet startups and more. He also tells important stories about the kinds of people behind technical innovations, revealing their character and their craft.
  can i do computer science without maths: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
  can i do computer science without maths: An Introduction to Abstract Mathematics Robert J. Bond, William J. Keane, 2007-08-24 Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.
  can i do computer science without maths: Computability and Logic George S. Boolos, John P. Burgess, Richard C. Jeffrey, 2007-09-17 This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.
  can i do computer science without maths: The Science of Reading Margaret J. Snowling, Charles Hulme, 2008-04-15 The Science of Reading: A Handbook brings together state-of-the-art reviews of reading research from leading names in the field, to create a highly authoritative, multidisciplinary overview of contemporary knowledge about reading and related skills. Provides comprehensive coverage of the subject, including theoretical approaches, reading processes, stage models of reading, cross-linguistic studies of reading, reading difficulties, the biology of reading, and reading instruction Divided into seven sections:Word Recognition Processes in Reading; Learning to Read and Spell; Reading Comprehension; Reading in Different Languages; Disorders of Reading and Spelling; Biological Bases of Reading; Teaching Reading Edited by well-respected senior figures in the field
  can i do computer science without maths: The Reasoned Schemer, second edition Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, Jason Hemann, 2018-03-09 A new edition of a book, written in a humorous question-and-answer style, that shows how to implement and use an elegant little programming language for logic programming. The goal of this book is to show the beauty and elegance of relational programming, which captures the essence of logic programming. The book shows how to implement a relational programming language in Scheme, or in any other functional language, and demonstrates the remarkable flexibility of the resulting relational programs. As in the first edition, the pedagogical method is a series of questions and answers, which proceed with the characteristic humor that marked The Little Schemer and The Seasoned Schemer. Familiarity with a functional language or with the first five chapters of The Little Schemer is assumed. For this second edition, the authors have greatly simplified the programming language used in the book, as well as the implementation of the language. In addition to revising the text extensively, and simplifying and revising the “Laws” and “Commandments,” they have added explicit “Translation” rules to ease translation of Scheme functions into relations.
  can i do computer science without maths: The Making of a Fly P. A. Lawrence, 1992-04-15 Understanding how a multicellular animal develops from a single cell (the fertilized egg) poses one of the greatest challenges in biology today. Development from egg to adult involves the sequential expression of virtually the whole of an organism's genetic instructions both in the mother as she lays down developmental cues in the egg, and in the embryo itself. Most of our present information on the role of genes in development comes from the invertebrate fruit fly, Drosophila. The two authors of this text (amongst the foremost authorities in the world) follow the developmental process from fertilization through the primitive structural development of the body plan of the fly after cleavage into the differentiation of the variety of tissues, organs and body parts that together define the fly. The developmental processes are fully explained throughout the text in the modern language of molecular biology and genetics. This text represents the vital synthesis of the subject that many have been waiting for and it will enable many specific courses in developmental biology and molecular genetics to focus on it. It will appeali to 2nd and 3rd year students in these disciplines as well as in biochemistry, neurobiology and zoology. It will also have widespread appeal among researchers. Authored by one of the foremost authorities in the world. A unique synthesis of the developmental cycle of Drosophila - our major source of information on the role of genes in development. Designed to provide the basis of new courses in developmental biology and molecular genetics at senior undergraduate level. A lucid explanation in the modern language of the science.
  can i do computer science without maths: Algorithms and Data Structures Niklaus Wirth, 1986
  can i do computer science without maths: A Programmer's Introduction to Mathematics Jeremy Kun, 2020-05-17 A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog Math Intersect Programming. As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.
  can i do computer science without maths: Engines of Logic Martin Davis, 2001 A pioneer in computer development chronicles the history of the machine, and the software that makes it tick, elucidating the core principles driving every calculation, stored record, and mouse click. Originally published as The Universal Computer. Reprint.
  can i do computer science without maths: Neural Networks Simon Haykin, 1999
Canva: Visual Suite for Everyone
Educational organizations and nonprofits can enjoy premium Canva features for free. Templates for …

Canva Free | Design anything, together and for free
Canva is always free for every individual. However, if you want to unlock premium features, …

Free templates - Canva
Explore thousands of beautiful free templates. With Canva's drag and drop feature, you can customize your …

Create beautiful graphics with Canva
Create anything in a snap, from presentations and logos to social media posts. Get inspired and see what you …

Canva Pro | Your all-in-one design solution
Auto-generate captions you can edit, animate, and style your way. Try Captions (opens in a new tab or …

Canva: Visual Suite for Everyone
Educational organizations and nonprofits can enjoy premium Canva features for free. Templates for absolutely anything …

Canva Free | Design anything, together and for free
Canva is always free for every individual. However, if you want to unlock premium features, individuals can upgrade to Canva …

Free templates - Canva
Explore thousands of beautiful free templates. With Canva's drag and drop feature, you can customize your design for …

Create beautiful graphics with Canva
Create anything in a snap, from presentations and logos to social media posts. Get inspired and see what you can do on Canva, no …

Canva Pro | Your all-in-one design solution
Auto-generate captions you can edit, animate, and style your way. Try Captions (opens in a new tab or window) Pro. …