Advertisement
convergent vs divergent math: Calculus II For Dummies® Mark Zegarelli, 2008-06-02 An easy-to-understand primer on advanced calculus topics Calculus II is a prerequisite for many popular college majors, including pre-med, engineering, and physics. Calculus II For Dummies offers expert instruction, advice, and tips to help second semester calculus students get a handle on the subject and ace their exams. It covers intermediate calculus topics in plain English, featuring in-depth coverage of integration, including substitution, integration techniques and when to use them, approximate integration, and improper integrals. This hands-on guide also covers sequences and series, with introductions to multivariable calculus, differential equations, and numerical analysis. Best of all, it includes practical exercises designed to simplify and enhance understanding of this complex subject. |
convergent vs divergent math: Divergent Series Godfrey H. Hardy, 2024-06-14 Review of the original edition: This is an inspiring textbook for students who know the theory of functions of real and complex variables and wish further knowledge of mathematical analysis. There are no problems displayed and labelled “problems,” but one who follows all of the arguments and calculations of the text will find use for his ingenuity and pencil. The book deals with interesting and important problems and topics in many fields of mathematical analysis, to an extent very much greater than that indicated by the titles of the chapters. It is, of course, an indispensable handbook for those interested in divergent series. It assembles a considerable part of the theory of divergent series, which has previously existed only in periodical literature. Hardy has greatly simplified and improved many theories, theorems and proofs. In addition, numerous acknowledgements show that the book incorporates many previously unpublished results and improvements of old results, communicated to Hardy by his colleagues and by others interested in the book. —Mathematical Reviews |
convergent vs divergent math: Real Infinite Series Daniel D. Bonar, Michael J. Khoury Jr., 2018-12-12 This is a widely accessible introductory treatment of infinite series of real numbers, bringing the reader from basic definitions and tests to advanced results. An up-to-date presentation is given, making infinite series accessible, interesting, and useful to a wide audience, including students, teachers, and researchers. Included are elementary and advanced tests for convergence or divergence, the harmonic series, the alternating harmonic series, and closely related results. One chapter offers 107 concise, crisp, surprising results about infinite series. Another gives problems on infinite series, and solutions, which have appeared on the annual William Lowell Putnam Mathematical Competition. The lighter side of infinite series is treated in the concluding chapter where three puzzles, eighteen visuals, and several fallacious proofs are made available. Three appendices provide a listing of true or false statements, answers to why the harmonic series is so named, and an extensive list of published works on infinite series. |
convergent vs divergent math: Foundations of Mathematical Analysis Saminathan Ponnusamy, 2011-12-16 Mathematical analysis is fundamental to the undergraduate curriculum not only because it is the stepping stone for the study of advanced analysis, but also because of its applications to other branches of mathematics, physics, and engineering at both the undergraduate and graduate levels. This self-contained textbook consists of eleven chapters, which are further divided into sections and subsections. Each section includes a careful selection of special topics covered that will serve to illustrate the scope and power of various methods in real analysis. The exposition is developed with thorough explanations, motivating examples, exercises, and illustrations conveying geometric intuition in a pleasant and informal style to help readers grasp difficult concepts. Foundations of Mathematical Analysis is intended for undergraduate students and beginning graduate students interested in a fundamental introduction to the subject. It may be used in the classroom or as a self-study guide without any required prerequisites. |
convergent vs divergent math: Calculus Volume 3 Edwin Herman, Gilbert Strang, 2016-03-30 Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations. |
convergent vs divergent math: (Almost) Impossible Integrals, Sums, and Series Cornel Ioan Vălean, 2019-05-10 This book contains a multitude of challenging problems and solutions that are not commonly found in classical textbooks. One goal of the book is to present these fascinating mathematical problems in a new and engaging way and illustrate the connections between integrals, sums, and series, many of which involve zeta functions, harmonic series, polylogarithms, and various other special functions and constants. Throughout the book, the reader will find both classical and new problems, with numerous original problems and solutions coming from the personal research of the author. Where classical problems are concerned, such as those given in Olympiads or proposed by famous mathematicians like Ramanujan, the author has come up with new, surprising or unconventional ways of obtaining the desired results. The book begins with a lively foreword by renowned author Paul Nahin and is accessible to those with a good knowledge of calculus from undergraduate students to researchers, and will appeal to all mathematical puzzlers who love a good integral or series. |
convergent vs divergent math: Logic For Dummies Mark Zegarelli, 2006-11-29 A straightforward guide to logic concepts Logic concepts are more mainstream than you may realize. There’s logic every place you look and in almost everything you do, from deciding which shirt to buy to asking your boss for a raise, and even to watching television, where themes of such shows as CSI and Numbers incorporate a variety of logistical studies. Logic For Dummies explains a vast array of logical concepts and processes in easy-to-understand language that make everything clear to you, whether you’re a college student of a student of life. You’ll find out about: Formal Logic Syllogisms Constructing proofs and refutations Propositional and predicate logic Modal and fuzzy logic Symbolic logic Deductive and inductive reasoning Logic For Dummies tracks an introductory logic course at the college level. Concrete, real-world examples help you understand each concept you encounter, while fully worked out proofs and fun logic problems encourage you students to apply what you’ve learned. |
convergent vs divergent math: Calculus For Dummies Mark Ryan, 2016-05-18 Slay the calculus monster with this user-friendly guide Calculus For Dummies, 2nd Edition makes calculus manageable—even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the how and why in plain English instead of math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be. Calculus is a required course for many college majors, and for students without a strong math foundation, it can be a real barrier to graduation. Breaking that barrier down means recognizing calculus for what it is—simply a tool for studying the ways in which variables interact. It's the logical extension of the algebra, geometry, and trigonometry you've already taken, and Calculus For Dummies, 2nd Edition proves that if you can master those classes, you can tackle calculus and win. Includes foundations in algebra, trigonometry, and pre-calculus concepts Explores sequences, series, and graphing common functions Instructs you how to approximate area with integration Features things to remember, things to forget, and things you can't get away with Stop fearing calculus, and learn to embrace the challenge. With this comprehensive study guide, you'll gain the skills and confidence that make all the difference. Calculus For Dummies, 2nd Edition provides a roadmap for success, and the backup you need to get there. |
convergent vs divergent math: A First Course in Calculus Serge Lang, 2012-09-17 This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions. |
convergent vs divergent math: APEX Calculus Gregory Hartman, 2015 APEX Calculus is a calculus textbook written for traditional college/university calculus courses. It has the look and feel of the calculus book you likely use right now (Stewart, Thomas & Finney, etc.). The explanations of new concepts is clear, written for someone who does not yet know calculus. Each section ends with an exercise set with ample problems to practice & test skills (odd answers are in the back). |
convergent vs divergent math: Summable Series and Convergence Factors Charles Napoleon Moore, 1938-12-31 Fairly early in the development of the theory of summability of divergent series, the concept of convergence factors was recognized as of fundamental importance in the subject. One of the pioneers in this field was C. N. Moore, the author of the book under review.... Moore classifies convergence factors into two types. In type I he places the factors which have only the property that they preserve convergence for a convergent series or produce convergence for a summable series. In type II he places the factors which not only maintain or produce convergence but have the additional property that they may be used to obtain the sum or generalized sum of the series. This book gives a generalized systematic treatment of the theory of convergence factors of both types, for simply infinite series and for multiple series, convergent and summable.... --Bulletin of the American Mathematical Society |
convergent vs divergent math: Machine Learning: ECML 2004 Jean-Francois Boulicaut, Floriana Esposito, Fosca Giannotti, Dino Pedreschi, 2004-11-05 The proceedings of ECML/PKDD 2004 are published in two separate, albeit - tertwined,volumes:theProceedingsofthe 15thEuropeanConferenceonMac- ne Learning (LNAI 3201) and the Proceedings of the 8th European Conferences on Principles and Practice of Knowledge Discovery in Databases (LNAI 3202). The two conferences were co-located in Pisa, Tuscany, Italy during September 20–24, 2004. It was the fourth time in a row that ECML and PKDD were co-located. - ter the successful co-locations in Freiburg (2001), Helsinki (2002), and Cavtat- Dubrovnik (2003), it became clear that researchersstrongly supported the or- nization of a major scienti?c event about machine learning and data mining in Europe. We are happy to provide some statistics about the conferences. 581 di?erent papers were submitted to ECML/PKDD (about a 75% increase over 2003); 280 weresubmittedtoECML2004only,194weresubmittedtoPKDD2004only,and 107weresubmitted to both.Aroundhalfofthe authorsforsubmitted papersare from outside Europe, which is a clear indicator of the increasing attractiveness of ECML/PKDD. The Program Committee members were deeply involved in what turned out to be a highly competitive selection process. We assigned each paper to 3 - viewers, deciding on the appropriate PC for papers submitted to both ECML and PKDD. As a result, ECML PC members reviewed 312 papers and PKDD PC members reviewed 269 papers. We accepted for publication regular papers (45 for ECML 2004 and 39 for PKDD 2004) and short papers that were as- ciated with poster presentations (6 for ECML 2004 and 9 for PKDD 2004). The globalacceptance ratewas14.5%for regular papers(17% if we include the short papers). |
convergent vs divergent math: Asymptotics and Borel Summability Ovidiu Costin, 2008-12-04 Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, tr |
convergent vs divergent math: Active Calculus 2018 Matthew Boelkins, 2018-08-13 Active Calculus - single variable is a free, open-source calculus text that is designed to support an active learning approach in the standard first two semesters of calculus, including approximately 200 activities and 500 exercises. In the HTML version, more than 250 of the exercises are available as interactive WeBWorK exercises; students will love that the online version even looks great on a smart phone. Each section of Active Calculus has at least 4 in-class activities to engage students in active learning. Normally, each section has a brief introduction together with a preview activity, followed by a mix of exposition and several more activities. Each section concludes with a short summary and exercises; the non-WeBWorK exercises are typically involved and challenging. More information on the goals and structure of the text can be found in the preface. |
convergent vs divergent math: The Musician's Way : A Guide to Practice, Performance, and Wellness Gerald Klickstein, 2009-08-06 In The Musician's Way, veteran performer and educator Gerald Klickstein combines the latest research with his 30 years of professional experience to provide aspiring musicians with a roadmap to artistic excellence. Part I, Artful Practice, describes strategies to interpret and memorize compositions, fuel motivation, collaborate, and more. Part II, Fearless Performance, lifts the lid on the hidden causes of nervousness and shows how musicians can become confident performers. Part III, Lifelong Creativity, surveys tactics to prevent music-related injuries and equips musicians to tap their own innate creativity. Written in a conversational style, The Musician's Way presents an inclusive system for all instrumentalists and vocalists to advance their musical abilities and succeed as performing artists. |
convergent vs divergent math: A Basic Course in Real Analysis Ajit Kumar, S. Kumaresan, 2014-01-10 Based on the authors’ combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand the underlying principles, and coming up with guesses or conjectures and then proving them rigorously based on his or her explorations. With more than 100 pictures, the book creates interest in real analysis by encouraging students to think geometrically. Each difficult proof is prefaced by a strategy and explanation of how the strategy is translated into rigorous and precise proofs. The authors then explain the mystery and role of inequalities in analysis to train students to arrive at estimates that will be useful for proofs. They highlight the role of the least upper bound property of real numbers, which underlies all crucial results in real analysis. In addition, the book demonstrates analysis as a qualitative as well as quantitative study of functions, exposing students to arguments that fall under hard analysis. Although there are many books available on this subject, students often find it difficult to learn the essence of analysis on their own or after going through a course on real analysis. Written in a conversational tone, this book explains the hows and whys of real analysis and provides guidance that makes readers think at every stage. |
convergent vs divergent math: Gamma Julian Havil, 2017-10-31 Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this. |
convergent vs divergent math: The Definite Integral Grigoriĭ Mikhaĭlovich Fikhtengolʹt︠s︡, 1973 |
convergent vs divergent math: CK-12 Calculus CK-12 Foundation, 2010-08-15 CK-12 Foundation's Single Variable Calculus FlexBook introduces high school students to the topics covered in the Calculus AB course. Topics include: Limits, Derivatives, and Integration. |
convergent vs divergent math: Understanding Analysis Stephen Abbott, 2012-12-06 This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions. |
convergent vs divergent math: Problems in Real Analysis Teodora-Liliana Radulescu, Vicentiu D. Radulescu, Titu Andreescu, 2009-06-12 Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis. |
convergent vs divergent math: Complex Variables with Applications Saminathan Ponnusamy, Herb Silverman, 2007-05-26 Explores the interrelations between real and complex numbers by adopting both generalization and specialization methods to move between them, while simultaneously examining their analytic and geometric characteristics Engaging exposition with discussions, remarks, questions, and exercises to motivate understanding and critical thinking skills Encludes numerous examples and applications relevant to science and engineering students |
convergent vs divergent math: From Divergent Power Series to Analytic Functions Werner Balser, 2006-11-15 Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients. |
convergent vs divergent math: Morphing Joseph Choma, 2015-01-19 Cylinders, spheres and cubes are a small handful of shapes that can be defined by a single word. However, most shapes cannot be found in a dictionary. They belong to an alternative plastic world defined by trigonometry: a mathematical world where all shapes can be described under one systematic language and where any shape can transform into another. This visually striking guidebook clearly and systematically lays out the basic foundation for using these mathematical transformations as design tools. It is intended for architects, designers, and anyone with the curiosity to understand the link between shapes and the equations behind them. |
convergent vs divergent math: Infinite Sequences and Series Konrad Knopp, 2012-09-14 Careful presentation of fundamentals of the theory by one of the finest modern expositors of higher mathematics. Covers functions of real and complex variables, arbitrary and null sequences, convergence and divergence, Cauchy's limit theorem, more. |
convergent vs divergent math: Elements of Topology Tej Bahadur Singh, 2013-05-20 Topology is a large subject with many branches broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad variety of mathematical disciplines. Algebraic topology serves as a powerful tool for studying the problems in geometry and numerous other areas of mathematics. Ele |
convergent vs divergent math: Introduction to Infinite Series William Fogg Osgood, 1897 |
convergent vs divergent math: Basic Math & Pre-Algebra For Dummies Mark Zegarelli, 2016-06-13 Basic Math & Pre-Algebra For Dummies, 2nd Edition (9781119293637) was previously published as Basic Math & Pre-Algebra For Dummies, 2nd Edition (9781118791981). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methods Relevant cultural vernacular and references Standard For Dummiesmaterials that match the current standard and design Basic Math & Pre-Algebra For Dummies takes the intimidation out of tricky operations and helps you get ready for algebra! |
convergent vs divergent math: Tauberian Theory Jacob Korevaar, 2013-03-09 Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular high-indices theorems and Karamata's regular variation, which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and circle methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book. |
convergent vs divergent math: Analysis of Divergence William Bray, Caslav Stanojevic, 2012-12-06 The 7th International Workshop in Analysis and its Applications (IWAA) was held at the University of Maine, June 1-6, 1997 and featured approxi mately 60 mathematicians. The principal theme of the workshop shares the title of this volume and the latter is a direct outgrowth of the workshop. IWAA was founded in 1984 by Professor Caslav V. Stanojevic. The first meeting was held in the resort complex Kupuri, Yugoslavia, June 1-10, 1986, with two pilot meetings preceding. The Organization Committee to gether with the Advisory Committee (R. P. Boas, R. R. Goldberg, J. P. Kahne) set forward the format and content of future meetings. A certain number of papers were presented that later appeared individually in such journals as the Proceedings of the AMS, Bulletin of the AMS, Mathematis chen Annalen, and the Journal of Mathematical Analysis and its Applica tions. The second meeting took place June 1-10, 1987, at the same location. At the plenary session of this meeting it was decided that future meetings should have a principal theme. The theme for the third meeting (June 1- 10, 1989, Kupuri) was Karamata's Regular Variation. The principal theme for the fourth meeting (June 1-10, 1990, Kupuri) was Inner Product and Convexity Structures in Analysis, Mathematical Physics, and Economics. The fifth meeting was to have had the theme, Analysis and Foundations, organized in cooperation with Professor A. Blass (June 1-10, 1991, Kupuri). |
convergent vs divergent math: Recurrence Sequences Graham Everest, Alf van der Poorten, Igor Shparlinski, Thomas Ward, 2015-09-03 Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory. |
convergent vs divergent math: A Primer of Infinitesimal Analysis John L. Bell, 2008-04-07 A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal. |
convergent vs divergent math: CRC Standard Mathematical Tables and Formulae, 32nd Edition Daniel Zwillinger, 2011-06-22 With over 6,000 entries, CRC Standard Mathematical Tables and Formulae, 32nd Edition continues to provide essential formulas, tables, figures, and descriptions, including many diagrams, group tables, and integrals not available online. This new edition incorporates important topics that are unfamiliar to some readers, such as visual proofs and sequences, and illustrates how mathematical information is interpreted. Material is presented in a multisectional format, with each section containing a valuable collection of fundamental tabular and expository reference material. New to the 32nd Edition A new chapter on Mathematical Formulae from the Sciences that contains the most important formulae from a variety of fields, including acoustics, astrophysics, epidemiology, finance, statistical mechanics, and thermodynamics New material on contingency tables, estimators, process capability, runs test, and sample sizes New material on cellular automata, knot theory, music, quaternions, and rational trigonometry Updated and more streamlined tables Retaining the successful format of previous editions, this comprehensive handbook remains an invaluable reference for professionals and students in mathematical and scientific fields. |
convergent vs divergent math: Broadening the Scope of Research on Mathematical Problem Solving Nélia Amado, Susana Carreira, Keith Jones, 2018-11-30 The innovative volume seeks to broaden the scope of research on mathematical problem solving in different educational environments. It brings together contributions not only from leading researchers, but also highlights collaborations with younger researchers to broadly explore mathematical problem-solving across many fields: mathematics education, psychology of education, technology education, mathematics popularization, and more. The volume’s three major themes—technology, creativity, and affect—represent key issues that are crucially embedded in the activity of problem solving in mathematics teaching and learning, both within the school setting and beyond the school. Through the book’s new pedagogical perspectives on these themes, it advances the field of research towards a more comprehensive approach on mathematical problem solving. Broadening the Scope of Research on Mathematical Problem Solving will prove to be a valuable resource for researchers and teachers interested in mathematical problem solving, as well as researchers and teachers interested in technology, creativity, and affect. |
convergent vs divergent math: Classical and Modern Methods in Summability Johann Boos, 2000 Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work. |
convergent vs divergent math: Function Theory of One Complex Variable Robert Everist Greene, Steven George Krantz, 2006 Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors. |
convergent vs divergent math: A Course of Pure Mathematics G. H. Hardy, 2018-07-18 This classic calculus text remains a must-read for all students of introductory mathematical analysis. Clear, rigorous explanations of the mathematics of analytical number theory and calculus cover single-variable calculus, sequences, number series, more. 1921 edition. |
convergent vs divergent math: Extrapolation Methods C. Brezinski, M. Redivo Zaglia, 2013-10-24 This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided – including some never before published results and applications. Although intended for researchers in the field, and for those using extrapolation methods for solving particular problems, this volume also provides a valuable resource for graduate courses on the subject. |
convergent vs divergent math: The Opposable Mind Roger L. Martin, 2009-07-07 If you want to be as successful as Jack Welch, Larry Bossidy, or Michael Dell, read their autobiographical advice books, right? Wrong, says Roger Martin in The Opposable Mind. Though following best practice can help in some ways, it also poses a danger. By emulating what a great leader did in a particular situation, you'll likely be terribly disappointed with your own results. Why? Your situation is different. Instead of focusing on what exceptional leaders do, we need to understand and emulate how they think. Successful businesspeople engage in what Martin calls integrative thinking, creatively resolving the tension in opposing models by forming entirely new and superior ones. Drawing on stories of leaders as diverse as AG Lafley of Procter & Gamble, Meg Whitman of eBay, Victoria Hale of the Institute for One World Health, and Nandan Nilekani of Infosys, Martin shows how integrative thinkers are relentlessly diagnosing and synthesizing by asking probing questions including: What are the causal relationships at work here? and What are the implied trade-offs? Martin also presents a model for strengthening your integrative thinking skills by drawing on different kinds of knowledge including conceptual and experiential knowledge. Integrative thinking can be learned, and The Opposable Mind helps you master this vital skill. |
convergent vs divergent math: Five Practices for Orchestrating Productive Mathematics Discussions Margaret Schwan Smith, Mary Kay Stein, 2011 Describes five practices for productive mathematics discussions, including anticipating, monitoring, selecting, sequencing, and connecting. |
www.convergentusa.com
We would like to show you a description here but the site won’t allow us.
www.convergentusa.com
We would like to show you a description here but the site won’t allow us.