Career Change To Data Science At 40

Advertisement



  career change to data science at 40: Data Mining and Predictive Analytics Daniel T. Larose, 2015-02-19 Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.
  career change to data science at 40: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook
  career change to data science at 40: A Mind for Numbers Barbara A. Oakley, 2014-07-31 Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. In her book, she offers you the tools needed to get a better grasp of that intimidating but inescapable field.
  career change to data science at 40: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
  career change to data science at 40: Artificial Intelligence and the Future of Defense Stephan De Spiegeleire, Matthijs Maas, Tim Sweijs, 2017-05-17 Artificial intelligence (AI) is on everybody’s minds these days. Most of the world’s leading companies are making massive investments in it. Governments are scrambling to catch up. Every single one of us who uses Google Search or any of the new digital assistants on our smartphones has witnessed first-hand how quickly these developments now go. Many analysts foresee truly disruptive changes in education, employment, health, knowledge generation, mobility, etc. But what will AI mean for defense and security? In a new study HCSS offers a unique perspective on this question. Most studies to date quickly jump from AI to autonomous (mostly weapon) systems. They anticipate future armed forces that mostly resemble today’s armed forces, engaging in fairly similar types of activities with a still primarily industrial-kinetic capability bundle that would increasingly be AI-augmented. The authors of this study argue that AI may have a far more transformational impact on defense and security whereby new incarnations of ‘armed force’ start doing different things in novel ways. The report sketches a much broader option space within which defense and security organizations (DSOs) may wish to invest in successive generations of AI technologies. It suggests that some of the most promising investment opportunities to start generating the sustainable security effects that our polities, societies and economies expect may lie in in the realms of prevention and resilience. Also in those areas any large-scale application of AI will have to result from a preliminary open-minded (on all sides) public debate on its legal, ethical and privacy implications. The authors submit, however, that such a debate would be more fruitful than the current heated discussions about ‘killer drones’ or robots. Finally, the study suggests that the advent of artificial super-intelligence (i.e. AI that is superior across the board to human intelligence), which many experts now put firmly within the longer-term planning horizons of our DSOs, presents us with unprecedented risks but also opportunities that we have to start to explore. The report contains an overview of the role that ‘intelligence’ - the computational part of the ability to achieve goals in the world - has played in defense and security throughout human history; a primer on AI (what it is, where it comes from and where it stands today - in both civilian and military contexts); a discussion of the broad option space for DSOs it opens up; 12 illustrative use cases across that option space; and a set of recommendations for - especially - small- and medium sized defense and security organizations.
  career change to data science at 40: Moonwalking with Einstein Joshua Foer, 2011-03-03 The blockbuster phenomenon that charts an amazing journey of the mind while revolutionizing our concept of memory “Highly entertaining.” —Adam Gopnik, The New Yorker “Funny, curious, erudite, and full of useful details about ancient techniques of training memory.” —The Boston Globe An instant bestseller that has now become a classic, Moonwalking with Einstein recounts Joshua Foer's yearlong quest to improve his memory under the tutelage of top mental athletes. He draws on cutting-edge research, a surprising cultural history of remembering, and venerable tricks of the mentalist's trade to transform our understanding of human memory. From the United States Memory Championship to deep within the author's own mind, this is an electrifying work of journalism that reminds us that, in every way that matters, we are the sum of our memories.
  career change to data science at 40: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
  career change to data science at 40: Bullshit Jobs David Graeber, 2019-05-07 From David Graeber, the bestselling author of The Dawn of Everything and Debt—“a master of opening up thought and stimulating debate” (Slate)—a powerful argument against the rise of meaningless, unfulfilling jobs…and their consequences. Does your job make a meaningful contribution to the world? In the spring of 2013, David Graeber asked this question in a playful, provocative essay titled “On the Phenomenon of Bullshit Jobs.” It went viral. After one million online views in seventeen different languages, people all over the world are still debating the answer. There are hordes of people—HR consultants, communication coordinators, telemarketing researchers, corporate lawyers—whose jobs are useless, and, tragically, they know it. These people are caught in bullshit jobs. Graeber explores one of society’s most vexing and deeply felt concerns, indicting among other villains a particular strain of finance capitalism that betrays ideals shared by thinkers ranging from Keynes to Lincoln. “Clever and charismatic” (The New Yorker), Bullshit Jobs gives individuals, corporations, and societies permission to undergo a shift in values, placing creative and caring work at the center of our culture. This book is for everyone who wants to turn their vocation back into an avocation and “a thought-provoking examination of our working lives” (Financial Times).
  career change to data science at 40: The Essentials of Data Science: Knowledge Discovery Using R Graham J. Williams, 2017-07-28 The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data. Building on over thirty years’ experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R’s capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book.
  career change to data science at 40: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.
  career change to data science at 40: Colleges That Change Lives Loren Pope, 2006-07-25 Prospective college students and their parents have been relying on Loren Pope's expertise since 1995, when he published the first edition of this indispensable guide. This new edition profiles 41 colleges—all of which outdo the Ivies and research universities in producing performers, not only among A students but also among those who get Bs and Cs. Contents include: Evaluations of each school's program and personality Candid assessments by students, professors, and deans Information on the progress of graduates This new edition not only revisits schools listed in previous volumes to give readers a comprehensive assessment, it also addresses such issues as homeschooling, learning disabilities, and single-sex education.
  career change to data science at 40: Leaving Academia Christopher L. Caterine, 2020-09-15 A guide for grad students and academics who want to find fulfilling careers outside higher education. With the academic job market in crisis, 'Leaving Academia' helps grad students and academics in any scholarly field find satisfying careers beyond higher education. The book offers invaluable advice to visiting and adjunct instructors ready to seek new opportunities, to scholars caught in tenure-trap jobs, to grad students interested in nonacademic work, and to committed academics who want to support their students and contingent colleagues more effectively. Providing clear, concrete ways to move forward at each stage of your career change, even when the going gets tough, 'Leaving Academia' is both realistic and hopeful.
  career change to data science at 40: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  career change to data science at 40: Applied Predictive Modeling Max Kuhn, Kjell Johnson, 2013-05-17 Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
  career change to data science at 40: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolu­tion, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wear­able sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manu­facturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individu­als. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frame­works that advance progress.
  career change to data science at 40: Competing in the Age of AI Marco Iansiti, Karim R. Lakhani, 2020-01-07 a provocative new book — The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Now with a new preface that explores how the coronavirus crisis compelled organizations such as Massachusetts General Hospital, Verizon, and IKEA to transform themselves with remarkable speed, Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning—to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how collisions between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples—including many from the most powerful and innovative global, AI-driven competitors—and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI.
  career change to data science at 40: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  career change to data science at 40: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  career change to data science at 40: Artificial Intelligence in Healthcare Adam Bohr, Kaveh Memarzadeh, 2020-06-21 Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
  career change to data science at 40: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  career change to data science at 40: Black Hole Focus Isaiah Hankel, 2014-05-05 ...an absurdly motivating book. –A.J. Jacobs, New York Times bestselling author Don’t get stuck on a career path you have no passion for. Don’t waste your intelligence on something that doesn’t really mean anything more to you than a paycheck. Let Isaiah Hankel help you define a focus so powerful that everything in your life will be pulled towards it. Create your purpose and change your life. Be focused. Be fulfilled. Be successful. Black Hole Focus has been endorsed by top names in business, entrepreneurship, and academia, including 4 times New York Times bestseller AJ Jacobs and Harvard Medical School Postdoc Director Dr. Jim Gould. The book is broken up into 3 different sections; the first section shows you why you need a purpose in life, the second section shows you how to find your new purpose, and the third section shows you how to achieve your goals when facing adversity. In this book, you will learn: How to understand what you really want in life and how to get it Why people with a powerful purpose live to 100 How to rapidly improve focus and change your life using the secret techniques of an international memory champion How people like Jim Carrey, Oprah Winfrey, and J.K. Rowling transformed pain into purpose How to start a business by avoiding willpower depletion and the life hack lie Black Hole Focus includes exclusive case studies from medical practitioners, research scientists, lawyers, corporate executives and small business owners who have used the techniques described in this book to achieve massive success in their own lives. About the Author: Dr. Hankel is an internationally recognized expert in the biotechnology industry and prolific public speaker. He's given over 250 seminars in 22 different countries while working with many of the world's most respected companies and institutions, including Harvard University, Oxford University, Roche Pharmaceuticals, Eli Lilly & Company, Baxter International and Pfizer. Dr. Hankel uses the science of purpose and the principles of entrepreneurship to help people achieve their biggest goals.
  career change to data science at 40: A Career in Statistics Gerald J. Hahn, Necip Doganaksoy, 2012-08-29 A valuable guide to a successful career as a statistician A Career in Statistics: Beyond the Numbers prepares readers for careers in statistics by emphasizing essential concepts and practices beyond the technical tools provided in standard courses and texts. This insider's guide from internationally recognized applied statisticians helps readers decide whether a career in statistics is right for them, provides hands-on guidance on how to prepare for such a career, and shows how to succeed on the job. The book provides non-technical guidance for a successful career. The authors' extensive industrial experience is supplemented by insights from contributing authors from government and academia, Carol Joyce Blumberg, Leonard M. Gaines, Lynne B. Hare, William Q. Meeker, and Josef Schmee. Following an introductory chapter that provides an overview of the field, the authors discuss the various dimensions of a career in applied statistics in three succinct parts: The Work of a Statistician describes the day-to-day activities of applied statisticians in business and industry, official government, and various other application areas, highlighting the work environment and major on-the-job challenges Preparing for a Successful Career in Statistics describes the personal traits that characterize successful statisticians, the education that they need to acquire, and approaches for securing the right job Building a Successful Career as a Statistician offers practical guidance for addressing key challenges that statisticians face on the job, such as project initiation and execution, effective communication, publicizing successes, ethical considerations, and gathering good data; alternative career paths are also described The book concludes with an in-depth examination of careers for statisticians in academia as well as tips to help them stay on top of their field throughout their careers. Each chapter includes thought-provoking discussion questions and a Major Takeaways section that outlines key concepts. Real-world examples illustrate key points, and an FTP site provides additional information on selected topics. A Career in Statistics is an invaluable guide for individuals who are considering or have decided on a career in statistics as well as for statisticians already on the job who want to accelerate their path to success. It also serves as a suitable book for courses on statistical consulting, statistical practice, and statistics in the workplace at the undergraduate and graduate levels.
  career change to data science at 40: Mentoring Programs That Work Jenn Labin, 2017-02-15 Amazing Benefits, Unique Risks A stellar mentor can change the trajectory of a career. And an enduring mentoring program can become an organization’s most powerful talent development tool. But fixing a “broken” mentoring program or developing a new program from scratch requires a unique process, not a standard training methodology. Over the course of her career, seasoned program development specialist Jenn Labin has encountered dozens of mentoring programs unable to stand the test of their organizations’ natural talent cycles. These programs applied a training methodology to a nontraining solution and were ineffective at best and poorly designed at worst. What’s needed is a solid planning framework developed from hands-on experimentation. And you’ll find it here. Mentoring Programs That Work is framed around Labin’s AXLES model—the first framework devoted to the unique challenges of a sustained learning process. This step-by-step approach will help you navigate the early phases of mentoring program alignment all the way through program launch and measurement. Whether your goal is to recruit and retain Millennials or deepen organizational commitment, it’s time to embrace mentoring as one of the most powerful tools of talent development. Mentoring Programs That Work will help your organization succeed by building mentoring programs that connect people and inspire learning transfer.
  career change to data science at 40: Social Science Research Anol Bhattacherjee, 2012-04-01 This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.
  career change to data science at 40: A Curious Moon Rob Conery, 2020-12-13 Starting an application is simple enough, whether you use migrations, a model-synchronizer or good old-fashioned hand-rolled SQL. A year from now, however, when your app has grown and you're trying to measure what's happened... the story can quickly change when data is overwhelming you and you need to make sense of what's been accumulating. Learning how PostgreSQL works is just one aspect of working with data. PostgreSQL is there to enable, enhance and extend what you do as a developer/DBA. And just like any tool in your toolbox, it can help you create crap, slice off some fingers, or help you be the superstar that you are.That's the perspective of A Curious Moon - data is the truth, data is your friend, data is your business. The tools you use (namely PostgreSQL) are simply there to safeguard your treasure and help you understand what it's telling you.But what does it mean to be data-minded? How do you even get started? These are good questions and ones I struggled with when outlining this book. I quickly realized that the only way you could truly understand the power and necessity of solid databsae design was to live the life of a new DBA... thrown into the fire like we all were at some point...Meet Dee Yan, our fictional intern at Red:4 Aerospace. She's just been handed the keys to a massive set of data, straight from Saturn, and she has to load it up, evaluate it and then analyze it for a critical project. She knows that PostgreSQL exists... but that's about it.Much more than a tutorial, this book has a narrative element to it a bit like The Martian, where you get to know Dee and the problems she faces as a new developer/DBA... and how she solves them.The truth is in the data...
  career change to data science at 40: From Strength to Strength Arthur C. Brooks, 2022-02-15 The roadmap for finding purpose, meaning, and success as we age, from bestselling author, Harvard professor, and the Atlantic's happiness columnist Arthur Brooks. Many of us assume that the more successful we are, the less susceptible we become to the sense of professional and social irrelevance that often accompanies aging. But the truth is, the greater our achievements and our attachment to them, the more we notice our decline, and the more painful it is when it occurs. What can we do, starting now, to make our older years a time of happiness, purpose, and yes, success? At the height of his career at the age of 50, Arthur Brooks embarked on a seven-year journey to discover how to transform his future from one of disappointment over waning abilities into an opportunity for progress. From Strength to Strength is the result, a practical roadmap for the rest of your life. Drawing on social science, philosophy, biography, theology, and eastern wisdom, as well as dozens of interviews with everyday men and women, Brooks shows us that true life success is well within our reach. By refocusing on certain priorities and habits that anyone can learn, such as deep wisdom, detachment from empty rewards, connection and service to others, and spiritual progress, we can set ourselves up for increased happiness. Read this book and you, too, can go from strength to strength.
  career change to data science at 40: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail
  career change to data science at 40: Data Science Strategy For Dummies Ulrika Jägare, 2019-06-12 All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.
  career change to data science at 40: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
  career change to data science at 40: Failure Stuart Firestein, 2016 In his sequel to Ignorance (Oxford University Press, 2012), Stuart Firestein shows us that the scientific enterprise is riddled with mistakes and errors - and that this is a good thing! Failure: Why Science Is So Successful delves into the origins of scientific research as a process that relies upon trial and error, one which inevitably results in a hefty dose of failure.
  career change to data science at 40: Data-Driven Science and Engineering Steven L. Brunton, J. Nathan Kutz, 2022-05-05 A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
  career change to data science at 40: Artificial Intelligence Harvard Business Review, 2019 Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.
  career change to data science at 40: Tiny Python Projects Ken Youens-Clark, 2020-07-21 ”Tiny Python Projects is a gentle and amusing introduction to Python that will firm up key programming concepts while also making you giggle.”—Amanda Debler, Schaeffler Key Features Learn new programming concepts through 21-bitesize programs Build an insult generator, a Tic-Tac-Toe AI, a talk-like-a-pirate program, and more Discover testing techniques that will make you a better programmer Code-along with free accompanying videos on YouTube Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book The 21 fun-but-powerful activities in Tiny Python Projects teach Python fundamentals through puzzles and games. You’ll be engaged and entertained with every exercise, as you learn about text manipulation, basic algorithms, and lists and dictionaries, and other foundational programming skills. Gain confidence and experience while you create each satisfying project. Instead of going quickly through a wide range of concepts, this book concentrates on the most useful skills, like text manipulation, data structures, collections, and program logic with projects that include a password creator, a word rhymer, and a Shakespearean insult generator. Author Ken Youens-Clark also teaches you good programming practice, including writing tests for your code as you go. What You Will Learn Write command-line Python programs Manipulate Python data structures Use and control randomness Write and run tests for programs and functions Download testing suites for each project This Book Is Written For For readers familiar with the basics of Python programming. About The Author Ken Youens-Clark is a Senior Scientific Programmer at the University of Arizona. He has an MS in Biosystems Engineering and has been programming for over 20 years. Table of Contents 1 How to write and test a Python program 2 The crow’s nest: Working with strings 3 Going on a picnic: Working with lists 4 Jump the Five: Working with dictionaries 5 Howler: Working with files and STDOUT 6 Words count: Reading files and STDIN, iterating lists, formatting strings 7 Gashlycrumb: Looking items up in a dictionary 8 Apples and Bananas: Find and replace 9 Dial-a-Curse: Generating random insults from lists of words 10 Telephone: Randomly mutating strings 11 Bottles of Beer Song: Writing and testing functions 12 Ransom: Randomly capitalizing text 13 Twelve Days of Christmas: Algorithm design 14 Rhymer: Using regular expressions to create rhyming words 15 The Kentucky Friar: More regular expressions 16 The Scrambler: Randomly reordering the middles of words 17 Mad Libs: Using regular expressions 18 Gematria: Numeric encoding of text using ASCII values 19 Workout of the Day: Parsing CSV files, creating text table output 20 Password strength: Generating a secure and memorable password 21 Tic-Tac-Toe: Exploring state 22 Tic-Tac-Toe redux: An interactive version with type hints
  career change to data science at 40: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace.
  career change to data science at 40: SQL for Data Scientists Renee M. P. Teate, 2021-08-17 Jump-start your career as a data scientist—learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that’s dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn’t cover SQL broadly. Instead, you’ll learn the subset of SQL skills that data analysts and data scientists use frequently. You’ll also gain practical advice and direction on how to think about constructing your dataset. Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner’s perspective, moving your data scientist career forward!
  career change to data science at 40: C# 7.0 in a Nutshell Joseph Albahari, Ben Albahari, 2017-10-11 When you have questions about C# 7.0 or the .NET CLR and its core Framework assemblies, this bestselling guide has the answers you need. Since its debut in 2000, C# has become a language of unusual flexibility and breadth, but its continual growth means there’s always more to learn. Organized around concepts and use cases, this updated edition provides intermediate and advanced programmers with a concise map of C# and .NET knowledge. Dive in and discover why this Nutshell guide is considered the definitive reference on C#. Get up to speed on the C# language, from the basics of syntax and variables to advanced topics such as pointers, operator overloading, and dynamic binding Dig deep into LINQ via three chapters dedicated to the topic Explore concurrency and asynchrony, advanced threading, and parallel programming Work with .NET features, including XML, regular expressions, networking, serialization, reflection, application domains, and security Delve into Roslyn, the modular C# 7.0 compiler-as-a-service
  career change to data science at 40: Aging and the Macroeconomy National Research Council, Division of Behavioral and Social Sciences and Education, Committee on Population, Division on Engineering and Physical Sciences, Board on Mathematical Sciences and Their Applications, Committee on the Long-Run Macroeconomic Effects of the Aging U.S. Population, 2013-01-10 The United States is in the midst of a major demographic shift. In the coming decades, people aged 65 and over will make up an increasingly large percentage of the population: The ratio of people aged 65+ to people aged 20-64 will rise by 80%. This shift is happening for two reasons: people are living longer, and many couples are choosing to have fewer children and to have those children somewhat later in life. The resulting demographic shift will present the nation with economic challenges, both to absorb the costs and to leverage the benefits of an aging population. Aging and the Macroeconomy: Long-Term Implications of an Older Population presents the fundamental factors driving the aging of the U.S. population, as well as its societal implications and likely long-term macroeconomic effects in a global context. The report finds that, while population aging does not pose an insurmountable challenge to the nation, it is imperative that sensible policies are implemented soon to allow companies and households to respond. It offers four practical approaches for preparing resources to support the future consumption of households and for adapting to the new economic landscape.
  career change to data science at 40: JavaScript Allongé Reginald Braithwaite, 2013-10-04 JavaScript Allongé solves two important problems for the ambitious JavaScript programmer. First, JavaScript Allongé gives you the tools to deal with JavaScript bugs, hitches, edge cases, and other potential pitfalls. There are plenty of good directions for how to write JavaScript programs. If you follow them without alteration or deviation, you will be satisfied. Unfortunately, software is a complex thing, full of interactions and side-effects. Two perfectly reasonable pieces of advice when taken separately may conflict with each other when taken together. An approach may seem sound at the outset of a project, but need to be revised when new requirements are discovered. When you “leave the path” of the directions, you discover their limitations. In order to solve the problems that occur at the edges, in order to adapt and deal with changes, in order to refactor and rewrite as needed, you need to understand the underlying principles of the JavaScript programming language in detail. You need to understand why the directions work so that you can understand how to modify them to work properly at or beyond their original limitations. That’s where JavaScript Allongé comes in. JavaScript Allongé is a book about programming with functions, because JavaScript is a programming language built on flexible and powerful functions. JavaScript Allongé begins at the beginning, with values and expressions, and builds from there to discuss types, identity, functions, closures, scopes, and many more subjects up to working with classes and instances. In each case, JavaScript Allongé takes care to explain exactly how things work so that when you encounter a problem, you’ll know exactly what is happening and how to fix it. Second, JavaScript Allongé provides recipes for using functions to write software that is simpler, cleaner, and less complicated than alternative approaches that are object-centric or code-centric. JavaScript idioms like function combinators and decorators leverage JavaScript’s power to make code easier to read, modify, debug and refactor, thus avoiding problems before they happen. JavaScript Allongé teaches you how to handle complex code, and it also teaches you how to simplify code without dumbing it down. As a result, JavaScript Allongé is a rich read releasing many of JavaScript’s subtleties, much like the Café Allongé beloved by coffee enthusiasts everywhere. License: CC BY-SA 3.0 Source is available from Github * https://github.com/justinkelly/javascript-allonge
  career change to data science at 40: Careers in Information Science Louise Schultz, 1963 Presents copy for use as a reference brochure and a giveaway sheet to be distributed to guidance counselors to help them direct young people into the growing field of Information Science. Sets forth that Information Science is concerned with the properties, behavior, and flow of information. Describes how it is used, both by individuals and in large systems. Discusses the opportunities in Information Science and outlines three relatively different career areas: (1) Special Librarianship; (2) Literature Analysis; and (3) Information System Design. Details an educational program appropriate for participation in these career areas. Concludes that Information Science is a new but rapidly growing field pushing the frontiers of human knowledge and, thus, contributing to human well-being and progress. (Author).
  career change to data science at 40: State of The Global Workplace Gallup, 2017-12-19 Only 15% of employees worldwide are engaged at work. This represents a major barrier to productivity for organizations everywhere – and suggests a staggering waste of human potential. Why is this engagement number so low? There are many reasons — but resistance to rapid change is a big one, Gallup’s research and experience have discovered. In particular, organizations have been slow to adapt to breakneck changes produced by information technology, globalization of markets for products and labor, the rise of the gig economy, and younger workers’ unique demands. Gallup’s 2017 State of the Global Workplace offers analytics and advice for organizational leaders in countries and regions around the globe who are trying to manage amid this rapid change. Grounded in decades of Gallup research and consulting worldwide -- and millions of interviews -- the report advises that leaders improve productivity by becoming far more employee-centered; build strengths-based organizations to unleash workers’ potential; and hire great managers to implement the positive change their organizations need not only to survive – but to thrive.
Job Search, Career Advice, and Salary Info | CareerBuilder
CareerBuilder is the most trusted source for job opportunities & advice. Access career resources, personalized salary tools & insights. Find your dream job now!

2025's 100 Best Jobs in America | US News Careers
U.S. News used these qualities to rank the 100 Best Jobs of 2025. You can also explore the Best-Paying Jobs and other more specific career rankings. For more information on how we rank, …

What is a Career? Definition, Paths and Examples | Indeed.com
Jun 6, 2025 · "Career" is often used to refer to a profession, occupation, trade or vocation. A career could define what you do for a living and range from those that require extensive …

Careers and Career Information - CareerOneStop
Find career, training and job search resources just for you. Career assessments to help you find your best career fit. Need to focus on your job search? Six simple steps. File for …

What Is a Career? Definition and Examples - Coursera
Oct 21, 2024 · Learn how a career differs from a job, explore two types of career paths, find out how to choose a career, and more. Some people use the word “career” to describe what they …

Monster Jobs - Job Search, Career Advice & Hiring Resources
Monster is your source for jobs and career opportunities. Search for jobs, read career advice from Monster's job experts, and find hiring and recruiting advice.

CareerExplorer
Find the path that's right for you based on your strengths, interests, and personality. Explore over 1,000 careers and degrees. Learn who thrives in them and why. Take the assessment and get …

Home : Occupational Outlook Handbook: : U.S. Bureau of Labor …
Apr 18, 2025 · The Occupational Outlook Handbook is the government's premier source of career guidance featuring hundreds of occupations—such as carpenters, teachers, and veterinarians. …

The Ultimate List of Career Paths to Explore Your Options
Feb 1, 2022 · You can click through to each profession’s dedicated career profile to learn more about typical duties and responsibilities, salary potential, job outlook, entry requirements, and …

Explore Your Possibilities with Career Dreamer - Grow with Google
Career Dreamer reveals your transferable skills and potential for growth to help you confidently imagine where you could go next. Career Dreamer is grounded in job market data, …

Job Search, Career Advice, and Salary Info | CareerBuilder
CareerBuilder is the most trusted source for job opportunities & advice. Access career resources, personalized salary tools & insights. Find your dream job now!

2025's 100 Best Jobs in America | US News Careers
U.S. News used these qualities to rank the 100 Best Jobs of 2025. You can also explore the Best-Paying Jobs and other more specific career rankings. For more information on how we rank, …

What is a Career? Definition, Paths and Examples | Indeed.com
Jun 6, 2025 · "Career" is often used to refer to a profession, occupation, trade or vocation. A career could define what you do for a living and range from those that require extensive …

Careers and Career Information - CareerOneStop
Find career, training and job search resources just for you. Career assessments to help you find your best career fit. Need to focus on your job search? Six simple steps. File for …

What Is a Career? Definition and Examples - Coursera
Oct 21, 2024 · Learn how a career differs from a job, explore two types of career paths, find out how to choose a career, and more. Some people use the word “career” to describe what they …

Monster Jobs - Job Search, Career Advice & Hiring Resources
Monster is your source for jobs and career opportunities. Search for jobs, read career advice from Monster's job experts, and find hiring and recruiting advice.

CareerExplorer
Find the path that's right for you based on your strengths, interests, and personality. Explore over 1,000 careers and degrees. Learn who thrives in them and why. Take the assessment and get …

Home : Occupational Outlook Handbook: : U.S. Bureau of Labor …
Apr 18, 2025 · The Occupational Outlook Handbook is the government's premier source of career guidance featuring hundreds of occupations—such as carpenters, teachers, and veterinarians. …

The Ultimate List of Career Paths to Explore Your Options
Feb 1, 2022 · You can click through to each profession’s dedicated career profile to learn more about typical duties and responsibilities, salary potential, job outlook, entry requirements, and …

Explore Your Possibilities with Career Dreamer - Grow with Google
Career Dreamer reveals your transferable skills and potential for growth to help you confidently imagine where you could go next. Career Dreamer is grounded in job market data, …