Case Study For Data Analyst

Advertisement



  case study for data analyst: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
  case study for data analyst: Humanities Data Analysis Folgert Karsdorp, Mike Kestemont, Allen Riddell, 2021-01-12 A practical guide to data-intensive humanities research using the Python programming language The use of quantitative methods in the humanities and related social sciences has increased considerably in recent years, allowing researchers to discover patterns in a vast range of source materials. Despite this growth, there are few resources addressed to students and scholars who wish to take advantage of these powerful tools. Humanities Data Analysis offers the first intermediate-level guide to quantitative data analysis for humanities students and scholars using the Python programming language. This practical textbook, which assumes a basic knowledge of Python, teaches readers the necessary skills for conducting humanities research in the rapidly developing digital environment. The book begins with an overview of the place of data science in the humanities, and proceeds to cover data carpentry: the essential techniques for gathering, cleaning, representing, and transforming textual and tabular data. Then, drawing from real-world, publicly available data sets that cover a variety of scholarly domains, the book delves into detailed case studies. Focusing on textual data analysis, the authors explore such diverse topics as network analysis, genre theory, onomastics, literacy, author attribution, mapping, stylometry, topic modeling, and time series analysis. Exercises and resources for further reading are provided at the end of each chapter. An ideal resource for humanities students and scholars aiming to take their Python skills to the next level, Humanities Data Analysis illustrates the benefits that quantitative methods can bring to complex research questions. Appropriate for advanced undergraduates, graduate students, and scholars with a basic knowledge of Python Applicable to many humanities disciplines, including history, literature, and sociology Offers real-world case studies using publicly available data sets Provides exercises at the end of each chapter for students to test acquired skills Emphasizes visual storytelling via data visualizations
  case study for data analyst: Case Studies in Neural Data Analysis Mark A. Kramer, Uri T. Eden, 2016-11-04 A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data. As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis. The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference. A version of this textbook with all of the examples in Python is available on the MIT Press website.
  case study for data analyst: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  case study for data analyst: Data Analytics for Pandemics Gitanjali Rahul Shinde, Asmita Balasaheb Kalamkar, Parikshit N. Mahalle, Nilanjan Dey, 2020-08-30 Epidemic trend analysis, timeline progression, prediction, and recommendation are critical for initiating effective public health control strategies, and AI and data analytics play an important role in epidemiology, diagnostic, and clinical fronts. The focus of this book is data analytics for COVID-19, which includes an overview of COVID-19 in terms of epidemic/pandemic, data processing and knowledge extraction. Data sources, storage and platforms are discussed along with discussions on data models, their performance, different big data techniques, tools and technologies. This book also addresses the challenges in applying analytics to pandemic scenarios, case studies and control strategies. Aimed at Data Analysts, Epidemiologists and associated researchers, this book: discusses challenges of AI model for big data analytics in pandemic scenarios; explains how different big data analytics techniques can be implemented; provides a set of recommendations to minimize infection rate of COVID-19; summarizes various techniques of data processing and knowledge extraction; enables users to understand big data analytics techniques required for prediction purposes.
  case study for data analyst: Fundamentals of Machine Learning for Predictive Data Analytics, second edition John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, 2020-10-20 The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
  case study for data analyst: The Power of People Nigel Guenole, Jonathan Ferrar, Sheri Feinzig, 2017-05-19 Learn from Today’s Most Successful Workforce Analytics Leaders Transforming the immense potential of workforce analytics into reality isn’t easy. Pioneering practitioners have learned crucial lessons that can help you succeed. The Power of People shares their journeys—and their indispensable insights. Drawing on incisive case studies and vignettes, three experts help you bring purpose and clarity to any workforce analytics project, with robust research design and analysis to get reliable insights. They reveal where to start, where to find stakeholder support, and how to earn “quick wins” to build upon. You’ll learn how to sustain success through best-practice data management, technology usage, partnering, and skill building. Finally, you’ll discover how to earn even more value by establishing an analytical mindset throughout HR, and building two key skills: storytelling and visualization. The Power of People will be invaluable to HR executives establishing or leading analytics functions; HR professionals planning analytics projects; and any business executive who wants more value from HR.
  case study for data analyst: Case Studies in Data Analysis Jane F. Gentleman, G.A. Whitmore, 2012-12-06 This volume is a collection of eight Case Studies in Data Analysis that appeared in various issues of the Canadian Journal of Statistics (OS) over a twelve year period from 1982 to 1993. One follow-up article to Case Study No.4 is also included in the volume. The OS's Section on Case Studies in Data Analysis was initiated by a former editor who wanted to increase the analytical content of the journal. We were asked to become Section Co-Editors and to develop a format for the case studies. Each case study presents analyses of a real data set by two or more analysts or teams of analysts working independently in a simulated consulting context. The section aimed at demonstrating the process of statistical analysis and the possible diversity of approaches and conclusions. For each case study, the Co-Editors found a set of real Canadian data, posed what they thought was an interesting statistical problem, and recruited analysts working in Canada who were willing to tackle it. The published case studies describe the data and the problem, and present and discuss the analysts' solutions. For some case studies, the providers of the data were invited to contribute their own analysis.
  case study for data analyst: Thinking with Data Max Shron, 2014-01-20 Many analysts are too concerned with tools and techniques for cleansing, modeling, and visualizing datasets and not concerned enough with asking the right questions. In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills. Thinking with Data helps you learn techniques for turning data into knowledge you can use. You’ll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You’ll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved. Learn a framework for scoping data projects Understand how to pin down the details of an idea, receive feedback, and begin prototyping Use the tools of arguments to ask good questions, build projects in stages, and communicate results Explore data-specific patterns of reasoning and learn how to build more useful arguments Delve into causal reasoning and learn how it permeates data work Put everything together, using extended examples to see the method of full problem thinking in action
  case study for data analyst: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
  case study for data analyst: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.
  case study for data analyst: Multiple Case Study Analysis Robert E. Stake, 2013-04-29 Examining situational complexity is a vital part of social and behavioral science research. This engaging text provides an effective process for studying multiple cases--such as sets of teachers, staff development sessions, or clinics operating in different locations--within one complex program. The process also can be used to investigate broadly occurring phenomena without programmatic links, such as leadership or sibling rivalry. Readers learn to design, analyze, and report studies that balance common issues across the group of cases with the unique features and context of each case. Three actual case reports from a transnational early childhood program illustrate the author's approach, and helpful reproducible worksheets facilitate multicase recording and analysis.
  case study for data analyst: The Modern Business Data Analyst Dominik Jung, 2024 This book illustrates and explains the key concepts of business data analytics from scratch, tackling the day-to-day challenges of a business data analyst. It provides you with all the professional tools you need to predict online shop sales, to conduct A/B tests on marketing campaigns, to generate automated reports with PowerPoint, to extract datasets from Wikipedia, and to create interactive analytics Web apps. Alongside these practical projects, this book provides hands-on coding exercises, case studies, the essential programming tools and the CRISP-DM framework which you'll need to kickstart your career in business data analytics. The different chapters prioritize practical understanding over mathematical theory, using realistic business data and challenges of the Junglivet Whisky Company to intuitively grasp key concepts and ideas. Designed for beginners and intermediates, this book guides you from business data analytics fundamentals to advanced techniques, covering a large number of different techniques and best-practices which you can immediately exploit in your daily work. The book does not assume that you have an academic degree or any experience with business data analytics or data science. All you need is an open mind, willingness to puzzle and think mathematically, and the willingness to write some R code. This book is your all-in-one resource to become proficient in business data analytics with R, equipped with practical skills for the real world.
  case study for data analyst: Secondary Analysis of Electronic Health Records MIT Critical Data, 2016-09-09 This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
  case study for data analyst: The Big Data Revolution Jason Kolb, Jeremy Kolb, 2013 We create more data in a day then we did from the dawn of man through 2003 and approximately 90% of all the world's data has been created in the past 2 years. What does this mean to you? In The Big Data Revolution we explore this very question and reveal the data secrets your competitors don't want you to know. Our world is transforming as the data deluge knocks us out of our old ways and into the data driven reality. Some companies are winning by taking advantages of the opportunities in this evolving world while others are falling behind. Pioneers like Amazon, Target, and Google are blazing a trail that we can follow, and in The Big Data Revolution we help you do just that. Big Data promises to give us a world driven by information and solid data, bringing far greater productivity, increased profits, and lower costs; and in The Big Data Revolution we explore those winning strategies and techniques and the tools behind them. Want to learn how companies like Amazon, Target, and IBM use data to gain competitive advantages? Or how Obama used Big Data tools to better utilize his resources? The Big Data Revolution was written for the non-or-only-slightly-technical business person in mind--but in a way that gives you enough meat behind the ideas so that you have a road map that tells you how to get where you want to go. It uses real-world examples and case studies to illustrates the concepts and explore the technology that makes them happen. The Big Data Revolution is comprised of four parts: Part 1: Data Science In Part 1 we first introduce you to the world of data science and analytics. These are the tools companies and governments use to refine their crude data into valuable insights. In this section, we'll look at the magic behind Amazon's success, and see how data is leading towards a near Minority Report future. Part 2: Big Data Data is growing at an exceptional rate, we produce more data now in a day than we did from the dawn of man till 2003. This explosion of data creates many unique struggles as well as opportunities. In this section we'll look at how Obama invested in Big Data during his presidential campaign, and explore how startups are revealing data that saves their clients substantial capital. Part 3: Tools of the trade Data Scientists cannot just look at big data and get value from it, it doesn't matter how good they are. The data is just too big. So companies like IBM and Microsoft build tools that help people make sense of data, and hopefully discover new useful insights from it. The two primary categories of tools you need to be aware of are Business Intelligence and Data Discovery. In this section we explore these broad terms, and show how companies are designing more specialized tools for specific purposes. Part 4: Gazing into the Future In order to position yourself well for what is to come you need to know where we are now and almost more importantly where we are going to be in the near future. In this section we explore the trends that are going to matter as we move forward in this emerging technology industry. Computerized Data Analytics is truly still in its early stages of development, and things are going to change as new innovations come to the forefront. If we are serious about gaining the data advantage, we need to stay ahead of this curve. The Big Data Revolution is your tool to understanding this complex new reality of your world. Get it today and don't miss out on the data driven future. The world is changing. Are you ready?
  case study for data analyst: CASE STUDIES ON MARKETING IN THE INDIAN CONTEXT. , 2016
  case study for data analyst: Data Analytics for Intelligent Transportation Systems Mashrur Chowdhury, Kakan Dey, Amy Apon, 2024-11-02 Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics
  case study for data analyst: Cases in Intelligence Analysis Sarah Miller Beebe, Randolph H. Pherson, 2014-04-28 In their Second Edition of Cases in Intelligence Analysis: Structured Analytic Techniques in Action, accomplished instructors and intelligence practitioners Sarah Miller Beebe and Randolph H. Pherson offer robust, class-tested cases studies of events in foreign intelligence, counterintelligence, terrorism, homeland security, law enforcement, and decision-making support. Designed to give analysts-in-training an opportunity to apply structured analytic techniques and tackle real-life problems, each turnkey case delivers a captivating narrative, discussion questions, recommended readings, and a series of engaging analytic exercises.
  case study for data analyst: Data Science Projects with Python Stephen Klosterman, 2019-04-30 Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful.
  case study for data analyst: Analysis of Neural Data Robert E. Kass, Uri T. Eden, Emery N. Brown, 2014-07-08 Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.
  case study for data analyst: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  case study for data analyst: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics.
  case study for data analyst: HBR Guide to Data Analytics Basics for Managers (HBR Guide Series) Harvard Business Review, 2018-03-13 Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes
  case study for data analyst: Head First Data Analysis Michael Milton, 2009-07-24 A guide for data managers and analyzers. It shares guidelines for identifying patterns, predicting future outcomes, and presenting findings to others.
  case study for data analyst: Murach's Python for Data Analysis Scott McCoy, 2021-08 Data is collected everywhere these days, in massive quantities. But data alone does not do you much good. That is why data analysis -- making sense of the data -- has become a must-have skill in the fields of business, science, and social science. But it is a tough skill to acquire. The concepts are challenging, and too many books and online tutorials treat only parts of the total skillset needed. Now, though, this book draws all the essential skills together and presents them in a clear and example-packed way. So you will soon be applying your programming skills to complex data analysis problems, more easily than you ever thought possible. In terms of content, this book gets you started the right way by using Pandas for data analysis and Seaborn for data visualisation, with JupyterLab as your IDE. Then, it helps you master descriptive analysis by teaching you how to get, clean, prepare, and analyse data, including time-series data. Next, it gets you started with predictive analysis by showing you how to use linear regression models to predict unknown and future values. And to tie everything together, it gives you 4 real-world case studies that show you how to apply your new skills to political, environmental, social, and sports analysis. At the end, you will have a solid set of the professional skills that can lead to all sorts of new career opportunities. Sound too good to be true? Download a sample chapter for free from the Murach website and see for yourself how this book can turn you into the data analyst that companies are looking for.
  case study for data analyst: Introduction to Educational Research W. Newton Suter, 2012 W. Newton Suter argues that what is important in a changing education landscape is the ability to think clearly about research methods, reason through complex problems and evaluate published research. He explains how to evaluate data and establish its relevance.
  case study for data analyst: Data Analytics in Biomedical Engineering and Healthcare Kun Chang Lee, Sanjiban Sekhar Roy, Pijush Samui, Vijay Kumar, 2020-10-18 Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks
  case study for data analyst: Graphical Data Analysis with R Antony Unwin, 2015-03-25 See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.
  case study for data analyst: Text Mining and Analysis Dr. Goutam Chakraborty, Murali Pagolu, Satish Garla, 2014-11-22 Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.
  case study for data analyst: Data Analysis Using SQL and Excel Gordon S. Linoff, 2010-09-16 Useful business analysis requires you to effectively transform data into actionable information. This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like.
  case study for data analyst: Solving Data Science Case Studies with Python Aman Kharwal, 2021-06-28 This book is specially written for those who know the basics of the Python programming language as well as the necessary Python libraries you need for data science like NumPy, Pandas, Matplotlib, Seaborn, Plotly, and Scikit-learn. This book aims to teach you how to think while solving a business problem with your data science skills. To achieve the goal of this book, I started by giving you all the knowledge you need to have before you apply for your first data science job. The technical skills and soft skills you need to become a Data Scientist are also discussed in this book. Next, you'll find some of the best data science case studies that will help you understand what your approach should be while solving a business problem. Ultimately, you will also find some of the most important data science interview questions with their solutions at the end. I hope this book will add a lot of value to your data science skills and that you will feel confident in your entire journey to become Data Scientist.
  case study for data analyst: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  case study for data analyst: Handbook of Data Analysis Melissa A Hardy, Alan Bryman, 2009-06-17 ′This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond′ - Environment and Planning ′The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University ′With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa ′This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis.
  case study for data analyst: Python for Data Analysis Wes McKinney, 2017-09-25 Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
  case study for data analyst: Data Analytics in Medicine Information Resources Management Association, 2019-11-18 This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations--
  case study for data analyst: Analytics Phil Simon, 2017-07-03 For years, organizations have struggled to make sense out of their data. IT projects designed to provide employees with dashboards, KPIs, and business-intelligence tools often take a year or more to reach the finish line...if they get there at all. This has always been a problem. Today, though, it's downright unacceptable. The world changes faster than ever. Speed has never been more important. By adhering to antiquated methods, firms lose the ability to see nascent trends—and act upon them until it's too late. But what if the process of turning raw data into meaningful insights didn't have to be so painful, time-consuming, and frustrating? What if there were a better way to do analytics? Fortunately, you're in luck... Analytics: The Agile Way is the eighth book from award-winning author and Arizona State University professor Phil Simon. Analytics: The Agile Way demonstrates how progressive organizations such as Google, Nextdoor, and others approach analytics in a fundamentally different way. They are applying the same Agile techniques that software developers have employed for years. They have replaced large batches in favor of smaller ones...and their results will astonish you. Through a series of case studies and examples, Analytics: The Agile Way demonstrates the benefits of this new analytics mind-set: superior access to information, quicker insights, and the ability to spot trends far ahead of your competitors.
  case study for data analyst: Research Training for Social Scientists Dawn Burton, 2000-03-15 With indispensable advice for students from all social science backgrounds, this handbook provides the core conceptual and practical skills to embark on succesful research. The organization of the book reflects the knowledge that is required in order to become a competent and effective researcher. It follows the life-cycle of the research project: it begins with a discussion of ethical and philosphical issues; presents guides to both quantitative and qualitative data collection and analysis; provides help on using computers in research; and includes advice on how to write up and present a research project. Based on the UK Economic and Social Research Council advice on the training which students should undertake in preparation for postgraduate research, this book will be invaluable for all beginning researchers.
  case study for data analyst: Data Analytics and AI Jay Liebowitz, 2020-08-06 Analytics and artificial intelligence (AI), what are they good for? The bandwagon keeps answering, absolutely everything! Analytics and artificial intelligence have captured the attention of everyone from top executives to the person in the street. While these disciplines have a relatively long history, within the last ten or so years they have exploded into corporate business and public consciousness. Organizations have rushed to embrace data-driven decision making. Companies everywhere are turning out products boasting that artificial intelligence is included. We are indeed living in exciting times. The question we need to ask is, do we really know how to get business value from these exciting tools? Unfortunately, both the analytics and AI communities have not done a great job in collaborating and communicating with each other to build the necessary synergies. This book bridges the gap between these two critical fields. The book begins by explaining the commonalities and differences in the fields of data science, artificial intelligence, and autonomy by giving a historical perspective for each of these fields, followed by exploration of common technologies and current trends in each field. The book also readers introduces to applications of deep learning in industry with an overview of deep learning and its key architectures, as well as a survey and discussion of the main applications of deep learning. The book also presents case studies to illustrate applications of AI and analytics. These include a case study from the healthcare industry and an investigation of a digital transformation enabled by AI and analytics transforming a product-oriented company into one delivering solutions and services. The book concludes with a proposed AI-informed data analytics life cycle to be applied to unstructured data.
  case study for data analyst: Applied Predictive Analytics Dean Abbott, 2014-04-14 Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.
  case study for data analyst: Practical Data Analysis Using Jupyter Notebook Marc Wintjen, 2020-06-19 Understand data analysis concepts to make accurate decisions based on data using Python programming and Jupyter Notebook Key FeaturesFind out how to use Python code to extract insights from data using real-world examplesWork with structured data and free text sources to answer questions and add value using dataPerform data analysis from scratch with the help of clear explanations for cleaning, transforming, and visualizing dataBook Description Data literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data. After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps. Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries. By the end of this book, you'll have gained the practical skills you need to analyze data with confidence. What you will learnUnderstand the importance of data literacy and how to communicate effectively using dataFind out how to use Python packages such as NumPy, pandas, Matplotlib, and the Natural Language Toolkit (NLTK) for data analysisWrangle data and create DataFrames using pandasProduce charts and data visualizations using time-series datasetsDiscover relationships and how to join data together using SQLUse NLP techniques to work with unstructured data to create sentiment analysis modelsDiscover patterns in real-world datasets that provide accurate insightsWho this book is for This book is for aspiring data analysts and data scientists looking for hands-on tutorials and real-world examples to understand data analysis concepts using SQL, Python, and Jupyter Notebook. Anyone looking to evolve their skills to become data-driven personally and professionally will also find this book useful. No prior knowledge of data analysis or programming is required to get started with this book.
CASE Equipment | CASE - CASE Construction Equipment
Powerful and stable machines capable of moving the earth without tearing up the turf below. CASE compact track loaders are simple, intuitive and productive — and we've got a solution …

No one will push harder than CASE Construction Equipment
Seven Brand-new CASE machines including two new midi excavators, two new compact wheel loaders, two new motor graders and a telescopic small articulated loader.

421G Compact Wheel Loader - CASE Construction Equipment
CASE dealers provide world-class equipment and aftermarket support, industry-leading warranties and flexible financing.

CASE Construction Equipment
CASE sells and supports a full line of construction equipment around the world, including backhoe loaders, excavators, wheel loaders, dozers, skid steer loaders, compaction equipment, …

Maquinaria de Construcción | CASE ES - CASE Construction …
Confía en los líderes en maquinaria de construcción. CASE te ofrece soluciones innovadoras, calidad insuperable y rendimiento excepcional.

CASE Maquinaria de Construcción en México | Tractores, …
CASE México ofrece una amplia gama de maquinaria pesada para la construcción: tractores, excavadoras, retroexcavadoras, compactadoras y más. Descubre soluciones eficientes y …

Construction Machinery & Equipment | CASE CIS - CASE …
Explore high-performance CASE construction equipment, designed for power, precision, and efficiency across every job site.

CASE SL27 TR Small Articulated Loader | CASE - CASE Construction …
CASE dealers provide world-class equipment and aftermarket support, industry-leading warranties and flexible financing.

695SV Construction King™ Center Pivot Backhoe Loader - CASE
It’s the new CASE 695SV Construction King™ Center Pivot Backhoe Loader. And it’s 21,540 lb. of pure digging, loading, pushing, trenching and drilling might. The first thing to jump out at you …

Equipamentos de Construção e Máquinas Pesadas - Case …
Descubra a linha completa de equipamentos de construção da Case, incluindo retroescavadeiras, escavadeiras e mais. Explore soluções inovadoras para todos os seus projetos de construção.

CASE Equipment | CASE - CASE Construction Equipment
Powerful and stable machines capable of moving the earth without tearing up the turf below. CASE compact track loaders are simple, intuitive and productive — and we've got a solution …

No one will push harder than CASE Construction Equipment
Seven Brand-new CASE machines including two new midi excavators, two new compact wheel loaders, two new motor graders and a telescopic small articulated loader.

421G Compact Wheel Loader - CASE Construction Equipment
CASE dealers provide world-class equipment and aftermarket support, industry-leading warranties and flexible financing.

CASE Construction Equipment
CASE sells and supports a full line of construction equipment around the world, including backhoe loaders, excavators, wheel loaders, dozers, skid steer loaders, compaction equipment, forklifts, …

Maquinaria de Construcción | CASE ES - CASE Construction …
Confía en los líderes en maquinaria de construcción. CASE te ofrece soluciones innovadoras, calidad insuperable y rendimiento excepcional.

CASE Maquinaria de Construcción en México | Tractores, …
CASE México ofrece una amplia gama de maquinaria pesada para la construcción: tractores, excavadoras, retroexcavadoras, compactadoras y más. Descubre soluciones eficientes y …

Construction Machinery & Equipment | CASE CIS - CASE …
Explore high-performance CASE construction equipment, designed for power, precision, and efficiency across every job site.

CASE SL27 TR Small Articulated Loader | CASE - CASE Construction …
CASE dealers provide world-class equipment and aftermarket support, industry-leading warranties and flexible financing.

695SV Construction King™ Center Pivot Backhoe Loader - CASE
It’s the new CASE 695SV Construction King™ Center Pivot Backhoe Loader. And it’s 21,540 lb. of pure digging, loading, pushing, trenching and drilling might. The first thing to jump out at you is …

Equipamentos de Construção e Máquinas Pesadas - Case …
Descubra a linha completa de equipamentos de construção da Case, incluindo retroescavadeiras, escavadeiras e mais. Explore soluções inovadoras para todos os seus projetos de construção.