Advertisement
coursera data science roadmap: Learning How to Learn Barbara Oakley, PhD, Terrence Sejnowski, PhD, Alistair McConville, 2018-08-07 A surprisingly simple way for students to master any subject--based on one of the world's most popular online courses and the bestselling book A Mind for Numbers A Mind for Numbers and its wildly popular online companion course Learning How to Learn have empowered more than two million learners of all ages from around the world to master subjects that they once struggled with. Fans often wish they'd discovered these learning strategies earlier and ask how they can help their kids master these skills as well. Now in this new book for kids and teens, the authors reveal how to make the most of time spent studying. We all have the tools to learn what might not seem to come naturally to us at first--the secret is to understand how the brain works so we can unlock its power. This book explains: Why sometimes letting your mind wander is an important part of the learning process How to avoid rut think in order to think outside the box Why having a poor memory can be a good thing The value of metaphors in developing understanding A simple, yet powerful, way to stop procrastinating Filled with illustrations, application questions, and exercises, this book makes learning easy and fun. |
coursera data science roadmap: Python Rahul Mula, 2022-01-03 When you get up, what you cook, eat, where you go, what you buy, how will be your health all depend on the data! Data Science with Python is a book created to hold the hands of beginners and help them stand in the field of data science! It will start with complete basics like why learn data science? And what are its uses? Also, you should prefer reading it now because: Easy to understand and help beginners to play with data instead of dealing with it Use of infographics and illustrations to relieve the boredom of lengthy texts Covering all the essential libraries and packages like Pandas, NumPy, SciPy and Matplotlib Exercise & questions to practice your skills Learn how to read data in HTML, CSV, JSON, and excel files Learn how to process data using the NumPy and SciPy package Learn how to analyze data using the Pandas library Learn how to plot graphs, charts, 3D graphs, etc using the Matplotlib library Test your knowledge with a PROJECT at the end Data Science with Python is a complete guidebook for anyone who wants to become an ace data scientist using Python. This book will not start with Python basics but data science basics! |
coursera data science roadmap: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases |
coursera data science roadmap: Python for Everybody Charles R. Severance, 2016-04-09 Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet.Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software.This book uses the Python 3 language. The earlier Python 2 version of this book is titled Python for Informatics: Exploring Information.There are free downloadable electronic copies of this book in various formats and supporting materials for the book at www.pythonlearn.com. The course materials are available to you under a Creative Commons License so you can adapt them to teach your own Python course. |
coursera data science roadmap: Modern Robotics Kevin M. Lynch, Frank C. Park, 2017-05-25 A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics. |
coursera data science roadmap: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace. |
coursera data science roadmap: Healthcare Data Analytics Chandan K. Reddy, Charu C. Aggarwal, 2015-06-23 At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available |
coursera data science roadmap: Data Science on AWS Chris Fregly, Antje Barth, 2021-04-07 With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more |
coursera data science roadmap: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
coursera data science roadmap: Targeted Learning Mark J. van der Laan, Sherri Rose, 2011-06-17 The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies. |
coursera data science roadmap: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it! |
coursera data science roadmap: The AI Marketing Canvas Raj Venkatesan, Jim Lecinski, 2021-05-18 This book offers a direct, actionable plan CMOs can use to map out initiatives that are properly sequenced and designed for success—regardless of where their marketing organization is in the process. The authors pose the following critical questions to marketers: (1) How should modern marketers be thinking about artificial intelligence and machine learning? and (2) How should marketers be developing a strategy and plan to implement AI into their marketing toolkit? The opening chapters provide marketing leaders with an overview of what exactly AI is and how is it different than traditional computer science approaches. Venkatesan and Lecinski, then, propose a best-practice, five-stage framework for implementing what they term the AI Marketing Canvas. Their approach is based on research and interviews they conducted with leading marketers, and offers many tangible examples of what brands are doing at each stage of the AI Marketing Canvas. By way of guidance, Venkatesan and Lecinski provide examples of brands—including Google, Lyft, Ancestry.com, and Coca-Cola—that have successfully woven AI into their marketing strategies. The book concludes with a discussion of important implications for marketing leaders—for your team and culture. |
coursera data science roadmap: Applied Predictive Modeling Max Kuhn, Kjell Johnson, 2013-05-17 Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. |
coursera data science roadmap: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
coursera data science roadmap: Ultralearning Scott H. Young, 2019-08-06 Now a Wall Street Journal bestseller. Learn a new talent, stay relevant, reinvent yourself, and adapt to whatever the workplace throws your way. Ultralearning offers nine principles to master hard skills quickly. This is the essential guide to future-proof your career and maximize your competitive advantage through self-education. In these tumultuous times of economic and technological change, staying ahead depends on continual self-education—a lifelong mastery of fresh ideas, subjects, and skills. If you want to accomplish more and stand apart from everyone else, you need to become an ultralearner. The challenge of learning new skills is that you think you already know how best to learn, as you did as a student, so you rerun old routines and old ways of solving problems. To counter that, Ultralearning offers powerful strategies to break you out of those mental ruts and introduces new training methods to help you push through to higher levels of retention. Scott H. Young incorporates the latest research about the most effective learning methods and the stories of other ultralearners like himself—among them Benjamin Franklin, chess grandmaster Judit Polgár, and Nobel laureate physicist Richard Feynman, as well as a host of others, such as little-known modern polymath Nigel Richards, who won the French World Scrabble Championship—without knowing French. Young documents the methods he and others have used to acquire knowledge and shows that, far from being an obscure skill limited to aggressive autodidacts, ultralearning is a powerful tool anyone can use to improve their career, studies, and life. Ultralearning explores this fascinating subculture, shares a proven framework for a successful ultralearning project, and offers insights into how you can organize and exe - cute a plan to learn anything deeply and quickly, without teachers or budget-busting tuition costs. Whether the goal is to be fluent in a language (or ten languages), earn the equivalent of a college degree in a fraction of the time, or master multiple tools to build a product or business from the ground up, the principles in Ultralearning will guide you to success. |
coursera data science roadmap: Introducing MLOps Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim Zentici, Adrien Lavoillotte, Makoto Miyazaki, Lynn Heidmann, 2020-11-30 More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized |
coursera data science roadmap: ADKAR Jeff Hiatt, 2006 In his first complete text on the ADKAR model, Jeff Hiatt explains the origin of the model and explores what drives each building block of ADKAR. Learn how to build awareness, create desire, develop knowledge, foster ability and reinforce changes in your organization. The ADKAR Model is changing how we think about managing the people side of change, and provides a powerful foundation to help you succeed at change. |
coursera data science roadmap: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
coursera data science roadmap: The Elements of Computing Systems Noam Nisan, Shimon Schocken, 2008 This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system. |
coursera data science roadmap: Machine Learning for Hackers Drew Conway, John Myles White, 2012-02-13 If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data |
coursera data science roadmap: Executive Data Science Roger Peng, 2016-08-03 In this concise book you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You'll get a crash course in data science so that you'll be conversant in the field and understand your role as a leader. You'll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You'll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you'll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects. |
coursera data science roadmap: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Aurélien Géron, 2019-09-05 Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets |
coursera data science roadmap: Machine Learning for Algorithmic Trading Stefan Jansen, 2020-07-31 Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required. |
coursera data science roadmap: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development. |
coursera data science roadmap: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021 |
coursera data science roadmap: Fundamentals of Deep Learning Nikhil Buduma, Nicholas Locascio, 2017-05-25 With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning |
coursera data science roadmap: Statistics Done Wrong Alex Reinhart, 2015-03-01 Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are doing it wrong. Statistics Done Wrong is a pithy, essential guide to statistical blunders in modern science that will show you how to keep your research blunder-free. You'll examine embarrassing errors and omissions in recent research, learn about the misconceptions and scientific politics that allow these mistakes to happen, and begin your quest to reform the way you and your peers do statistics. You'll find advice on: –Asking the right question, designing the right experiment, choosing the right statistical analysis, and sticking to the plan –How to think about p values, significance, insignificance, confidence intervals, and regression –Choosing the right sample size and avoiding false positives –Reporting your analysis and publishing your data and source code –Procedures to follow, precautions to take, and analytical software that can help Scientists: Read this concise, powerful guide to help you produce statistically sound research. Statisticians: Give this book to everyone you know. The first step toward statistics done right is Statistics Done Wrong. |
coursera data science roadmap: Engineering Software as a Service Armando Fox, David A. Patterson, 2016 (NOTE: this Beta Edition may contain errors. See http://saasbook.info for details.) A one-semester college course in software engineering focusing on cloud computing, software as a service (SaaS), and Agile development using Extreme Programming (XP). This book is neither a step-by-step tutorial nor a reference book. Instead, our goal is to bring a diverse set of software engineering topics together into a single narrative, help readers understand the most important ideas through concrete examples and a learn-by-doing approach, and teach readers enough about each topic to get them started in the field. Courseware for doing the work in the book is available as a virtual machine image that can be downloaded or deployed in the cloud. A free MOOC (massively open online course) at saas-class.org follows the book's content and adds programming assignments and quizzes. See http://saasbook.info for details.(NOTE: this Beta Edition may contain errors. See http://saasbook.info for details.) A one-semester college course in software engineering focusing on cloud computing, software as a service (SaaS), and Agile development using Extreme Programming (XP). This book is neither a step-by-step tutorial nor a reference book. Instead, our goal is to bring a diverse set of software engineering topics together into a single narrative, help readers understand the most important ideas through concrete examples and a learn-by-doing approach, and teach readers enough about each topic to get them started in the field. Courseware for doing the work in the book is available as a virtual machine image that can be downloaded or deployed in the cloud. A free MOOC (massively open online course) at saas-class.org follows the book's content and adds programming assignments and quizzes. See http://saasbook.info for details. |
coursera data science roadmap: Forecasting: principles and practice Rob J Hyndman, George Athanasopoulos, 2018-05-08 Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. |
coursera data science roadmap: Programming Collective Intelligence Toby Segaran, 2007-08-16 Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details. -- Dan Russell, Google Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths. -- Tim Wolters, CTO, Collective Intellect |
coursera data science roadmap: Financial Services Revolution Alex Tapscott, 2020 |
coursera data science roadmap: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
coursera data science roadmap: Reinforcement Learning, second edition Richard S. Sutton, Andrew G. Barto, 2018-11-13 The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning. |
coursera data science roadmap: The Surprising Power of Liberating Structures Henri Lipmanowicz, Keith McCandless, 2014-10-28 Smart leaders know that they would greatly increase productivity and innovation if only they could get everyone fully engaged. So do professors, facilitators and all changemakers. The challenge is how. Liberating Structures are novel, practical and no-nonsense methods to help you accomplish this goal with groups of any size. Prepare to be surprised by how simple and easy they are for anyone to use. This book shows you how with detailed descriptions for putting them into practice plus tips on how to get started and traps to avoid. It takes the design and facilitation methods experts use and puts them within reach of anyone in any organization or initiative, from the frontline to the C-suite. Part One: The Hidden Structure of Engagement will ground you with the conceptual framework and vocabulary of Liberating Structures. It contrasts Liberating Structures with conventional methods and shows the benefits of using them to transform the way people collaborate, learn, and discover solutions together. Part Two: Getting Started and Beyond offers guidelines for experimenting in a wide range of applications from small group interactions to system-wide initiatives: meetings, projects, problem solving, change initiatives, product launches, strategy development, etc. Part Three: Stories from the Field illustrates the endless possibilities Liberating Structures offer with stories from users around the world, in all types of organizations -- from healthcare to academic to military to global business enterprises, from judicial and legislative environments to R&D. Part Four: The Field Guide for Including, Engaging, and Unleashing Everyone describes how to use each of the 33 Liberating Structures with step-by-step explanations of what to do and what to expect. Discover today what Liberating Structures can do for you, without expensive investments, complicated training, or difficult restructuring. Liberate everyone's contributions -- all it takes is the determination to experiment. |
coursera data science roadmap: How to Write and Publish a Scientific Paper Robert A. Day, 1989-03-01 |
coursera data science roadmap: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
coursera data science roadmap: Naked Statistics: Stripping the Dread from the Data Charles Wheelan, 2013-01-07 A New York Times bestseller Brilliant, funny…the best math teacher you never had. —San Francisco Chronicle Once considered tedious, the field of statistics is rapidly evolving into a discipline Hal Varian, chief economist at Google, has actually called sexy. From batting averages and political polls to game shows and medical research, the real-world application of statistics continues to grow by leaps and bounds. How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more. For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions. And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life. |
coursera data science roadmap: Getting Started with Data Science Murtaza Haider, 2015-12-14 Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon. |
coursera data science roadmap: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
coursera data science roadmap: Multivariable Calculus James Stewart, 2011-09-27 Success in your calculus course starts here! James Stewart's CALCULUS, 7e, International Metric texts are world-wide best-sellers for a reason: they are clear, accurate, and filled with relevant, real-world examples. With MULTIVARIABLE CALCULUS, 7e, International Metric Edition Stewart conveys not only the utility of calculus to help you develop technical competence, but also gives you an appreciation for the intrinsic beauty of the subject. His patient examples and built-in learning aids will help you build your mathematical confidence and achieve your goals in the course! |
Coursera | Degrees, Certificates, & Free Online Courses
Take the next step toward your personal and professional goals with Coursera. Join now to receive personalized recommendations from the full Coursera catalog. Join for Free
Coursera Login - Continue Learning
Log into your Coursera account with your email address, Google, Facebook, or Apple credential. Learn online and earn valuable credentials from top universities like Yale, Michigan, Stanford, …
Coursera Online Course Catalog by Topic and Skill | Coursera
Choose from hundreds of free courses or pay to earn a Course or Specialization Certificate. Explore our catalog of online degrees, certificates, Specializations, & MOOCs in data …
Top Online Courses and Certifications [2025] | Coursera Learn Online
Join Coursera for free and transform your career with degrees, certificates, Specializations, & MOOCs in data science, computer science, business, and hundreds of other topics. For …
How does Coursera work? Get started on Coursera | Coursera
Coursera offers flexible, affordable, job-relevant online learning to individuals and organizations worldwide. Enroll for free today and achieve your goals on Coursera.
Best Free Courses & Certificates Online [2025] | Coursera
Reach your career goals with Coursera Plus Subscribe and get unlimited access to 7000+ courses, projects, Specializations, and Professional Certificates Learn more
What Is Coursera?
Apr 18, 2025 · Coursera is a global online learning platform that offers anyone, anywhere, access to online courses and degrees from leading universities and companies.
Coursera | Online Professional Certificate Programs
Earn a career credential or prepare for a certification with Professional Certificate programs on Coursera. Learn at your own pace from top companies and universities, apply your new skills …
Online Degrees and Postgraduate Studies from Top Universities
2 days ago · Earning your degree from a leading university on Coursera means experiencing greater flexibility than in-person degree programs, so you can earn the best degree for your …
Coursera Signup - Start Learning
Join Coursera for free. Create a profile to get a personalized learning experience with course recommendations.
Albert Jordan Resume04282025
• Developed a Technology Roadmap process in collaboration with Bell Labs, driving innovation in wireless networks. ... , Self-Driving Car Engineering, NLP, Machine Learning/Data Science • …
IBM DATA SCIENCE CAPSTONE PROJECT - Amazon Web …
IBM Applied Data Science Capstone | Daniel Barnes | 2022 11 EXPLORATORY DATA ANALYSIS (EDA) –SQL To gather some information about the dataset, some SQL queries …
Peer-graded Assignment: Analyzing Historical Stock/Revenue …
1 Peer-graded Assignment: Analyzing Historical Stock/Revenue Data and Building a Dashboard Name: Juan Francisco Araujo Bayas Summary Table Beginning of code to answer to the …
WITH R DATA SCIENCE PROJECT - CAPSTONE - Amazon Web …
From data collection to presentation, the project deployed a range of data. techniques including SQL, ggplot2, Shiny and Leaflet. Data collection. Data wrangling. Data analysis and …
Diplomado Big data. Decisiones Basadas en Datos - UVM
3. Consideraciones de Big Data 4. Estructura y arquitectura de Big Data 5. Big Data y su relación con los negocios Identificar los elementos que conforman la tecnología de Big Data y el …
DOD Skillbridge Program Step-by-Step Guide - AllegiantVETS
Mar 4, 2024 · b] Coursera Enrollment: • You'll receive an enrollment invitation directly from Coursera on the Friday before your start date. • If you don't receive registration details by the …
Introduction Preparedness of African Youth for the Future of …
AI and Tech-related roles often require a background in Science, Technology, Engineering, and Mathematics (STEM) fields. ... Another factor that limits the preparedness of African youth for …
Assessing Preparedness of African Youth for the Future of …
AI and Tech-related roles often require a background in Science, Technology, Engineering, and Mathematics (STEM) fields. However, less than 25 percent of African higher ... Another factor …
AI Transformation Playbook - Landing AI
in their having even more user data (C).This positive feedback loop is hard for competitors to break into. Data is a key asset for AI systems. Thus, many great AI companies also have a …
PROFESSIONAL CERTIFICATE PROGRAM IN MACHINE …
(at minimum) in a technical area such as computer science, statistics, physics, or electrical engineering. Professionals who will find the curriculum helpful include: f Data scientists and …
Master of Science in Data Science (MS-DS) on Coursera
May 12, 2021 · Welcome to the Master of Science in Data Science (MS-OS), a cutting-edge program designed for the twenty-first century. Hosted on the internationally acclaimed …
2020 Impact Report - Coursera
Welcome to Coursera’s first-ever impact report. Coursera was founded in 2012 with a mission of providing universal access to world-class learning. At no time in Coursera’s ... 140 countries …
Artificial Intelligence and Information & Communications …
Coursera, a well-known online education platform. The partnership launched an online Data Science scholarship for individuals that aim to jumpstart their careers in data science, and may …
Artificial Intelligence and Information & Communications …
Coursera, a well-known online education platform. The partnership launched an online Data Science scholarship for individuals that aim to jumpstart their careers in data science, and may …
A Course In Miracles Complete And Annotated Edition
Probability Bayesian Statistics General Mathematics Calculus Graphing Statistics Data Science Data Analysis Plot Graphics ... a Course or Specialization Certificate Explore our catalog of …
V. RESULT - ijesr.org
Data Analyst, UI/UX Designer, or other paths. II. LITERATURE SURVEY Many existing platforms like Coursera, Udemy, LeetCode, and Grammarly serve individual needs such as learning, …
https ://roadmap.sh Python
Variables and Data Types Conditionals Lists, Tuples, Sets, Dictionaries Type Casting, Exceptions Functions, Builtin Functions ... Advanced Topics Modules Builtin Custom Iterators Learn a …
The Job Skills of 2024 - assets.ctfassets.net
Introduction | Business Skills | Data Science Skills | Tech Skills | Conclusion | Appendix Coursera’s third annual Job Skills Report helps guide institutions through our rapidly changing …
2022 Roadmap on Neuromorphic Computing and …
Modern computation based on the von Neumann architecture is today a mature cutting- edge science. In the Von Neumann architecture, processing and memory units are implemented as …
A Guide On How To Become A Data Scientist (Step By Step …
%PDF-1.7 %¡³Å× 1 0 obj > endobj 2 0 obj > endobj 3 0 obj > endobj 4 0 obj >/XObject >>>/Rotate 0/TrimBox[ 0 0 566.929 765.354]>> endobj 5 0 obj >stream H‰*äÒw ...
2025 Job Skills Report - trendsunplugged.io
*Unless otherwise cited, all skills data featured in the report is based on Coursera data. See the Methodology section for more details. Coursera original research Each year, we surface …
IBM-FINAL CAPSTONE PROJECT - Amazon Web Services
4.Real-time Data Processing: The demand for real-time data processing highlights the need for instant insights and data-driven decision-making. Databases capable of real-time processing …
Comprehensive Roadmap to become a Data Analyst in 2025
Comprehensive Roadmap to become a Data Analyst in 2025 Month 1: Data Exploration with Excel and Basics of SQL Month 2: Advance SQL and Data Storytelling Month 3: EDA with …
Programme Specification 2022–2023 - University of London
through Coursera, the world’s largest online learning platform, to provide immersive learning experiences. United States export control regulations prevent Coursera from offering services …
ML ROADMAP ULTIMATE GUIDE & REFERENCES
ML ROADMAP – ULTIMATE GUIDE & REFERENCES Things I have mentioned in this PDF will help you kickstart your successful career in AI/ML. I have added the resource links ... (Amazing …
INTRODUCTION TO NOSQL DATABASE (Professional Elective -II)
2.explain the Column-Family Data Store Features.(L2) 3.summarize Event Logging, Content Management Systems.(L2) UNIT-V (10 Lectures) NoSQL Key/Value databases using Riak, …
Computer Science - Roadmap
Computer Science Find the detailed version of this roadmap along with resources and other roadmaps Pick a Language https://roadmap.sh Go Python C# Data Structures Array Rust …
Data Scientist The Definitive Guide To Becoming A Data …
opportunities. But the path to becoming a successful data scientist can seem daunting. This guide addresses your key pain points, providing a clear roadmap to navigate the challenges and …
DATA SCIENCE ROADMAP - Archive.org
DATA SCIENCE ROADMAP This is the Ultimate RoadMap to become a Data Scientist, one needs to learn the following things. I have added the ... o Linear Algebra Notes (Amazing …
Coursera - IBM Professional Certificate - Applied Data …
Coursera - IBM Professional Certificate - Applied Data Science Capstone Project Title of the project : Aerial view - venues mapping support system ... the coding in Python with the help of …
Beyond Boundaries: The Role of Learning Types in Shaping …
data to ‘explore a phenomenon’ and then gather the qualitative data to ‘explain relationships’ or patterns found in the qualitative data (Subedi 2016). This methodology was ultimately selected …
Roadmap for NIS education programmes in Europe
that comply with data protection requirements. 1.2 Objectives The main goals of this work are to define the roadmap and introduce steps that can be implemented in order to be in line with …
National Strategy for Artificial Intelligence - NITI Aayog
to achieve the desired results. A three-pronged, formal marketplace could be created focusing on data collection and aggregation, data annotation and deployable models. There could be a …
R/M.D. ENGINEERING COLLEGE DEPARTMENT OF …
COURSERA Data Science Methodology 2.4.2020 COURSERA Data Visualization with Python 2.5.2020 COURSERA Python for Data Science and AI 11.4.2020 COURSERA Data Analysis …
B.Tech CSE/IT (4 year programme) - CGPA Booster
Self-Development Roadmap B.Tech CSE/IT (4 year programme) Programme Objectives Computer Science Engineering and Information Technology UG Programmes have been …
MIT SLOAN SCHOOL OF MANAGEMENT MIT COMPUTER …
Science and Director of the Computer Science and Artifcial Intelligence Laboratory (CSAIL) at MIT. She serves as the Director of the Toyota-CSAIL Joint Research Center and is a member …
roadmap - Robo cs
Data structures, such as arrays, lists, and dictionaries, provide organized ways to store and manipulate large amounts of data, which is often essential in robotics applications. To get …
FY25 Programmes - Go
CRDCV10 Data Cleaning & Visualisation for Support Officers 7 Jul 2025 9 Oct 2025 CRDDAVL [Virtual Classroom] Data Analytics – Basic Principles and Applications ... CRDSP10 Starting A …
TABLE OF CONTENTS. - NSF
and Science Act of 2022” (enumerated below); feedback from the public in response to a request for information; analysis of open source data and investment trends; and consultations with …
Data Science Roadmap - readerclub.in
Data Science Roadmap Phase 1: Learn the Fundamentals • Mathematics & Statistics – Probability, linear algebra, calculus. • Python & R – Core programming languages for data …
MS-DS on Coursera Student Handbook - University of …
Dec 21, 2021 · the work of a graduate-level data science course is welcome to enroll in our degree. Curriculum. The MS-DS curriculum is both modular and self-directed. The data …
Introduction to Illinois’ IT Training on Coursera
Data Science Health Social Sciences Arts & Humanities 1,000+ courses 700 courses 380 courses 100 courses 780 courses 340 courses 4,000 courses 140,000 lecture videos …
IBM DATA SCIENCE CAPSTONE PROJECT - Amazon Web …
IBM Applied Data Science Capstone | Daniel Barnes | 2022 5 DATA COLLECTION – SPACE X REST API Using the SpaceX API to retrieve data about launches, including information about …
Brian Caffo January 6, 2017 - englianhu.files.wordpress.com
This book is written as a companion book to the Advanced Linear Models for Data Science Coursera class. Also check out theData Science Specializationby Brian Caffo, Roger Peng and …
Data science curriculum v5 - ALX Africa
Data Manipulation Cleaning and analysing data Basic SQL data types and calculations Table normalisation, primary and foreign keys Nested and subqueries Working with numeric, time, …
Computer Science - Master of Science (MS) Online
in computer science. MS-CS on Coursera students earn the same credentials as on-campus students. There are no online or Coursera ... Coursera platform, including topics such as data …
Access Introduction To Data Analysis And Graphical …
Step three: Cleaning the data Step four: Analyzing the data Step five: Sharing your results Outro Master Data Analysis on Excel in Just 10 Minutes - Master Data Analysis on Excel in Just 10 …
ECSc - Massachusetts Institute of Technology
academic disciplines: computer science, economics and data science. Computer science supplies the procedures and algorithms on which these technologies operate. Data science structures, …