Course On Large Language Models

Advertisement



  course on large language models: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  course on large language models: Large Language Models Projects Pere Martra Manonelles, 2024-10-20 This book offers you a hands-on experience using models from OpenAI and the Hugging Face library. You will use various tools and work on small projects, gradually applying the new knowledge you gain. The book is divided into three parts. Part one covers techniques and libraries. Here, you'll explore different techniques through small examples, preparing to build projects in the next section. You'll learn to use common libraries in the world of Large Language Models. Topics and technologies covered include chatbots, code generation, OpenAI API, Hugging Face, vector databases, LangChain, fine tuning, PEFT fine tuning, soft prompt tuning, LoRA, QLoRA, evaluating models, and Direct Preference Optimization. Part two focuses on projects. You'll create projects, understanding design decisions. Each project may have more than one possible implementation, as there is often not just one good solution. You'll also explore LLMOps-related topics. Part three delves into enterprise solutions. Large Language Models are not a standalone solution; in large corporate environments, they are one piece of the puzzle. You'll explore how to structure solutions capable of transforming organizations with thousands of employees, highlighting the main role that Large Language Models play in these new solutions. This book equips you to confidently navigate and implement Large Language Models, empowering you to tackle diverse challenges in the evolving landscape of language processing. What You Will Learn Gain practical experience by working with models from OpenAI and the Hugging Face library Use essential libraries relevant to Large Language Models, covering topics such as Chatbots, Code Generation, OpenAI API, Hugging Face, and Vector databases Create and implement projects using LLM while understanding the design decisions involved Understand the role of Large Language Models in larger corporate settings Who This Book Is For Data analysts, data science, Python developers, and software professionals interested in learning the foundations of NLP, LLMs, and the processes of building modern LLM applications for various tasks
  course on large language models: Speech & Language Processing Dan Jurafsky, 2000-09
  course on large language models: Large Language Models Uday Kamath, Kevin Keenan, Garrett Somers, Sarah Sorenson, 2024 Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs -- their intricate architecture, underlying algorithms, and ethical considerations -- require thorough exploration, creating a need for a comprehensive book on this subject. This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios. Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models. This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.
  course on large language models: State Estimation for Robotics Timothy D. Barfoot, 2017-07-31 A modern look at state estimation, targeted at students and practitioners of robotics, with emphasis on three-dimensional applications.
  course on large language models: Quick Start Guide to Large Language Models Sinan Ozdemir, 2023-09-20 The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data Construct and fine-tune multimodal Transformer architectures using opensource LLMs Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application. --Giada Pistilli, Principal Ethicist at HuggingFace A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field. --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
  course on large language models: Deep Learning in Natural Language Processing Li Deng, Yang Liu, 2018-05-23 In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.
  course on large language models: Prompt Engineering for Large Language Models Nimrita Koul, This eBook ‘Prompt Engineering for Large Language Models’ is meant to be a concise and practical guide for the reader. It teaches you to write better prompts for generative artificial intelligence models like Google’s BARD and OpenAI’s ChatGPT. These models have been trained on huge volumes of data to generate text and provide a free of cost, web-based interface to the underlying models as of 11 Nov. 2023. These models are fine tuned for conversational AI applications. All the prompts used in the eBook have been tested on the web interface of BARD and ChatGPT-3.5.
  course on large language models: Introducing MLOps Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim Zentici, Adrien Lavoillotte, Makoto Miyazaki, Lynn Heidmann, 2020-11-30 More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
  course on large language models: Large Language Models Projects Pere Martra,
  course on large language models: Python Machine Learning Sebastian Raschka, 2015-09-23 Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
  course on large language models: Deep Learning for Natural Language Processing Jason Brownlee, 2017-11-21 Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.
  course on large language models: Machine Learning with PyTorch and Scikit-Learn Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili, 2022-02-25 This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
  course on large language models: Deep Learning Illustrated Jon Krohn, Grant Beyleveld, Aglaé Bassens, 2019-08-05 The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come. – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
  course on large language models: Introduction to Large Language Models for Business Leaders I. Almeida, 2023-09-02 Responsible AI Strategy Beyond Fear and Hype - 2024 Edition Shortlisted for the 2023 HARVEY CHUTE Book Awards recognizing emerging talent and outstanding works in the genre of Business and Enterprise Non-Fiction. Explore the transformative potential of technologies like GPT-4 and Claude 2. These large language models (LLMs) promise to reshape how businesses operate. Aimed at non-technical business leaders, this guide offers a pragmatic approach to leveraging LLMs for tangible benefits, while ensuring ethical considerations aren't sidelined. LLMs can refine processes in marketing, software development, HR, R&D, customer service, and even legal operations. But it's essential to approach them with a balanced view. In this guide, you'll: - Learn about the rapid advancements of LLMs. - Understand complex concepts in simple terms. - Discover practical business applications. - Get strategies for smooth integration. - Assess potential impacts on your team. - Delve into the ethics of deploying LLMs. With a clear aim to inform rather than influence, this book is your roadmap to adopting LLMs thoughtfully, maximizing benefits, and minimizing risks. Let's move beyond the noise and understand how LLMs can genuinely benefit your business. More Than a Book By purchasing this book, you will also be granted free access to the AI Academy platform. There you can view free course modules, test your knowledge through quizzes, attend webinars, and engage in discussion with other readers. You can also view, for free, the first module of the self-paced course AI Fundamentals for Business Leaders, and enjoy video lessons and webinars. No credit card required. AI Academy by Now Next Later AI We are the most trusted and effective learning platform dedicated to empowering leaders with the knowledge and skills needed to harness the power of AI safely and ethically.
  course on large language models: Foundations of Machine Learning, second edition Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, 2018-12-25 A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.
  course on large language models: Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016-11-10 An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
  course on large language models: Hands-On Large Language Models Jay Alammar, Maarten Grootendorst, 2024-09-11 AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pre-trained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large amounts of text documents; and use existing libraries and pre-trained models for text classification, search, and clusterings. This book also shows you how to: Build advanced LLM pipelines to cluster text documents and explore the topics they belong to Build semantic search engines that go beyond keyword search with methods like dense retrieval and rerankers Learn various use cases where these models can provide value Understand the architecture of underlying Transformer models like BERT and GPT Get a deeper understanding of how LLMs are trained Understanding how different methods of fine-tuning optimize LLMs for specific applications (generative model fine-tuning, contrastive fine-tuning, in-context learning, etc.)
  course on large language models: Large Language Model-Based Solutions Shreyas Subramanian, 2024-04-02 Learn to build cost-effective apps using Large Language Models In Large Language Model-Based Solutions: How to Deliver Value with Cost-Effective Generative AI Applications, Principal Data Scientist at Amazon Web Services, Shreyas Subramanian, delivers a practical guide for developers and data scientists who wish to build and deploy cost-effective large language model (LLM)-based solutions. In the book, you'll find coverage of a wide range of key topics, including how to select a model, pre- and post-processing of data, prompt engineering, and instruction fine tuning. The author sheds light on techniques for optimizing inference, like model quantization and pruning, as well as different and affordable architectures for typical generative AI (GenAI) applications, including search systems, agent assists, and autonomous agents. You'll also find: Effective strategies to address the challenge of the high computational cost associated with LLMs Assistance with the complexities of building and deploying affordable generative AI apps, including tuning and inference techniques Selection criteria for choosing a model, with particular consideration given to compact, nimble, and domain-specific models Perfect for developers and data scientists interested in deploying foundational models, or business leaders planning to scale out their use of GenAI, Large Language Model-Based Solutions will also benefit project leaders and managers, technical support staff, and administrators with an interest or stake in the subject.
  course on large language models: Introduction to Natural Language Processing Jacob Eisenstein, 2019-10-01 A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.
  course on large language models: Natural Language Acquisition on the Autism Spectrum Marge Blanc, 2012
  course on large language models: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
  course on large language models: Advancing Software Engineering Through AI, Federated Learning, and Large Language Models Sharma, Avinash Kumar, Chanderwal, Nitin, Prajapati, Amarjeet, Singh, Pancham, Kansal, Mrignainy, 2024-05-02 The rapid evolution of software engineering demands innovative approaches to meet the growing complexity and scale of modern software systems. Traditional methods often need help to keep pace with the demands for efficiency, reliability, and scalability. Manual development, testing, and maintenance processes are time-consuming and error-prone, leading to delays and increased costs. Additionally, integrating new technologies, such as AI, ML, Federated Learning, and Large Language Models (LLM), presents unique challenges in terms of implementation and ethical considerations. Advancing Software Engineering Through AI, Federated Learning, and Large Language Models provides a compelling solution by comprehensively exploring how AI, ML, Federated Learning, and LLM intersect with software engineering. By presenting real-world case studies, practical examples, and implementation guidelines, the book ensures that readers can readily apply these concepts in their software engineering projects. Researchers, academicians, practitioners, industrialists, and students will benefit from the interdisciplinary insights provided by experts in AI, ML, software engineering, and ethics.
  course on large language models: The Distributed Classroom David A. Joyner, Charles Isbell, 2021-09-14 A vision of the future of education in which the classroom experience is distributed across space and time without compromising learning. What if there were a model for learning in which the classroom experience was distributed across space and time--and students could still have the benefits of the traditional classroom, even if they can't be present physically or learn synchronously? In this book, two experts in online learning envision a future in which education from kindergarten through graduate school need not be tethered to a single physical classroom. The distributed classroom would neither sacrifice students' social learning experience nor require massive development resources. It goes beyond hybrid learning, so ubiquitous during the COVID-19 pandemic, and MOOCs, so trendy a few years ago, to reimagine the classroom itself. David Joyner and Charles Isbell, both of Georgia Tech, explain how recent developments, including distance learning and learning management systems, have paved the way for the distributed classroom. They propose that we dispense with the dichotomy between online and traditional education, and the assumption that online learning is necessarily inferior. They describe the distributed classroom's various delivery modes for in-person students, remote synchronous students, and remote asynchronous students; the goal would be a symmetry of experiences, with both students and teachers able to move from one mode to another. With The Distributed Classroom, Joyner and Isbell offer an optimistic, learner-centric view of the future of education, in which every person on earth is turned into a potential learner as barriers of cost, geography, and synchronicity disappear.
  course on large language models: Introduction to Deep Learning Eugene Charniak, 2019-01-29 A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.
  course on large language models: Large Language Models Oswald Campesato, 2024-09-17 This book begins with an overview of the Generative AI landscape, distinguishing it from conversational AI and shedding light on the roles of key players like DeepMind and OpenAI. It then reviews the intricacies of ChatGPT, GPT-4, Meta AI, Claude 3, and Gemini, examining their capabilities, strengths, and competitors. Readers will also gain insights into the BERT family of LLMs, including ALBERT, DistilBERT, and XLNet, and how these models have revolutionized natural language processing. Further, the book covers prompt engineering techniques, essential for optimizing the outputs of AI models, and addresses the challenges of working with LLMs, including the phenomenon of hallucinations and the nuances of fine-tuning these advanced models. Designed for software developers, AI researchers, and technology enthusiasts with a foundational understanding of AI, this book offers both theoretical insights and practical code examples in Python. Companion files with code, figures, and datasets are available for downloading from the publisher. FEATURES: Covers in-depth explanations of foundational and advanced LLM concepts, including BERT, GPT-4, and prompt engineering Uses practical Python code samples in leveraging LLM functionalities effectively Discusses future trends, ethical considerations, and the evolving landscape of AI technologies Includes companion files with code, datasets, and images from the book -- available from the publisher for downloading (with proof of purchase)
  course on large language models: Pretrain Vision and Large Language Models in Python Emily Webber, Andrea Olgiati, 2023-05-31 Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examples Key Features Learn to develop, train, tune, and apply foundation models with optimized end-to-end pipelines Explore large-scale distributed training for models and datasets with AWS and SageMaker examples Evaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoring Book Description Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization. With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you'll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models. You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines. By the end of this book, you'll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future. What you will learn Find the right use cases and datasets for pretraining and fine-tuning Prepare for large-scale training with custom accelerators and GPUs Configure environments on AWS and SageMaker to maximize performance Select hyperparameters based on your model and constraints Distribute your model and dataset using many types of parallelism Avoid pitfalls with job restarts, intermittent health checks, and more Evaluate your model with quantitative and qualitative insights Deploy your models with runtime improvements and monitoring pipelines Who this book is for If you're a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way.
  course on large language models: Transforming Conversational AI Michael McTear,
  course on large language models: ChatGPT Expertise Informative Course Dwayne Anderson, 2023-02-16 Are You Someone Who Vigorously Thinks of Working Smart, Just Like a Robot? Get wind of creating customer experiences, marketing campaigns, replying to customer support, and more by Exploring “ChatGPT Expertise” Here is the list of things you will explore in our Advanced ChatGPT Expertise Informative Course. What is the relationship Between Open AI and Chat GPT? What is the confusion Between Chat GPT & GPT – 3? Witness what the significance of Chat GPT is. Clarifying what the Controversies of Chat GPT are. What are the PROS & CONS of ChatGPT? What are the Ways to Incorporate Chat GPT in Your Lives? What is the Future of ChatGPT? What is the impact of Chat GPT on the World And so much more! Who wants to spend hours writing and documenting everything for business? Who wants to face difficulty in finding the right tone for their texts to convey their message to the audience? Who finds it easy to brainstorm ideas for the betterment of business? The evolution of artificial intelligence is now in full swing, and chatbots are only a faint splash on a massive wave of progress. Get hooked on immensely powerful chatbots that are inspiring awe and creating excitement in the minds of people. Love them or Hate them, Chatbots are here to Stay. Today’s Chatbots are Smarter, More Responsive, and More Practical – We’ll be exploring why Chatbots have become such a popular marketing technology. Giving Prompt Responses Increasing Engagement Providing Assistance with Data Analysis Management of Business Resources Assist with Lead Nurturing Interacts with Website Visitors A Substitute for An Email Newsletter Notify Important Events The latest A.I. buzz has been the talk of the town. With questions popping in from all corners, being a business owner, you might wonder how you can use Chat GPT for your business. Imagine having a bot chatting with you, one that answers all your questions, yes, all but one that comes with less baggage. The training guide provides you with excellent knowledge, including the fact that are mentioned below: We have gathered all the essential information on what Chat GPT is. All that info you need to know about how ChatGPT works? To let you know about the launching of ChatGPT. We have discussed the different creative ways to Use Chat GPT. We have provided you with information on how ChatGPT is Beneficial for People in their Businesses. We have clarified by differentiating Chat GPT & GPT – 3: Which is Better? Profounded about any new updates being bought out to Chat GPT The global Chatbot marketing revenue reached $83.4 million this year. Using ChatBots in businesses saves 2.5 billion hours which means along with the profit in monetary value, time is also saved. 57% of businesses claimed that ChatBots deliver large ROI on minimal investment. The worldwide conversational AI market was close to $5 billion in 2020, projected to increase to $14 billion by 2025 at a CAGR of 22%. ChatGPT owner OpenAI predicts that they will be able to generate a revenue of $1 billion by the end of the year 2024. $200 million in revenue is expected by the OpenAI by the end of the year 2023. Introducing… Chat GPT Expertise Informative Course A comprehensive guide will train you how Chat GPT can generate human-like text and has a wide range of applications, including language translation, language modeling, and rendering text for applications such as chatbots.
  course on large language models: AI Crash Course Hadelin de Ponteves, 2019-11-29 Unlock the power of artificial intelligence with top Udemy AI instructor Hadelin de Ponteves. Key FeaturesLearn from friendly, plain English explanations and practical activitiesPut ideas into action with 5 hands-on projects that show step-by-step how to build intelligent softwareUse AI to win classic video games and construct a virtual self-driving carBook Description Welcome to the Robot World ... and start building intelligent software now! Through his best-selling video courses, Hadelin de Ponteves has taught hundreds of thousands of people to write AI software. Now, for the first time, his hands-on, energetic approach is available as a book. Starting with the basics before easing you into more complicated formulas and notation, AI Crash Course gives you everything you need to build AI systems with reinforcement learning and deep learning. Five full working projects put the ideas into action, showing step-by-step how to build intelligent software using the best and easiest tools for AI programming, including Python, TensorFlow, Keras, and PyTorch. AI Crash Course teaches everyone to build an AI to work in their applications. Once you've read this book, you're only limited by your imagination. What you will learnMaster the basics of AI without any previous experienceBuild fun projects, including a virtual-self-driving car and a robot warehouse workerUse AI to solve real-world business problemsLearn how to code in PythonDiscover the 5 principles of reinforcement learningCreate your own AI toolkitWho this book is for If you want to add AI to your skillset, this book is for you. It doesn't require data science or machine learning knowledge. Just maths basics (high school level).
  course on large language models: Readings in Machine Translation Sergei Nirenburg, H. L. Somers, Yorick Wilks, 2003 The field of machine translation (MT) - the automation of translation between human languages - has existed for more than 50 years. MT helped to usher in the field of computational linguistics and has influenced methods and applications in knowledge representation, information theory, and mathematical statistics.
  course on large language models: Challenges in Large Language Model Development and AI Ethics Gupta, Brij, 2024-08-15 The development of large language models has resulted in artificial intelligence advancements promising transformations and benefits across various industries and sectors. However, this progress is not without its challenges. The scale and complexity of these models pose significant technical hurdles, including issues related to bias, transparency, and data privacy. As these models integrate into decision-making processes, ethical concerns about their societal impact, such as potential job displacement or harmful stereotype reinforcement, become more urgent. Addressing these challenges requires a collaborative effort from business owners, computer engineers, policymakers, and sociologists. Fostering effective research for solutions to address AI ethical challenges may ensure that large language model developments benefit society in a positive way. Challenges in Large Language Model Development and AI Ethics addresses complex ethical dilemmas and challenges of the development of large language models and artificial intelligence. It analyzes ethical considerations involved in the design and implementation of large language models, while exploring aspects like bias, accountability, privacy, and social impacts. This book covers topics such as law and policy, model architecture, and machine learning, and is a useful resource for computer engineers, sociologists, policymakers, business owners, academicians, researchers, and scientists.
  course on large language models: Grokking Machine Learning Luis Serrano, 2021-12-14 Grokking Machine Learning presents machine learning algorithms and techniques in a way that anyone can understand. This book skips the confused academic jargon and offers clear explanations that require only basic algebra. As you go, you'll build interesting projects with Python, including models for spam detection and image recognition. You'll also pick up practical skills for cleaning and preparing data.
  course on large language models: Learning Deep Learning Magnus Ekman, 2021-07-19 NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals. -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us. -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
  course on large language models: Dependency Parsing Sandra Kübler, Ryan McDonald, Joakim Nivre, 2009 Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes of parsing models that are in current use: transition-based, graph-based, and grammar-based models. It continues with a chapter on evaluation and one on the comparison of different methods, and it closes with a few words on current trends and future prospects of dependency parsing. The book presupposes a knowledge of basic concepts in linguistics and computer science, as well as some knowledge of parsing methods for constituency-based representations. Table of Contents: Introduction / Dependency Parsing / Transition-Based Parsing / Graph-Based Parsing / Grammar-Based Parsing / Evaluation / Comparison / Final Thoughts
  course on large language models: AI Foundations of Large Language Models Jon Adams, Dive into the fascinating world of artificial intelligence with Jon Adams' groundbreaking book, AI Foundations of Large Language Models. This comprehensive guide serves as a beacon for both beginners and enthusiasts eager to understand the intricate mechanisms behind the digital forces shaping our future. With Adams' expert narration, readers are invited to explore the evolution of language models that have transformed mere strings of code into entities capable of human-like text generation. Key Features: In-depth Exploration: From the initial emergence to the sophisticated development of Large Language Models (LLMs), this book covers it all. Technical Insights: Understand the foundational technology, including neural networks, transformers, and attention mechanisms, that powers LLMs. Practical Applications: Discover how LLMs are being utilized in industry and research, paving the way for future innovations. Ethical Considerations: Engage with the critical discussions surrounding the ethics of LLM development and deployment. Chapters Include: The Emergence of Language Models: An introduction to the genesis of LLMs and their significance. Foundations of Neural Networks: Delve into the neural underpinnings that make it all possible. Transformers and Attention Mechanisms: Unpack the mechanisms that enhance LLM efficiency and accuracy. Training Large Language Models: A guide through the complexities of LLM training processes. Understanding LLMs Text Generation: Insights into how LLMs generate text that rivals human writing. Natural Language Understanding: Explore the advancements in LLMs' comprehension capabilities. Ethics and LLMs: A critical look at the ethical landscape of LLM technology. LLMs in Industry and Research: Real-world applications and the impact of LLMs across various sectors. The Future of Large Language Models: Speculations and predictions on the trajectory of LLM advancements. Whether you're a student, professional, or simply an AI enthusiast, AI Foundations of Large Language Models by Jon Adams offers a riveting narrative filled with insights and foresights. Equip yourself with the knowledge to navigate the burgeoning world of LLMs and appreciate their potential to redefine our technological landscape. Join us on this enlightening journey through the annals of artificial intelligence, where the future of digital communication and creativity awaits.
  course on large language models: Linguistics for the Age of AI Marjorie Mcshane, Sergei Nirenburg, 2021-03-02 A human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems. One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning--the deep, context-sensitive meaning that a person derives from spoken or written language.
  course on large language models: Deep Learning and the Game of Go Kevin Ferguson, Max Pumperla, 2019-01-06 Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
  course on large language models: Introduction to Python and Large Language Models Dilyan Grigorov,
  course on large language models: Application of Large Language Models (LLMs) for Software Vulnerability Detection Omar, Marwan, Zangana, Hewa Majeed, 2024-11-01 Large Language Models (LLMs) are redefining the landscape of cybersecurity, offering innovative methods for detecting software vulnerabilities. By applying advanced AI techniques to identify and predict weaknesses in software code, including zero-day exploits and complex malware, LLMs provide a proactive approach to securing digital environments. This integration of AI and cybersecurity presents new possibilities for enhancing software security measures. Application of Large Language Models (LLMs) for Software Vulnerability Detection offers a comprehensive exploration of this groundbreaking field. These chapters are designed to bridge the gap between AI research and practical application in cybersecurity, in order to provide valuable insights for researchers, AI specialists, software developers, and industry professionals. Through real-world examples and actionable strategies, the publication will drive innovation in vulnerability detection and set new standards for leveraging AI in cybersecurity.
Engage Students Through Discussion | Digital Learning …
Once you’ve decided on the strategy for your post, identify your argument and layout the ways that you will support it, both by providing evidence that supports your strategy and evidence that …

Service Catalog | Digital Learning Services
Course Design Tools provides instructors with resources to develop pedagogically sound remote courses. This service includes the DLS Core Template, developed by Digital …

Course Outline – STAT 946: Generative AI and Large …
Course Description. This course offers an in-depth exploration of generative artificial intelligence and large language models (LLMs). Students would develop foundational knowledge of core …

About the course Large language models techniques
About the course Large language models techniques Large language models techniques course, in this course we will learn about Large Language Models (LLMs) techniques, focusing on the …

Harnessing Generative AI with LLMs, GPT and ChatGPT
course. Topic: Introduction to Generative AI Definition and scope of Generative AI Overview of generative models and their applications Topic: Language Models and LLM Architectures …

How to Build an Adaptive AI Tutor for Any Course Using …
A. LLMs: Powering Language Generation Large Language Models (LLMs), based on deep neural networks trained on extensive text corpora, have revolutionized natural language processing …

Large Language Models for Medicine: A Survey - arXiv.org
LargeLanguageModelsforMedicine:ASurvey YanxinZhenga,WenshengGana,∗,ZefengChena,ZhenlianQib,QianLiangc andPhilipS.Yud …

Leveraging Large Language Models to Generate Course …
pabilities of large language models (LLMs). Research in computing education is exploring the capabilities of these models to generate educational content that is both contextually …

History,Development,andPrinciplesofLargeLanguage Models ...
History,Development,andPrinciplesofLargeLanguage Models—AnIntroductorySurvey Zichong Wang 1, Zhibo Chu , Thang Viet Doan , Shiwen Ni2, Min Yang2, Wenbin Zhang 1∗ 1Florida …

Learning Structure and Knowledge Aware Representation with …
Large Language Models for Concept Recommendation Qingyao Li ly890306@sjtu.edu.cn Shanghai Jiao Tong University Shanghai, China Wei Xia xiawei24@huawei.com Huawei …

Language Modeling - Department of Computer Science, …
Language Modeling (Course notes for NLP by Michael Collins, Columbia University) ... the New York Times, or we might have a very large amount of text from the web. Given this corpus, …

Insights from Social Shaping Theory: The Appropriation of …
an introductory programming course and their impact on student self-perception and learning outcomes. Our research is guided by the following research questions: RQ1: How do social …

MIT & NBER arXiv:2301.07543v1 [econ.GN] 18 Jan 2023
Jan 19, 2023 · Large language models are machine learning models trained on very large datasets of text. The goal is to be able to generate human-like text or perform natural language …

Multimodal Deep Learning - Stanford University
Multimodal distributional semantics (Bruni et al., 2014) Algorithm: Obtain visual “word vector” via BOVW: Identify keypoints and get their descriptors

Large language models and generative AI
LARGE LANGUAGE MODELS AND GENERATIvE AI 3 EXECUTVI E SUMMARY T he world faces an inflection point on AI. Large language models (LLMs) will introduce epoch‑defining …

Generative AI FAQs - Google AI
Large Language Models, or LLMs, are generative AI models which can predict words that are likely to come next, based on the user’s prompt and the text it has generated so far. In some …

Teaching CS50 with AI - Harvard University
(AI) built atop large language models (LLMs), there is apprehension about AI’s ability to disrupt education. Students can now complete assignments or write essays entirely with AI, …

LLM-Obby: Large Language Models for Iterative Obstacle …
Recent advancements in large language models (LLMs), used in tandem with specialized domain-specific languages (DSLs) for 3D scenes, have made automatic scene generation and editing …

Large Language Models - MIT Schwarzman College of …
Part 2: A Framework for Large Language Model Regulation Language models are not monolithic. They are developed by a wide range of actors and have different purposes, risks, and potential …

Large Language Model (LLM) for Telecommunications: A …
as multi-modal large language models or multi-modal LLMs. Although LLM development is originally motivated by natural language tasks, it is worth noting that there have been diverse …

Incorporation of ChatGPT and Other Large Language Models …
Incorporation of ChatGPT and Other Large Language Models into a Graduate Level Computational Bioengineering Course Michael R. King1 · Adam M. Abdulrahman1,2 · Mark I. …

A Dataset and Benchmark for Hospital Course - arXiv.org
Objective: Brief hospital course (BHC) summaries are clinical documents that summarize a patient’s hospital stay. While large language models (LLMs) depict remarkable capabilities in …

Combining Small Language Models and Large Language …
Combining Small Language Models and Large Language Models for Zero-Shot NL2SQL Ju Fan Renmin University of China fanj@ruc.edu.cn Zihui Gu Renmin University of China …

CSC6052/5051/4100/DDA6307/ MDS5110 Natural Language …
Logistics Instructor: Benyou Wang Teaching assistant: Shunian Chen (Leading TA) Xidong Wang, Juhao Liang, Ke Ji ,Rui Huang, Yuqi Fei Location: Teaching B 202 Meetings: Thursday/Friday …

CHAPTER 11 Masked Language Models - Stanford University
Note that 550M parameters is relatively small as large language models go (Llama 3 has 405B parameters, so is 3 orders of magnitude bigger). Indeed, masked language models tend to be …

Large Language Models for Recommendation: Past, Present, …
Large Language Models, Recommender Systems, Generative Rec-ommendation, Generative Models ACM Reference Format: Keqin Bao*, Jizhi Zhang, Xinyu Lin, Yang Zhang, Wenjie …

Natural Language Processing with Deep Learning …
From Recurrence (RNNs) to Attention-Based NLP Models 3. Understanding the Transformer Model 4. Drawbacks and Variants of Transformers 2. Lecture Plan 1. Impact of Transformers …

Adapting Large Language Models by Integrating …
language models (PLMs) in recommender systems [12]–[15]. In this paper, we aim to combine LLMs and recommendation tasks in a more effective way, which is reached through the …

Large Language Models can Learn Rules - arXiv.org
Large Language Models can Learn Rules Zhaocheng Zhu1, 2, 3,∗ Yuan Xue1 Xinyun Chen1 Denny Zhou1 Jian Tang2, 4, 6 Dale Schuurmans1, 5, 6 Hanjun Dai1 1 Google 2 Mila - Québec …

Introduction CIS 7000 - Fall 2024
P. Chao et al. Jailbreaking Black Box Large Language Models in Twenty Queries. 2023. Process of manipulating prompts to bypass an LLM’s safeguards, leading to harmful outputs. …

Large Language Models - CMU School of Computer Science
7/17/23 9 Image synthesis, voice synthesis, and soonmulti-modal models Rapid recent LLM developments • Nov 2022. OpenAIreleases ChatGPT, based on GPT3.5

Large Language Models for Recommendation: Progresses …
tem and large language models. He has several publications in top conferences such as WWW, RecSys, SIGIR, and ACL. Keqin Bao2 is a Ph.D. student at University of Science and …

Can Large Language Models Provide Feedback to Students …
Can Large Language Models Provide Feedback to Students? A Case Study on ChatGPT Wei Dai, Jionghao Lin, Flora Jin, Tongguang Li, Yi-Shan Tsai, ... the dataset from a postgraduate …

arXiv:2409.13373v1 [cs.AI] 20 Sep 2024
The ability to plan a course of action that achieves a desired state of affairs has long been considered a ... Table 1: Performance on 600 instances from the Blocksworld and Mystery …

Alargelanguage model-assisted educationtoolto …
Alargelanguage model-assisted educationtoolto providefeedbackon open-endedresponses JordanK.Matelsky 1,2,FelipeParodi 3,TonyLiu 4, RichardD.Lange 1,5,andKonradP ...

arXiv:2305.16264v4 [cs.CL] 26 Oct 2023
In this work we investigate scaling large language models in a data-constrained regime, and whether training an LLM with multiple epochs of repeated data impacts scaling. Using multiple …

Quick Start Guide to Large Language Models
The advancement of Large Language Models (LLMs) has revolutionized the field of Natural Language Processing in recent years. Models like BERT, T5, ... course, no architecture is …

ChemLLM: A Chemical Large Language Model - arXiv.org
Large language models (LLMs) have made rapid progress in recent years and been successfully applied to various domains1-4, including natural language processing5, computer vision6, …

Creating Large Language Model Applications Utilizing …
1051 million, 1.5 billion, and 175 billion parameters, respectively. A large language model (LLM) is a subtype of artificial intelligence model that generates text with

Programming Large Conversational - pearsoncmg.com
generation large language models (LLMs) has propelled it into the mainstream. The increasing number of people using them translates to more ideas, more opportunities, and new …

Complete Generative AI Course: From Basics to Expert Level
Large Language Models (LLMs) are enabling coders and non-coders to build new kinds of applications that harness the power of AI. In this course, you’ll learn how to use and create with …

The Little Book of Deep Learning - Fleuret
for reasonably-sized deep models, things get con-fusing with large ones that have a very large number of trainable parameters and extreme ca-pacity yet still perform well on prediction. We …

CSC 6203 Large Language Model - raw.githubusercontent.com
Course Structure (tentative) Introduction to Large Language Models (LLMs) - User's perspective Language models and beyond Architecture engineering and scaling law - Transformer and …

Quick Start Guide to Large Language Models - Archive.org
Large language models (LLMs) are AI models that are usually (but not necessarily) derived from the Transformer architecture and are designed to ... Of course, no architecture is perfect. …

Appendices Bachelor’s degree programme Artificial …
WBAI068-05 Large Language Models 5 WBAI028-05 Neural Networks 5 WBAI071-05 Social Robotics 5 WBAI073-05 Speech Technology 5 WBAI052-05 Structural Analysis of Language …

Large Language Models in Education: Vision and …
Large Language Models in Education: Vision and Opportunities Wensheng Gan 1,2∗, Zhenlian Qi3, Jiayang Wu , Jerry Chun-Wei Lin4 1Jinan University, Guangzhou 510632, China 2Pazhou …

Large Language Models for Recommendation: Progresses …
Large Language Models, Recommender Systems, Generative Rec-ommendation, Generative Models *Main contact author. Permission to make digital or hard copies of all or part of this …

Enhancing Knowledge Graph Construction Using Large …
Large Language Models (LLMs) [1]. This trend has paved the way for a cascade of new models being released on a regular basis, each outperforming its predecessors. These models have …

Tutorial 2: Train your own LLMs - llm-course.github.io
Training Tricks You can use other parameter-efficient fine-tuning methods to be able to fine-tune large models on limited GPU resources. Here, we introduce some useful open source github …

Large Language Models in Healthcare: A Comprehensive …
Apr 24, 2024 · Large Language Models in Healthcare: A Comprehensive Benchmark Fenglin Liu1, Hongjian Zhou1, Yining Hua2, Omid Rohanian1, Lei Clifton3, David A. Clifton1 1Institute of …

Introduction to Deep Learning Lecture 19 Transformers and …
Transformers 3 • Tokenizaton • Input Embeddings • PositionEncodings • Residuals • Query • Key • Value • Add & Norm • Encoder • Decoder • Attention • Self Attention • Multi Head Attention • …