Cracking Data Science Interview Pdf

Advertisement



  cracking data science interview pdf: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics.
  cracking data science interview pdf: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021
  cracking data science interview pdf: Deep Learning Interviews Shlomo Kashani, 2020-12-09 The book's contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs.
  cracking data science interview pdf: Cracking the Coding Interview Gayle Laakmann McDowell, 2011 Now in the 5th edition, Cracking the Coding Interview gives you the interview preparation you need to get the top software developer jobs. This book provides: 150 Programming Interview Questions and Solutions: From binary trees to binary search, this list of 150 questions includes the most common and most useful questions in data structures, algorithms, and knowledge based questions. 5 Algorithm Approaches: Stop being blind-sided by tough algorithm questions, and learn these five approaches to tackle the trickiest problems. Behind the Scenes of the interview processes at Google, Amazon, Microsoft, Facebook, Yahoo, and Apple: Learn what really goes on during your interview day and how decisions get made. Ten Mistakes Candidates Make -- And How to Avoid Them: Don't lose your dream job by making these common mistakes. Learn what many candidates do wrong, and how to avoid these issues. Steps to Prepare for Behavioral and Technical Questions: Stop meandering through an endless set of questions, while missing some of the most important preparation techniques. Follow these steps to more thoroughly prepare in less time.
  cracking data science interview pdf: Cracking The Machine Learning Interview Nitin Suri, 2018-12-18 A breakthrough in machine learning would be worth ten Microsofts. -Bill Gates Despite being one of the hottest disciplines in the Tech industry right now, Artificial Intelligence and Machine Learning remain a little elusive to most.The erratic availability of resources online makes it extremely challenging for us to delve deeper into these fields. Especially when gearing up for job interviews, most of us are at a loss due to the unavailability of a complete and uncondensed source of learning. Cracking the Machine Learning Interview Equips you with 225 of the best Machine Learning problems along with their solutions. Requires only a basic knowledge of fundamental mathematical and statistical concepts. Assists in learning the intricacies underlying Machine Learning concepts and algorithms suited to specific problems. Uniquely provides a manifold understanding of both statistical foundations and applied programming models for solving problems. Discusses key points and concrete tips for approaching real life system design problems and imparts the ability to apply them to your day to day work. This book covers all the major topics within Machine Learning which are frequently asked in the Interviews. These include: Supervised and Unsupervised Learning Classification and Regression Decision Trees Ensembles K-Nearest Neighbors Logistic Regression Support Vector Machines Neural Networks Regularization Clustering Dimensionality Reduction Feature Extraction Feature Engineering Model Evaluation Natural Language Processing Real life system design problems Mathematics and Statistics behind the Machine Learning Algorithms Various distributions and statistical tests This book can be used by students and professionals alike. It has been drafted in a way to benefit both, novices as well as individuals with substantial experience in Machine Learning. Following Cracking The Machine Learning Interview diligently would equip you to face any Machine Learning Interview.
  cracking data science interview pdf: 500 Data Science Interview Questions and Answers Vamsee Puligadda, Get that job, you aspire for! Want to switch to that high paying job? Or are you already been preparing hard to give interview the next weekend? Do you know how many people get rejected in interviews by preparing only concepts but not focusing on actually which questions will be asked in the interview? Don't be that person this time. This is the most comprehensive Data Science interview questions book that you can ever find out. It contains: 500 most frequently asked and important Data Science interview questions and answers Wide range of questions which cover not only basics in Data Science but also most advanced and complex questions which will help freshers, experienced professionals, senior developers, testers to crack their interviews.
  cracking data science interview pdf: Be the Outlier Shrilata Murthy, 2020-07-27 According to LinkedIn's third annual U.S. Emerging Jobs Report, the data scientist role is ranked third among the top-15 emerging jobs in the U.S. Though the field of data science has been exploding, there didn't appear to be a comprehensive resource to help data scientists navigate the interview process... until now. In Be the Outlier: How to Ace Data Science Interviews, data scientist Shrilata Murthy covers all aspects of a data science interview in today's industry. Murthy combines her own experience in the job market with expert insight from data scientists with Google, Facebook, Amazon, NASA, Aetna, MBB & Big 4 consulting firms, and many more. In this book, you'll learn... the foundational knowledge that is key to any data science interview the 100-Word Story framework for writing a stellar resume what to expect from a variety of interview styles (take-home, presentation, case study, etc.), and actionable ways to differentiate yourself from your peers. By using real-world examples, practice questions, and sample interviews, Murthy has created an easy-to-follow guide that will help you crack any data science interview. After reading Be the Outlier, get ready to land your dream job in data science.
  cracking data science interview pdf: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  cracking data science interview pdf: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  cracking data science interview pdf: Quant Job Interview Questions and Answers Mark Joshi, Nick Denson, Nicholas Denson, Andrew Downes, 2013 The quant job market has never been tougher. Extensive preparation is essential. Expanding on the successful first edition, this second edition has been updated to reflect the latest questions asked. It now provides over 300 interview questions taken from actual interviews in the City and Wall Street. Each question comes with a full detailed solution, discussion of what the interviewer is seeking and possible follow-up questions. Topics covered include option pricing, probability, mathematics, numerical algorithms and C++, as well as a discussion of the interview process and the non-technical interview. All three authors have worked as quants and they have done many interviews from both sides of the desk. Mark Joshi has written many papers and books including the very successful introductory textbook, The Concepts and Practice of Mathematical Finance.
  cracking data science interview pdf: Heard in Data Science Interviews Kal Mishra, 2018-10-03 A collection of over 650 actual Data Scientist/Machine Learning Engineer job interview questions along with their full answers, references, and useful tips
  cracking data science interview pdf: Programming Interviews Exposed John Mongan, Noah Suojanen Kindler, Eric Giguère, 2011-08-10 The pressure is on during the interview process but with the right preparation, you can walk away with your dream job. This classic book uncovers what interviews are really like at America's top software and computer companies and provides you with the tools to succeed in any situation. The authors take you step-by-step through new problems and complex brainteasers they were asked during recent technical interviews. 50 interview scenarios are presented along with in-depth analysis of the possible solutions. The problem-solving process is clearly illustrated so you'll be able to easily apply what you've learned during crunch time. You'll also find expert tips on what questions to ask, how to approach a problem, and how to recover if you become stuck. All of this will help you ace the interview and get the job you want. What you will learn from this book Tips for effectively completing the job application Ways to prepare for the entire programming interview process How to find the kind of programming job that fits you best Strategies for choosing a solution and what your approach says about you How to improve your interviewing skills so that you can respond to any question or situation Techniques for solving knowledge-based problems, logic puzzles, and programming problems Who this book is for This book is for programmers and developers applying for jobs in the software industry or in IT departments of major corporations. Wrox Beginning guides are crafted to make learning programming languages and technologies easier than you think, providing a structured, tutorial format that will guide you through all the techniques involved.
  cracking data science interview pdf: A Collection of Data Science Interview Questions Solved in Python and Spark Antonio Gulli, 2015-09-22 BigData and Machine Learning in Python and Spark
  cracking data science interview pdf: Coding Interviews Harry He, 2013-01-31 This book is about coding interview questions from software and Internet companies. It covers five key factors which determine performance of candidates: (1) the basics of programming languages, data structures and algorithms, (2) approaches to writing code with high quality, (3) tips to solve difficult problems, (4) methods to optimize code, (5) soft skills required in interviews. The basics of languages, algorithms and data structures are discussed as well as questions that explore how to write robust solutions after breaking down problems into manageable pieces. It also includes examples to focus on modeling and creative problem solving. Interview questions from the most popular companies in the IT industry are taken as examples to illustrate the five factors above. Besides solutions, it contains detailed analysis, how interviewers evaluate solutions, as well as why they like or dislike them. The author makes clever use of the fact that interviewees will have limited time to program meaningful solutions which in turn, limits the options an interviewer has. So the author covers those bases. Readers will improve their interview performance after reading this book. It will be beneficial for them even after they get offers, because its topics, such as approaches to analyzing difficult problems, writing robust code and optimizing, are all essential for high-performing coders.
  cracking data science interview pdf: Hands-On Data Science and Python Machine Learning Frank Kane, 2017-07-31 This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
  cracking data science interview pdf: Data Science with Machine Learning Narayanan Vishwanathan, 2019-09-20 Starts with statistics then goes towards Core Python followed by numpy to pandas to scipy and sklearnKey features Easy to learn, step by step explanation of examples. Questions related to core/basic Python, Excel, basic and advanced statistics are included. Covers numpy, scipy, sklearn and pandas to a greater detail with good number of examples Description The book e;Data science with Machine learning- Python interview questionse; is a true companion of people aspiring for data science and machine learning and provides answers to mostly asked questions in a easy to remember and presentable form.Data science is one of the hottest topics mainly because of the application areas it is involved and things which were once upon of time, impossible with earlier software has been made easy. This book is mainly intended to be used as last-minute revision, before interview, as all the important concepts have been given in simple and understand format. Many examples have been provided so that same can be used while giving answers in interview.This book tries to include various terminologies and logic used both as a part of Data Science and Machine learning for last minute revision. As such you can say that this book acts as a companion whenever you want to go for interview.Simple to use words have been used in the answers for the questions to help ease of remembering and representation of same. Examples where ever deemed necessary have been provided so that same can be used while giving answers in interview. Author tried to consolidate whatever he came across, on multiple interviews that he attended and put the same in words so that it becomes easy for the reader of the book to give direction on how the interview would be.With the number of data science jobs increasing, Author is sure that everyone who wants to pursue this field would like to keep this book as a constant companion. What will you learn You can learn the basic concept and terms related to Data Science You will get to learn how to program in python You can learn the basic questions of python programming By reading this book you can get to know the basics of Numpy You will get familiarity with the questions asked in interview related to Pandas. You will learn the concepts of Scipy, Matplotib, and Statistics with Excel Sheet Who this book is forThe book is intended for anyone wish to learn Python Data Science, Numpy, Pandas, Scipy, Matplotib and Statistics with Excel Sheet. This book content also covers the basic questions which are asked during an interview. This book is mainly intended to help people represent their answer in a sensible way to the interviewer. The answers have been carefully rendered in a way to make things quite simple and yet represent the seriousness and complexity of matter. Since data science is incomplete without mathematics we have also included a part of the book dedicated to statistics. Table of contents1. Data Science Basic Questions and Terms2. Python Programming Questions3. Numpy Interview Questions4. Pandas Interview Questions5. Scipy and its Applications6. Matplotlib Samples to Remember7. Statistics with Excel Sheet About the authorMr Vishwanathan has twenty years of hard code experience in software industry spanning across many multinational companies and domains. Playing with data to derive meaningful insights has been his domain and that is what took him towards data science and machine learning.
  cracking data science interview pdf: Data Science Interviews Exposed Jane You, Yanping Huang, Iris Wang, Feng Cao (Computer scientist), Ian Gao, 2015 The era has come when data science is changing the world and everyone's life. Data Science Interviews Exposed is the first book in the industry that covers everything you need to know to prepare for a data science career: from job market overview to job roles description, from resume preparation to soft skill development, and most importantly, the real interview questions and detailed answers. We hope this book can help the candidates in the data science job market, as well as those who need guidance to begin a data science career.--Back cover.
  cracking data science interview pdf: Cracking the Data Science Interview Leondra R. Gonzalez, Aaren Stubberfield, 2024-02-29 Rise above the competition and excel in your next interview with this one-stop guide to Python, SQL, version control, statistics, machine learning, and much more Key Features Acquire highly sought-after skills of the trade, including Python, SQL, statistics, and machine learning Gain the confidence to explain complex statistical, machine learning, and deep learning theory Extend your expertise beyond model development with version control, shell scripting, and model deployment fundamentals Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe data science job market is saturated with professionals of all backgrounds, including academics, researchers, bootcampers, and Massive Open Online Course (MOOC) graduates. This poses a challenge for companies seeking the best person to fill their roles. At the heart of this selection process is the data science interview, a crucial juncture that determines the best fit for both the candidate and the company. Cracking the Data Science Interview provides expert guidance on approaching the interview process with full preparation and confidence. Starting with an introduction to the modern data science landscape, you’ll find tips on job hunting, resume writing, and creating a top-notch portfolio. You’ll then advance to topics such as Python, SQL databases, Git, and productivity with shell scripting and Bash. Building on this foundation, you'll delve into the fundamentals of statistics, laying the groundwork for pre-modeling concepts, machine learning, deep learning, and generative AI. The book concludes by offering insights into how best to prepare for the intensive data science interview. By the end of this interview guide, you’ll have gained the confidence, business acumen, and technical skills required to distinguish yourself within this competitive landscape and land your next data science job.What you will learn Explore data science trends, job demands, and potential career paths Secure interviews with industry-standard resume and portfolio tips Practice data manipulation with Python and SQL Learn about supervised and unsupervised machine learning models Master deep learning components such as backpropagation and activation functions Enhance your productivity by implementing code versioning through Git Streamline workflows using shell scripting for increased efficiency Who this book is for Whether you're a seasoned professional who needs to brush up on technical skills or a beginner looking to enter the dynamic data science industry, this book is for you. To get the most out of this book, basic knowledge of Python, SQL, and statistics is necessary. However, anyone familiar with other analytical languages, such as R, will also find value in this resource as it helps you revisit critical data science concepts like SQL, Git, statistics, and deep learning, guiding you to crack through data science interviews.
  cracking data science interview pdf: Cracking the PM Interview Gayle Laakmann McDowell, Jackie Bavaro, 2013 How many pizzas are delivered in Manhattan? How do you design an alarm clock for the blind? What is your favorite piece of software and why? How would you launch a video rental service in India? This book will teach you how to answer these questions and more. Cracking the PM Interview is a comprehensive book about landing a product management role in a startup or bigger tech company. Learn how the ambiguously-named PM (product manager / program manager) role varies across companies, what experience you need, how to make your existing experience translate, what a great PM resume and cover letter look like, and finally, how to master the interview: estimation questions, behavioral questions, case questions, product questions, technical questions, and the super important pitch.
  cracking data science interview pdf: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
  cracking data science interview pdf: Data Science Fundamentals and Practical Approaches Dr. Gypsy Nandi, Dr. Rupam Kumar Sharma, 2020-06-02 Learn how to process and analysis data using PythonÊ KEY FEATURESÊ - The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. - The book is not just dealing with the background mathematics alone or only the programs but beautifully correlates the background mathematics to the theory and then finally translating it into the programs. - A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. DESCRIPTION This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems.Ê Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic.Ê WHAT WILL YOU LEARNÊ Perform processing on data for making it ready for visual plot and understand the pattern in data over time. Understand what machine learning is and how learning can be incorporated into a program. Know how tools can be used to perform analysis on big data using python and other standard tools. Perform social media analytics, business analytics, and data analytics on any data of a company or organization. WHO THIS BOOK IS FOR The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. TABLE OF CONTENTS 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics
  cracking data science interview pdf: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together
  cracking data science interview pdf: Coding Interview Questions Narasimha Karumanchi, 2012 Peeling Data Structures and Algorithms: * Programming puzzles for interviews * Campus Preparation * Degree/Masters Course Preparation * Instructor's * GATE Preparation * Big job hunters: Microsoft, Google, Amazon, Yahoo, Flip Kart, Adobe, IBM Labs, Citrix, Mentor Graphics, NetApp, Oracle, Webaroo, De-Shaw, Success Factors, Face book, McAfee and many more * Reference Manual for working people
  cracking data science interview pdf: Elements of Programming Interviews Adnan Aziz, Tsung-Hsien Lee, Amit Prakash, 2012 The core of EPI is a collection of over 300 problems with detailed solutions, including 100 figures, 250 tested programs, and 150 variants. The problems are representative of questions asked at the leading software companies. The book begins with a summary of the nontechnical aspects of interviewing, such as common mistakes, strategies for a great interview, perspectives from the other side of the table, tips on negotiating the best offer, and a guide to the best ways to use EPI. The technical core of EPI is a sequence of chapters on basic and advanced data structures, searching, sorting, broad algorithmic principles, concurrency, and system design. Each chapter consists of a brief review, followed by a broad and thought-provoking series of problems. We include a summary of data structure, algorithm, and problem solving patterns.
  cracking data science interview pdf: Cracking the IT Architect Interview Sameer Paradkar, 2016-11-30 The ultimate guide to successful interviews for Enterprise, Business, Domain, Solution, and Technical Architect roles as well as IT Advisory Consultant and Software Designer roles About This Book Learn about Enterprise Architects IT strategy and NFR – this book provides you with methodologies, best practices, and frameworks to ace your interview A holistic view of key architectural skills and competencies with 500+ questions that cover 12 domains 100+ diagrams depicting scenarios, models, and methodologies designed to help you prepare for your interview Who This Book Is For This book is for aspiring enterprise, business, domain, solution, and technical architects. It is also ideal for IT advisory consultants and IT designers who wish to interview for such a role. Interviewers will be able leverage this book to make sure they hire candidates with the right competencies to meet the role requirements. What You Will Learn Learn about IT strategies, NFR, methodologies, best practices, and frameworks to ace your interview Get a holistic view of key concepts, design principles, and patterns related to evangelizing web and Java enterprise applications Discover interview preparation guidelines through case studies Use this as a reference guide for adopting best practices, standards, and design guidelines Get a better understanding with 60+ diagrams depicting various scenarios, models, and methodologies Benefit from coverage of all architecture domains including EA (Business, Data, Infrastructure, and Application), SA, integration, NFRs, security, and SOA, with extended coverage from IT strategies to the NFR domain In Detail An architect attends multiple interviews for jobs or projects during the course of his or her career. This book is an interview resource created for designers, consultants, technical, solution, domain, enterprise, and chief architects to help them perform well in interview discussions and launch a successful career. The book begins by providing descriptions of architecture skills and competencies that cover the 12 key domains, including 350+ questions relating to these domains. The goal of this book is to cover all the core architectural domains. From an architect's perspective, it is impossible to revise or learn about all these key areas without a good reference guide – this book is the solution. It shares experiences, learning, insights, and proven methodologies that will benefit practitioners, SMEs, and aspirants in the long run. This book will help you tackle the NFR domain, which is a key aspect pertaining to architecting applications. It typically takes years to understand the core concepts, fundamentals, patterns, and principles related to architecture and designs. This book is a goldmine for the typical questions asked during an interview and will help prepare you for success! Style and approach This book will help you prepare for interviews for architectural profiles by providing likely questions, explanations, and expected answers. It is an insight-rich guide that will help you develop strategic, tactical, and operational thinking for your interview.
  cracking data science interview pdf: Deep Learning and the Game of Go Kevin Ferguson, Max Pumperla, 2019-01-06 Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
  cracking data science interview pdf: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  cracking data science interview pdf: Dynamic Programming for Coding Interviews Meenakshi, Kamal Rawat, 2017-01-18 I wanted to compute 80th term of the Fibonacci series. I wrote the rampant recursive function, int fib(int n){ return (1==n || 2==n) ? 1 : fib(n-1) + fib(n-2); } and waited for the result. I wait… and wait… and wait… With an 8GB RAM and an Intel i5 CPU, why is it taking so long? I terminated the process and tried computing the 40th term. It took about a second. I put a check and was shocked to find that the above recursive function was called 204,668,309 times while computing the 40th term. More than 200 million times? Is it reporting function calls or scam of some government? The Dynamic Programming solution computes 100th Fibonacci term in less than fraction of a second, with a single function call, taking linear time and constant extra memory. A recursive solution, usually, neither pass all test cases in a coding competition, nor does it impress the interviewer in an interview of company like Google, Microsoft, etc. The most difficult questions asked in competitions and interviews, are from dynamic programming. This book takes Dynamic Programming head-on. It first explain the concepts with simple examples and then deep dives into complex DP problems.
  cracking data science interview pdf: The Data Science Handbook Field Cady, 2017-02-28 A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.
  cracking data science interview pdf: Practical Statistics for Data Scientists Peter Bruce, Andrew Bruce, 2017-05-10 Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
  cracking data science interview pdf: Data Science Uncovering the Reality Pulkit Bansal, Kunal Kishore, Pankaj Gupta, Srijan Saket, Neeraj Kumar, 2020-04-15 Data Science has become a popular field of work today. However a good resource to understand applied Data Science is still missing. In Data Science Uncovering the Reality, a group of IITians unravel how Data Science is done in the industry. They have interviewed Data Science and technology leaders at top companies in India and presented their learnings here. This book will give you honest answers to questions such as: How to build a career in Data Science? How A.I. is used in the world’s most successful companies. How Data Science leaders actually work and the challenges they face.
  cracking data science interview pdf: Grokking the Java Interview Javin Paul, 2021-01-26 Cracking Java Interview is not easy and one of the main reasons for that is Java is very vast. There are a lot of concepts and APIs to master to become a decent Java developer. Many people who are good at general topics like Data Structure and Algorithms, System Design, SQL, and Database fail to crack the Java interview because they don't spend time to learn the Core Java concepts and essential APIs and packages like Java Collection Framework, Multithreading, JVM Internals, JDBC, Design Patterns, and Object-Oriented Programming. This book aims to fill that gap and introduce you to classical Java interview questions from these topics. By going through these questiosn and topic you will not only expand your knowledge but also get ready for your Next Java interview. If you are preparing for Java interviews then I highly recommend you to go through these questions befor your telephonic or face-to-face interviews, you will not only gain confidence and knowelge to answer the question but also learn how to drive Java interview in your favor. This is the single most important tip I can give you as a Java developer. Always, remember, your answers drive interviews, and these questions will show you how to drive Interviewer to your strong areas. All the best for the Java interview and if you have any questions or feedback you can always contact me on twitter javinpaul (http: //twitter.com/javinpaul) or comment on my blogs Javarevisited(http: //javarevisited.blogspot.com) and Java67(http: //java67.c
  cracking data science interview pdf: Decode and Conquer Lewis C. Lin, 2013-11-28 Land that Dream Product Manager Job...TODAYSeeking a product management position?Get Decode and Conquer, the world's first book on preparing you for the product management (PM) interview. Author and professional interview coach, Lewis C. Lin provides you with an industry insider's perspective on how to conquer the most difficult PM interview questions. Decode and Conquer reveals: Frameworks for tackling product design and metrics questions, including the CIRCLES Method(tm), AARM Method(tm), and DIGS Method(tm) Biggest mistakes PM candidates make at the interview and how to avoid them Insider tips on just what interviewers are looking for and how to answer so they can't say NO to hiring you Sample answers for the most important PM interview questions Questions and answers covered in the book include: Design a new iPad app for Google Spreadsheet. Brainstorm as many algorithms as possible for recommending Twitter followers. You're the CEO of the Yellow Cab taxi service. How do you respond to Uber? You're part of the Google Search web spam team. How would you detect duplicate websites? The billboard industry is under monetized. How can Google create a new product or offering to address this? Get the Book that's Recommended by Executives from Google, Amazon, Microsoft, Oracle & VMWare...TODAY
  cracking data science interview pdf: The Google Resume Gayle Laakmann McDowell, 2011-01-25 The Google Resume is the only book available on how to win a coveted spot at Google, Microsoft, Apple, or other top tech firms. Gayle Laakmann McDowell worked in Google Engineering for three years, where she served on the hiring committee and interviewed over 120 candidates. She interned for Microsoft and Apple, and interviewed with and received offers from ten tech firms. If you’re a student, you’ll learn what to study and how to prepare while in school, as well as what career paths to consider. If you’re a job seeker, you’ll get an edge on your competition by learning about hiring procedures and making yourself stand out from other candidates. Covers key concerns like what to major in, which extra-curriculars and other experiences look good, how to apply, how to design and tailor your resume, how to prepare for and excel in the interview, and much more Author was on Google’s hiring committee; interned at Microsoft and Apple; has received job offers from more than 10 tech firms; and runs CareerCup.com, a site devoted to tech jobs Get the only comprehensive guide to working at some of America’s most dynamic, innovative, and well-paying tech companies with The Google Resume.
  cracking data science interview pdf: Machine Learning in Non-Stationary Environments Masashi Sugiyama, Motoaki Kawanabe, 2012-03-30 Theory, algorithms, and applications of machine learning techniques to overcome “covariate shift” non-stationarity. As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.
  cracking data science interview pdf: Cracking the Project Management Interview Jim Keogh, 2020-01-20 Cracking the Project Manager Interview is designed to help you land your ideal project management job. The book's unique two-part organization helps you through the job application process, the interviewing process, job training, and everything in between! In Part I you will learn the ins and outs of the interviewing process: how to get your application noticed, how to prepare for the interview, how to uncover hints in an interviewer's questions, and more. Part II is an extensive review of what you need to know in order to ensure success in your interview. This section includes an overview of fundamental of project management and techniques, providing a quick review for those about to go into an interview, and for those considering project management as a profession, it is a great resource to know what you will need to learn. The book provides practice interview questions and solutions, so readers can go into their interviews confidently. In addition to interview tips and tricks, readers will learn how to sell their value and determine if they fit within a specific organization. Project managers will be given an overview of the hiring process, a detailed walk-through of the various project manager careers available to them, and all the information necessary to identify and pursue their ideal career.
  cracking data science interview pdf: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
  cracking data science interview pdf: Coding Interview Questions Narasimha Karumanchi, 2012-05 Coding Interview Questions is a book that presents interview questions in simple and straightforward manner with a clear-cut explanation. This book will provide an introduction to the basics. It comes handy as an interview and exam guide for computer scientists. Programming puzzles for interviews Campus Preparation Degree/Masters Course Preparation Big job hunters: Apple, Microsoft, Google, Amazon, Yahoo, Flip Kart, Adobe, IBM Labs, Citrix, Mentor Graphics, NetApp, Oracle, Webaroo, De-Shaw, Success Factors, Face book, McAfee and many more Reference Manual for working people Topics Covered: Programming BasicsIntroductionRecursion and BacktrackingLinked Lists Stacks Queues Trees Priority Queue and HeapsGraph AlgorithmsSortingSearching Selection Algorithms [Medians] Symbol TablesHashing String Algorithms Algorithms Design Techniques Greedy Algorithms Divide and Conquer Algorithms Dynamic Programming Complexity Classes Design Interview Questions Operating System Concepts Computer Networking Basics Database Concepts Brain Teasers NonTechnical Help Miscellaneous Concepts Note: If you already have Data Structures and Algorithms Made Easy no need to buy this.
  cracking data science interview pdf: Cracking the Finance Quant Interview Jean Peyre, 2020-07-18 Although quantitative interviews are technically challenging, the hardest part can be to guess what you will be expected to know on the interview day. The scope of the requirements can also differ a lot between these roles within the banking sector. Author Jean Peyre has built a strong experience of quant interviews, both as an interviewee and an interviewer. Designed to be exhaustive but concise, this book covers all the parts you need to know before attending an interview. Content The book compiles 51 real quant interview questions asked in the banking industry 1) Brainteasers 2) Stochastic Calculus - Brownian motion, Martingale, Stopping time 3) Finance - Option pricing - Exchange Option, Forward starting Option, Straddles, Compound Option, Barrier Option 4) Programming - Sorting algorithms, Python, C++ 5) Classic derivations - Ornstein Uhlenbeck - Local Volatility - Fokker Planck - Hybrid Vasicek Model 6) Math handbook - The definitions and theorems you need to know
  cracking data science interview pdf: Cracking the PM Career Jackie Bavaro, Gayle Laakmann McDowell, 2022-04 Product management is a big role, and this is a big book. This comprehensive guide teaches new PMs and experienced PMs the skills, frameworks, and practices to become great product managers. ?Product skills: Drive better product decisions by conducting user research, performing data analysis, prototyping, writing product docs, and understanding technology.?Execution skills: Run your team well and deliver your projects quickly, smoothly, and effectively with project management, incremental development, launch processes, and good time management.?Strategic skills: Set a better direction for your team and optimize for long-term impact with vision, strategy, roadmapping, and team goals. Learn what it means to be more strategic.?Leadership skills: Lead more effectively by developing your personal mindset, collaboration, communication, inspiration, and mentorship skills.?People management: Learn leadership skills for managers, including coaching, recruiting, interviewing, and creating organizational structures.?Careers: Navigate your career by understanding the career ladder, setting goals, and translating your accomplishments into advancement.
Cracking (chemistry) - Wikipedia
In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down …

CRACKING Definition & Meaning - Merriam-Webster
The meaning of CRACKING is very impressive or effective : great. How to use cracking in a sentence.

Cracking - Chemistry LibreTexts
Jan 23, 2023 · Cracking is the name given to breaking up large hydrocarbon molecules into smaller and more useful bits. This is achieved by using high pressures and temperatures …

CRACKING definition and meaning | Collins English Dictionary
Cracking is the process of breaking into smaller units, especially the process of splitting a large heavy hydrocarbon molecule into smaller, lighter components.

Cracking - definition of cracking by The Free Dictionary
Define cracking. cracking synonyms, cracking pronunciation, cracking translation, English dictionary definition of cracking. n. Decomposition of a complex substance by the application …

What is Cracking? - BYJU'S
Cracking is a chemical process which is used in oil refining. To produce by-products such as cooking oil, ethanol, liquefied petroleum gas, diesel fuel, jet fuel and other petroleum …

CRACKING | definition in the Cambridge English Dictionary
CRACKING meaning: 1. extremely good: 2. a process in which large molecules of a hydrocarbon are broken down into…. Learn more.

Cracking | Catalytic, Hydrocarbon, Reforming | Britannica
Cracking, in petroleum refining, the process by which heavy hydrocarbon molecules are broken up into lighter molecules by means of heat and usually pressure and sometimes catalysts. …

Crude oil, hydrocarbons and alkanes - AQA Cracking and alkenes
Crude oil is a finite resource. Petrol and other fuels are produced from it using fractional distillation. Cracking is used to convert long alkanes into shorter, more useful hydrocarbons.

Cracking - Wikipedia
Cracking may refer to: Cracking, the formation of a fracture or partial fracture in a solid material studied as fracture mechanics. Performing a sternotomy; Fluid catalytic cracking, a catalytic …

Cracking (chemistry) - Wikipedia
In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down …

CRACKING Definition & Meaning - Merriam-Webster
The meaning of CRACKING is very impressive or effective : great. How to use cracking in a sentence.

Cracking - Chemistry LibreTexts
Jan 23, 2023 · Cracking is the name given to breaking up large hydrocarbon molecules into smaller and more useful bits. This is achieved by using high pressures and temperatures …

CRACKING definition and meaning | Collins English Dictionary
Cracking is the process of breaking into smaller units, especially the process of splitting a large heavy hydrocarbon molecule into smaller, lighter components.

Cracking - definition of cracking by The Free Dictionary
Define cracking. cracking synonyms, cracking pronunciation, cracking translation, English dictionary definition of cracking. n. Decomposition of a complex substance by the application of …

What is Cracking? - BYJU'S
Cracking is a chemical process which is used in oil refining. To produce by-products such as cooking oil, ethanol, liquefied petroleum gas, diesel fuel, jet fuel and other petroleum distillates, …

CRACKING | definition in the Cambridge English Dictionary
CRACKING meaning: 1. extremely good: 2. a process in which large molecules of a hydrocarbon are broken down into…. Learn more.

Cracking | Catalytic, Hydrocarbon, Reforming | Britannica
Cracking, in petroleum refining, the process by which heavy hydrocarbon molecules are broken up into lighter molecules by means of heat and usually pressure and sometimes catalysts. …

Crude oil, hydrocarbons and alkanes - AQA Cracking and alkenes
Crude oil is a finite resource. Petrol and other fuels are produced from it using fractional distillation. Cracking is used to convert long alkanes into shorter, more useful hydrocarbons.

Cracking - Wikipedia
Cracking may refer to: Cracking, the formation of a fracture or partial fracture in a solid material studied as fracture mechanics. Performing a sternotomy; Fluid catalytic cracking, a catalytic …