Cell Therapy Manufacturing Companies

Advertisement



  cell therapy manufacturing companies: Stem Cell Manufacturing Joaquim M.S. Cabral, Claudia Lobato da Silva, Lucas G. Chase, M. Margardia Diogo, 2016-07-24 Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders. - Presents the first 'Flowchart' of stem cell manufacturing enabling easy understanding of the various processes in a sequential and coherent manner - Covers all bioprocess technologies required for the transfer of the bench findings to the clinic including the process components: cell signals, bioreactors, modeling, automation, safety, etc. - Presents comprehensive coverage of a true multidisciplinary topic by bringing together specialists in their particular area - Provides the basics of the processes and identifies the issues to be resolved for large scale cell culture by the bioengineer - Addresses the critical need in bioprocessing for the successful delivery of stem cell technology to the market place by involving professional engineers in sections of the book
  cell therapy manufacturing companies: Cell and Gene Therapies Miguel-Angel Perales, Syed A. Abutalib, Catherine Bollard, 2018-11-27 In this book, experts in the field express their well-reasoned opinions on a range of complex, clinically relevant issues across the full spectrum of cell and gene therapies with the aim of providing trainee and practicing hematologists, including hematopoietic transplant physicians, with information that is relevant to clinical practice and ongoing research. Each chapter focuses on a particular topic, and the concise text is supported by numerous working tables, algorithms, and figures. Whenever appropriate, guidance is provided regarding the availability of potentially high-impact clinical trials. The rapid evolution of cell and gene therapies is giving rise to numerous controversies that need to be carefully addressed. In meeting this challenge, this book will appeal to all residents, fellows, and faculty members responsible for the care of hematopoietic cell transplant patients. It will also offer a robust, engaging tool to aid vital activities in the daily work of every hematology and oncology trainee.
  cell therapy manufacturing companies: Ex Vivo Cell Therapy Klaus Schindhelm, Robert Nordon, 1999 R.E. Nordon and K. Schindhelm, Introduction. -- L. Robb, A.G. Elefanty, and C.G. Begley, Transcriptional Control of Hematopoieses. -- R. Starr and N.A. Nicola, Cell Signaling by Hemopoietic Growth Factor Receptors. -- P.J. Simmons, D.N. Haylock, and J.-P. Lévesque, Influence of Cytokines and Adhesion Molecules on Hematopoietic Stem Cell Development. -- P.A. Rowlings, Allogeneic Hematopoietic Stem Cell Transplantation. -- U. Hahn and L.B. To, Autologous Stem Cell Transplantation. -- M.R. Vowels, Cord Blood Stem Cell Transplantation. -- S.R. Riddell, E.H. Warren, D. Lewinsohn, C. Yee, and P.D. Greenberg, Reconstitution of Immunity by Adoptive Immunotherapy with T Cells. -- L.Q. Sun, M. Miller, and G. Symonds, Exogenous Gene Transfer into Lymphoid and Hematopoietic Progenitor Cells. -- C. Dowding, T. Leemhuis, A. Jakubowski, and C. Reading, Process Development for Ex Vivo Cell Therapy. -- R.E. Nordon and K. Schindhelm, Cell Separation. -- P.W. Zandstra, C.J. Eaves, and J.M. Piret, Environ ...
  cell therapy manufacturing companies: Regulatory Aspects of Gene Therapy and Cell Therapy Products Maria Cristina Galli, Mercedes Serabian, 2015-09-15 This book discusses the different regulatory pathways for gene therapy (GT) and cell therapy (CT) medicinal products implemented by national and international bodies throughout the world (e.g. North and South America, Europe, and Asia). Each chapter, authored by experts from various regulatory bodies throughout the international community, walks the reader through the applications of nonclinical research to translational clinical research to licensure for these innovative products. More specifically, each chapter offers insights into fundamental considerations that are essential for developers of CT and GT products, in the areas of product manufacturing, pharmacology and toxicology, and clinical trial design, as well as pertinent must-know guidelines and regulations. Regulatory Aspects of Gene Therapy and Cell Therapy Products: A Global Perspective is part of the American Society of Gene and Cell Therapy sub-series of the highly successful Advances in Experimental Medicine and Biology series. It is essential reading for graduate students, clinicians, and researchers interested in gene and cell therapy and the regulation of pharmaceuticals.
  cell therapy manufacturing companies: The Business of Healthcare Innovation Lawton Robert Burns, 2005-08-25 The Business of Healthcare Innovation is the first wide-ranging analysis of business trends in the manufacturing segment of the health care industry. In this leading edge volume, Professor Burns focuses on the key role of the 'producers' as the main source of innovation in health systems. Written by professors of the Wharton School and industry executives, this book provides a detailed overview of the pharmaceutical, biotechnology, genomics/proteomics, medical device and information technology sectors. It analyses the market structures of these sectors as well as the business models and corporate strategies of firms operating within them. Most importantly, the book describes the growing convergence between these sectors and the need for executives in one sector to increasingly draw upon trends in the others. It will be essential reading for students and researchers in the field of health management, and of great interest to strategy scholars, industry practitioners and management consultants.
  cell therapy manufacturing companies: Cell Therapy Adrian Gee, 2009-09-18 Cell Therapy: cGMP Facilities and Manufacturing is the source for a complete discussion of facility design and operation with practical approaches to a variety of day-to-day activities, such as staff training and competency, cleaning procedures, and environmental monitoring. This in-depth book also includes detailed reviews of quality, the framework of regulations, and professional standards. It meets a previously unmet need for a thorough facility-focused resource, Cell Therapy: cGMP Facilities and Manufacturing will be an important addition to the cell therapy professional’s library. Additional topics in Cell Therapy: cGMP Facilities and Manufacturing...Standard operating procedures - Supply management - Facility equipment - Product manufacturing, review, release and administration - Facility master file.
  cell therapy manufacturing companies: The Challenge of CMC Regulatory Compliance for Biopharmaceuticals John Geigert, 2019-05-08 Biopharmaceuticals (i.e., biological medicines sourced from genetically-engineered living systems) for treatment of human diseases have become a significant percentage of the pharmaceutical industry. And not just the recombinant DNA-derived proteins and monoclonal antibodies (both from the innovators and biosimilars); but now, an increasing awareness of the importance of gene therapy and genetically engineered cellular medicinal products. These biopharmaceuticals are being developed by many companies whose Chemistry, Manufacturing & Control (CMC) teams have varying degrees of familiarity or experience with the CMC strategy and regulatory compliance requirements for these challenging products. Companies clearly plan out the strategy for their clinical study plans, but frequently, the development of a strategy for CMC is an afterthought. Coupled with the complexity of the biopharmaceutical manufacturing processes and products, and this can be a recipe for disaster. The third edition of this book provides insights and practical guidance for the CMC teams to develop an acceptable cost-effective, risk-based CMC regulatory compliance strategy for all biopharmaceuticals (recombinant proteins, monoclonal antibodies, genetically engineered viruses and genetically engineered human cells) from early clinical stage development through market approval. The third edition of this book provides added coverage for the biosimilars, antibody drug conjugates (ADCs), bispecific antibodies, genetically engineered viruses, and genetically engineered cells. This third edition of the book also addresses the heightened pressure on CMC regulatory compliance timelines due to the introduction of expedited clinical pathways moving the clinical development closer to a seamless phase process (e.g., FDA Breakthrough Therapy designation, CBER Regenerative Medicine Advanced Therapy (RMAT) designation, EMA Priority Medicines (PRIME) designation). The Challenge of CMC Regulatory Compliance for Biopharmaceuticals is essential, practical information for all pharmaceutical development scientists, Manufacturing and Quality Unit staff, Regulatory Affairs personnel, and senior management involved in the manufacture of biopharmaceuticals.
  cell therapy manufacturing companies: The EBMT/EHA CAR-T Cell Handbook Nicolaus Kröger, John Gribben, Christian Chabannon, Ibrahim Yakoub-Agha, Hermann Einsele, 2022-02-07 This first open access European CAR-T Handbook, co-promoted by the European Society for Blood and Marrow Transplantation (EBMT) and the European Hematology Association (EHA), covers several aspects of CAR-T cell treatments, including the underlying biology, indications, management of side-effects, access and manufacturing issues. This book, written by leading experts in the field to enhance readers’ knowledge and practice skills, provides an unparalleled overview of the CAR-T cell technology and its application in clinical care, to enhance readers’ knowledge and practice skills.
  cell therapy manufacturing companies: Which Country Has the World's Best Health Care? Ezekiel J. Emanuel, 2020-06-16 The preeminent doctor and bioethicist Ezekiel Emanuel is repeatedly asked one question: Which country has the best healthcare? He set off to find an answer. The US spends more than any other nation, nearly $4 trillion, on healthcare. Yet, for all that expense, the US is not ranked #1 -- not even close. In Which Country Has the World's Best Healthcare? Ezekiel Emanuel profiles eleven of the world's healthcare systems in pursuit of the best or at least where excellence can be found. Using a unique comparative structure, the book allows healthcare professionals, patients, and policymakers alike to know which systems perform well, and why, and which face endemic problems. From Taiwan to Germany, Australia to Switzerland, the most inventive healthcare providers tackle a global set of challenges -- in pursuit of the best healthcare in the world.
  cell therapy manufacturing companies: Therapeutic Oligonucleotides Jens Kurreck, 2008 This book provides a compelling overall update on current status of RNA interference
  cell therapy manufacturing companies: Gene and Cell Therapies Eve Hanna, Mondher Toumi, 2020-05-19 The major advances in the field of biotechnology and molecular biology in the twenty-first century have led to a better understanding of the pathophysiology of diseases. A new generation of biopharmaceuticals has emerged, including a wide and heterogeneous range of innovative cell and gene therapies. These therapies aim to prevent or treat chronic and serious life-threatening diseases, previously considered incurable. This book describes the evolution and adaptation of the regulatory environment to assess these therapies in contrast with the resistance of health technology assessment (HTA) agencies and payers to acknowledge the specificity of cell and gene therapies and the need to adapt existing decision-making frameworks. This book provides insights on the learnings from the experience of current cell and gene therapies (regulatory approval, HTA, and market access), in addition to future trends to enhance patient access to these therapies. Key Features: Describes the potential change of treatment paradigm and the specificity of cell and gene therapies, including the gradual move from repeated treatment administration to one-time single administration with the potential to be definite cure Highlights the challenges at the HTA level Discusses the affordability of future cell and gene therapies and the possible challenges for health insurance systems Provides potential solutions to address these challenges and ensure patient access to innovation while maintaining the sustainability of healthcare systems
  cell therapy manufacturing companies: Living Donor Transplantation Henkie P. Tan, Amadeo Marcos, Ron Shapiro, 2007-04-27 Edited by leaders at one of the acclaimed transplant institutions in the United States, this reference covers all aspects of living donor solid organ and cellular transplantation in current clinical practice, including the kidney, liver, pancreas, lung, small bowel, islet, and hematopoietic stem cell transplantation. Detailed, engaging, and organ-
  cell therapy manufacturing companies: Mesenchymal Stem Cell Therapy Lucas G. Chase, Mohan C Vemuri, 2012-12-12 Over the past decade, significant efforts have been made to develop stem cell-based therapies for difficult to treat diseases. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), appear to hold great promise in regards to a regenerative cell-based therapy for the treatment of these diseases. Currently, more than 200 clinical trials are underway worldwide exploring the use of MSCs for the treatment of a wide range of disorders including bone, cartilage and tendon damage, myocardial infarction, graft-versus-host disease, Crohn’s disease, diabetes, multiple sclerosis, critical limb ischemia and many others. MSCs were first identified by Friendenstein and colleagues as an adherent stromal cell population within the bone marrow with the ability to form clonogenic colonies in vitro. In regards to the basic biology associated with MSCs, there has been tremendous progress towards understanding this cell population’s phenotype and function from a range of tissue sources. Despite enormous progress and an overall increased understanding of MSCs at the molecular and cellular level, several critical questions remain to be answered in regards to the use of these cells in therapeutic applications. Clinically, both autologous and allogenic approaches for the transplantation of MSCs are being explored. Several of the processing steps needed for the clinical application of MSCs, including isolation from various tissues, scalable in vitro expansion, cell banking, dose preparation, quality control parameters, delivery methods and numerous others are being extensively studied. Despite a significant number of ongoing clinical trials, none of the current therapeutic approaches have, at this point, become a standard of care treatment. Although exceptionally promising, the clinical translation of MSC-based therapies is still a work in progress. The extensive number of ongoing clinical trials is expected to provide a clearer path forward for the realization and implementation of MSCs in regenerative medicine. Towards this end, reviews of current clinical trial results and discussions of relevant topics association with the clinical application of MSCs are compiled in this book from some of the leading researchers in this exciting and rapidly advancing field. Although not absolutely all-inclusive, we hope the chapters within this book can promote and enable a better understanding of the translation of MSCs from bench-to-bedside and inspire researchers to further explore this promising and quickly evolving field.
  cell therapy manufacturing companies: Quality Management and Accreditation in Hematopoietic Stem Cell Transplantation and Cellular Therapy Mahmoud Aljurf, John A. Snowden, Patrick Hayden, Kim H. Orchard, Eoin McGrath, 2021-02-19 This open access book provides a concise yet comprehensive overview on how to build a quality management program for hematopoietic stem cell transplantation (HSCT) and cellular therapy. The text reviews all the essential steps and elements necessary for establishing a quality management program and achieving accreditation in HSCT and cellular therapy. Specific areas of focus include document development and implementation, audits and validation, performance measurement, writing a quality management plan, the accreditation process, data management, and maintaining a quality management program. Written by experts in the field, Quality Management and Accreditation in Hematopoietic Stem Cell Transplantation and Cellular Therapy: A Practical Guide is a valuable resource for physicians, healthcare professionals, and laboratory staff involved in the creation and maintenance of a state-of-the-art HSCT and cellular therapy program.
  cell therapy manufacturing companies: Methods of Tissue Engineering Anthony Atala, Robert Lanza, 2001-10-12 This reference book combines the tools, experimental protocols, detailed descriptions and know-how for the successful engineering of tissues and organs in one volume.
  cell therapy manufacturing companies: Somatic Gene Therapy P.L. Chang, 2018-01-17 As human gene therapy becomes a clinical reality, a new era in medicine dawns. Novel and innovative developments in molecular genetics now provide opportunities to treat the genetic bases of diseases often untreatable before. Somatic Gene Therapy documents these historical clinical trials, reviews current advances in the field, evaluates the use of the many different cell types and organs amenable to gene transfer, and examines the prospects of various exciting strategies for gene therapy.
  cell therapy manufacturing companies: Cell Culture Engineering Wei-Shu Hu, 2006-08-16 Since the introduction of recombinant human growth hormone and insulin a quarter century ago, protein therapeutics has greatly broadened the ho- zon of health care. Many patients suffering with life-threatening diseases or chronic dysfunctions, which were medically untreatable not long ago, can attest to the wonder these drugs have achieved. Although the ?rst generation of p- tein therapeutics was produced in recombinant Escherichia coli, most recent products use mammalian cells as production hosts. Not long after the ?rst p- duction of recombinant proteins in E. coli, it was realized that the complex tasks of most post-translational modi?cations on proteins could only be ef?ciently carried out in mammalian cells. In the 1990s, we witnessed a rapid expansion of mammalian-cell-derived protein therapeutics, chie?y antibodies. In fact, it has been nearly a decade since the market value of mammalian-cell-derived protein therapeutics surpassed that of those produced from E. coli. A common characteristic of recent antibody products is the relatively large dose required for effective therapy, demanding larger quantities for the treatment of a given disease. This, coupled with the broadening repertoire of protein drugs, has rapidly expanded the quantity needed for clinical applications. The increasing demand for protein therapeutics has not been met exclusively by construction of new manufacturing plants and increasing total volume capacity. More - portantly the productivity of cell culture processes has been driven upward by an order of magnitude in the past decade.
  cell therapy manufacturing companies: Therapy with Cultured Cells Howard Green, 2019-05-08 In this book the author describes the discoveries in his laboratory that led to therapy with cultured cells. The first cultured cell type used for therapy was the keratinocyte of the epidermis, for the treatment of burns. Subsequent developments led to the use of cultured cells for the treatment of diseases of the eye, of the joints and of other diseases. Cultured cells for therapy are now being prepared by industries in the US, Japan and Korea and are used in the aforesaid countries, as well as in France, Sweden and Greece, for the treatment of disease.
  cell therapy manufacturing companies: Biopharmaceuticals Basanta Kumara Behera, 2020-12-07 Biopharmaceuticals: Challenges and Opportunities This book highlights how the traditional microbial process technology has been upgraded for the production of biologic drugs how manufacturing processes have evolved to meet the global market demand with quality products under the guidelines of internally recognized regulatory bodies. It also carries information on how, armed with a deeper understanding of life-threatening diseases, biopharmaceutical companies and the life sciences industry have developed formal and informal partnerships with researchers in institutes, universities, and other R&D organizations to fulfil timely, quality production with perfect safety and security. One of the most interesting aspects of this book is the conceptual development of personalized medicine (or precision medicine) to provide the right treatment to the right patient, at the right dose at an earlier stage of development, for genetic diseases. Besides this, it also highlights the most challenging aspects of modern biopharmaceutical science, focusing on the hot topics such as design and development of biologic drugs; the use of diversified groups of host cells belonging to animals, plants, microbes, insects, and mammals; stem cell therapy and gene therapy; supply chain management of biopharmaceuticals; and the future scope of biopharmaceutical industry development. This book is the latest resource for a wide circle of scientists, students, and researchers involved in understanding and implementing the knowledge of biopharmaceuticals to develop life-saving biologic drugs and to bring awareness to the development of personalized treatment that can potentially offer patients a faster diagnosis, fewer side effects, and better outcomes. Features: Explains how the traditional cell culture methodology has been changed to a fully continuous or partially continuous process Explains how to design and fabricate living organs of body by 3D bioprinting technology Focuses on how a biopharmaceutical company deals with various problems of regulatory bodies and develops innovative biologic drugs Narrates in detail the updated information on stem cell therapy and gene therapy Explains the development strategies and clinical significance of biosimilars and biobetters Highlights the supply chain management of biopharmaceuticals
  cell therapy manufacturing companies: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together
  cell therapy manufacturing companies: Continuous Manufacturing for the Modernization of Pharmaceutical Production National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Board on Chemical Sciences and Technology, 2019-04-05 On July 30-31, 2018, the National Academies of Sciences, Engineering, and Medicine held a workshop titled Continuous Manufacturing for the Modernization of Pharmaceutical Production. This workshop discussed the business and regulatory concerns associated with adopting continuous manufacturing techniques to produce biologics such as enzymes, monoclonal antibodies, and vaccines. The participants also discussed specific challenges for integration across the manufacturing system, including upstream and downstream processes, analytical techniques, and drug product development. The workshop addressed these challenges broadly across the biologics domain but focused particularly on drug categories of greatest FDA and industrial interest such as monoclonal antibodies and vaccines. This publication summarizes the presentations and discussions from the workshop.
  cell therapy manufacturing companies: Rare Diseases and Orphan Products Institute of Medicine, Board on Health Sciences Policy, Committee on Accelerating Rare Diseases Research and Orphan Product Development, 2011-04-03 Rare diseases collectively affect millions of Americans of all ages, but developing drugs and medical devices to prevent, diagnose, and treat these conditions is challenging. The Institute of Medicine (IOM) recommends implementing an integrated national strategy to promote rare diseases research and product development.
  cell therapy manufacturing companies: Pharmaceutical Biotechnology Gary Walsh, 2013-04-25 Pharmaceutical Biotechnology offers students taking Pharmacy and related Medical and Pharmaceutical courses a comprehensive introduction to the fast-moving area of biopharmaceuticals. With a particular focus on the subject taken from a pharmaceutical perspective, initial chapters offer a broad introduction to protein science and recombinant DNA technology- key areas that underpin the whole subject. Subsequent chapters focus upon the development, production and analysis of these substances. Finally the book moves on to explore the science, biotechnology and medical applications of specific biotech products categories. These include not only protein-based substances but also nucleic acid and cell-based products. introduces essential principles underlining modern biotechnology- recombinant DNA technology and protein science an invaluable introduction to this fast-moving subject aimed specifically at pharmacy and medical students includes specific ‘product category chapters’ focusing on the pharmaceutical, medical and therapeutic properties of numerous biopharmaceutical products. entire chapter devoted to the principles of genetic engineering and how these drugs are developed. includes numerous relevant case studies to enhance student understanding no prior knowledge of protein structure is assumed
  cell therapy manufacturing companies: Regenerative Medicine and Stem Cell Biology Nagwa El-Badri, 2020-11-27 This textbook covers the basic aspects of stem cell research and applications in regenerative medicine. Each chapter includes a didactic component and a practical section. The book offers readers insights into: How to identify the basic concepts of stem cell biology and the molecular regulation of pluripotency and stem cell development. How to produce induced pluripotent stem cells (iPSCs) and the basics of transfection. The biology of adult stem cells, with particular emphasis on mesenchymal stromal cells and hematopoietic stem cells, and the basic mechanisms that regulate them. How cancer stem cells arise and metastasize, and their properties. How to develop the skills needed to isolate, differentiate and characterize adult stem The clinical significance of stem cell research and the potential problems that need to be overcome. Evaluating the use of stem cells for tissue engineering and therapies (the amniotic membrane) The applications of bio-nanotechnology in stem cell research. How epigenetic mechanisms, including various DNA modifications and histone dynamics, are involved in regulating the potentiality and differentiation of stem cells. The scientific methods, ethical considerations and implications of stem cell research.
  cell therapy manufacturing companies: Monoclonal Antibody Production National Research Council, Institute for Laboratory Animal Research, Committee on Methods of Producing Monoclonal Antibodies, 1999-05-06 The American Anti-Vivisection Society (AAVS) petitioned the National Institutes of Health (NIH) on April 23, 1997, to prohibit the use of animals in the production of mAb. On September 18, 1997, NIH declined to prohibit the use of mice in mAb production, stating that the ascites method of mAb production is scientifically appropriate for some research projects and cannot be replaced. On March 26, 1998, AAVS submitted a second petition, stating that NIH failed to provide valid scientific reasons for not supporting a proposed ban. The office of the NIH director asked the National Research Council to conduct a study of methods of producing mAb. In response to that request, the Research Council appointed the Committee on Methods of Producing Monoclonal Antibodies, to act on behalf of the Institute for Laboratory Animal Research of the Commission on Life Sciences, to conduct the study. The 11 expert members of the committee had extensive experience in biomedical research, laboratory animal medicine, animal welfare, pain research, and patient advocacy (Appendix B). The committee was asked to determine whether there was a scientific necessity for the mouse ascites method; if so, whether the method caused pain or distress; and, if so, what could be done to minimize the pain or distress. The committee was also asked to comment on available in vitro methods; to suggest what acceptable scientific rationale, if any, there was for using the mouse ascites method; and to identify regulatory requirements for the continued use of the mouse ascites method. The committee held an open data-gathering meeting during which its members summarized data bearing on those questions. A 1-day workshop (Appendix A) was attended by 34 participants, 14 of whom made formal presentations. A second meeting was held to finalize the report. The present report was written on the basis of information in the literature and information presented at the meeting and the workshop.
  cell therapy manufacturing companies: Genetic Modification Therapies Clinical Applications BCC Research, 2018-08
  cell therapy manufacturing companies: Translational Regenerative Medicine Anthony Atala, Julie Allickson, 2014-12-01 Translational Regenerative Medicine is a reference book that outlines the life cycle for effective implementation of discoveries in the dynamic field of regenerative medicine. By addressing science, technology, development, regulatory, manufacturing, intellectual property, investment, financial, and clinical aspects of the field, this work takes a holistic look at the translation of science and disseminates knowledge for practical use of regenerative medicine tools, therapeutics, and diagnostics. Incorporating contributions from leaders in the fields of translational science across academia, industry, and government, this book establishes a more fluid transition for rapid translation of research to enhance human health and well-being. - Provides formulaic coverage of the landscape, process development, manufacturing, challenges, evaluation, and regulatory aspects of the most promising regenerative medicine clinical applications - Covers clinical aspects of regenerative medicine related to skin, cartilage, tendons, ligaments, joints, bone, fat, muscle, vascular system, hematopoietic /immune system, peripheral nerve, central nervous system, endocrine system, ophthalmic system, auditory system, oral system, respiratory system, cardiac system, renal system, hepatic system, gastrointestinal system, genitourinary system - Identifies effective, proven tools and metrics to identify and pursue clinical and commercial regenerative medicine
  cell therapy manufacturing companies: Stem Cells and Regenerative Medicine Walter C. Low, Catherine M. Verfaillie, 2008 The commercialization of biotechnology has resulted in an intensive search for new biological resources for the purposes of increasing food productivity, medicinal applications, energy production, and various other applications. Although biotechnology has produced many benefits for humanity, the exploitation of the planet's natural resources has also resulted in some undesirable consequences such as diminished species biodiversity, climate change, environmental contamination, and intellectual property right and patent concerns.This book discusses the role of biological, ecological, environmental, ethical, and economic issues in the interaction between biotechnology and biodiversity, using different contexts. No other book has discussed all of these issues in a comprehensive manner. Of special interest is their impact when biotechnology is shared between developed and developing countries, and the lack of recognition of the rights of indigenous populations and traditional farmers in developing countries by large multinational corporations.
  cell therapy manufacturing companies: Molecular and Cellular Therapeutics David Whitehouse, Ralph Rapley, 2012-02-17 Molecular and Cellular Therapeutics aims to bring together key developments in the areas of molecular diagnostics, therapeutics and drug discovery. The book covers topics including diagnostics, therapeutics, model systems, clinical trials and drug discovery. The developing approaches to molecular and cellular therapies, diagnostics and drug discovery are presented in the context of the pathologies they are devised to treat.
  cell therapy manufacturing companies: Biomaterials and Regenerative Medicine Peter X. Ma, 2014-07-24 Written by world-leading experts, this book focusses on the role of biomaterials in stem cell research and regenerative medicine. Emphasising basic principles and methodology, it covers stem cell interactions, fabrication technologies, design principles, physical characterisation and biological evaluation, across a broad variety of systems and biomaterials. Topics include: stem cell biology, including embryonic stem cells, IPS, HSC and progenitor cells; modern scaffold structures, including biopolymer, bioceramic, micro- and nanofiber, ECM and biohydrogel; advanced fabrication technologies, including computer-aided tissue engineering and organ printing; cutting-edge drug delivery systems and gene therapy techniques; and medical applications spanning hard and soft tissues, the cardiovascular system and organ regeneration. With a contribution by Nobel laureate Shinya Yamanaka, this is a must-have reference for anyone in the field of biomaterials, stem cell biology and engineering, tissue engineering and regenerative medicine.
  cell therapy manufacturing companies: We, the Almighty Fires Anna Rose Welch, 2019-10-01 These thought-provoking and spiritual poems focus on faith, relationships, and the role of God in life and in the bedroom. Female empowerment is at the heart of this collection, as well as perceptions of humanity as beings full of light.
  cell therapy manufacturing companies: Human Embryonic Stem Cells Arlene Chiu, Mahendra S. Rao, 2003-08 A discussion of all the key issues in the use of human pluripotent stem cells for treating degenerative diseases or for replacing tissues lost from trauma. On the practical side, the topics range from the problems of deriving human embryonic stem cells and driving their differentiation along specific lineages, regulating their development into mature cells, and bringing stem cell therapy to clinical trials. Regulatory issues are addressed in discussions of the ethical debate surrounding the derivation of human embryonic stem cells and the current policies governing their use in the United States and abroad, including the rules and conditions regulating federal funding and questions of intellectual property.
  cell therapy manufacturing companies: The Role of NIH in Drug Development Innovation and Its Impact on Patient Access National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Board on Health Sciences Policy, Board on Health Care Services, 2020-01-27 To explore the role of the National Institutes of Health (NIH) in innovative drug development and its impact on patient access, the Board on Health Care Services and the Board on Health Sciences Policy of the National Academies jointly hosted a public workshop on July 24â€25, 2019, in Washington, DC. Workshop speakers and participants discussed the ways in which federal investments in biomedical research are translated into innovative therapies and considered approaches to ensure that the public has affordable access to the resulting new drugs. This publication summarizes the presentations and discussions from the workshop.
  cell therapy manufacturing companies: Living Donor Organ Transplantation Rainer W.G. Gruessner, Enrico Benedetti, 2024-01-22 Living Organ Donor Transplantation, Second Edition puts the entire discipline in perspective while guiding readers step-by-step through the most common organ transplant surgeries. Organized into four cohesive parts and featuring numerous surgical illustrations, this sourcebook delivers an incisive look at every key consideration for general surgeons who perform transplantations, from patient selection to recipient workup and outcomes, and emphasizes the most humanitarian approaches. Sections provide content on living donor uterus transplantation, new operative techniques, including the use of robotic and minimally invasive transplant procedures, new immunosuppressive regimens, new protocols of tolerance induction including stem cell therapy and transplantation, and much more.Chapter authors are international leaders in their fields and represent institutions from four continents (Americas: USA, Argentina, Brazil, Canada; Europe: France, Germany, Italy, Spain, Sweden, UK; Asia: China, Japan, Korea, Taiwan; Australia). - Provides an A-Z, operation-oriented guide to the field of living donor organ transplantation - Examines a wide spectrum of solid organ transplantation procedures (liver, pancreas, kidney, intestine), with accompanying chapters on the history of the procedure, the donor, the recipient, and cost analysis - Covers techniques that explain adequate pretransplant workup and posttransplant care - Covers cultural differences, ethical and legal issues, social issues, current financial incentives, and the illegal organ trade
  cell therapy manufacturing companies: Perinatal Stem Cells Anthony Atala, Kyle J. Cetrulo, Rouzbeh R. Taghizadeh, Curtis L Cetrulo, Sean Murphy, 2018-06-14 Perinatal Stem Cells provides researchers and clinicians with a comprehensive description of the current clinical and pre-clinical applications of stem cells derived from perinatal sources, such as amniotic fluid, placenta and placental membranes, the umbilical cord and Wharton's jelly. It's compiled by leading experts in the field, offering readers detailed insights into sources of perinatal stem cells and their potential for disease treatment. Therapeutic applications of perinatal stem cells include the treatment of in utero and pregnancy related diseases, cardiac disease, liver disease, pulmonary disease, inflammatory diseases, for hematopoietic regeneration, and for neural protection after stroke or traumatic brain injury. In addition, the rapid advance in clinical translation and commercialization of perinatal stem cell therapies is highlighted in a section on Clinical and Industry Perspective which provides insight into the new opportunities and challenges involved in this novel and exciting industry. - Explores current clinical and pre-clinical application of stem cells derived from perinatal sources - Offers detailed insight into sources of perinatal stem cells and their potential for disease treatment - Discusses progress in the manufacturing, banking and clinical translation of perinatal stem cells - Edited by a world-renowned team to present a complete story of the development and promise of perinatal stem cells
  cell therapy manufacturing companies: Cardiac Regeneration Masaki Ieda, Wolfram-Hubertus Zimmermann, 2017-10-27 This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.
  cell therapy manufacturing companies: Stem Cell Therapies Adam C. Berger, Sarah H. Beachy, Board on Health Sciences Policy, Steve Olson, Board on Life Sciences, Division on Earth and Life Sciences, Institute of Medicine, National Academy of Sciences, 2014-06-18 Stem cells offer tremendous promise for advancing health and medicine. Whether being used to replace damaged cells and organs or else by supporting the body's intrinsic repair mechanisms, stem cells hold the potential to treat such debilitating conditions as Parkinson's disease, diabetes, and spinal cord injury. Clinical trials of stem cell treatments are under way in countries around the world, but the evidence base to support the medical use of stem cells remains limited. Despite this paucity of clinical evidence, consumer demand for treatments using stem cells has risen, driven in part by a lack of available treatment options for debilitating diseases as well as direct-to-consumer advertising and public portrayals of stem cell-based treatments. Clinics that offer stem cell therapies for a wide range of diseases and conditions have been established throughout the world, both in newly industrialized countries such as China, India, and Mexico and in developed countries such as the United States and various European nations. Though these therapies are often promoted as being established and effective, they generally have not received stringent regulatory oversight and have not been tested with rigorous trials designed to determine their safety and likely benefits. In the absence of substantiated claims, the potential for harm to patients - as well as to the field of stem cell research in general - may outweigh the potential benefits. To explore these issues, the Institute of Medicine, the National Academy of Sciences, and the International Society for Stem Cell Research held a workshop in November 2013. Stem Cell Therapies summarizes the workshop. Researchers, clinicians, patients, policy makers, and others from North America, Europe, and Asia met to examine the global pattern of treatments and products being offered, the range of patient experiences, and options to maximize the well-being of patients, either by protecting them from treatments that are dangerous or ineffective or by steering them toward treatments that are effective. This report discusses the current environment in which patients are receiving unregulated stem cell offerings, focusing on the treatments being offered and their risks and benefits. The report considers the evidence base for clinical application of stem cell technologies and ways to assure the quality of stem cell offerings.
  cell therapy manufacturing companies: Single-Use Technology in Biopharmaceutical Manufacture Regine Eibl, Dieter Eibl, 2019-07-18 Authoritative guide to the principles, characteristics, engineering aspects, economics, and applications of disposables in the manufacture of biopharmaceuticals The revised and updated second edition of Single-Use Technology in Biopharmaceutical Manufacture offers a comprehensive examination of the most-commonly used disposables in the manufacture of biopharmaceuticals. The authors—noted experts on the topic—provide the essential information on the principles, characteristics, engineering aspects, economics, and applications. This authoritative guide contains the basic knowledge and information about disposable equipment. The author also discusses biopharmaceuticals’ applications through the lens of case studies that clearly illustrate the role of manufacturing, quality assurance, and environmental influences. This updated second edition revises existing information with recent developments that have taken place since the first edition was published. The book also presents the latest advances in the field of single-use technology and explores topics including applying single-use devices for microorganisms, human mesenchymal stem cells, and T-cells. This important book: • Contains an updated and end-to-end view of the development and manufacturing of single-use biologics • Helps in the identification of appropriate disposables and relevant vendors • Offers illustrative case studies that examine manufacturing, quality assurance, and environmental influences • Includes updated coverage on cross-functional/transversal dependencies, significant improvements made by suppliers, and the successful application of the single-use technologies Written for biopharmaceutical manufacturers, process developers, and biological and chemical engineers, Single-Use Technology in Biopharmaceutical Manufacture, 2nd Edition provides the information needed for professionals to come to an easier decision for or against disposable alternatives and to choose the appropriate system.
  cell therapy manufacturing companies: Gene Therapy of the Central Nervous System: From Bench to Bedside Michael G. Kaplitt, Matthew During, 2006 Few areas of biomedical research provide greater opportunities to capitalize upon the revolution in genomics and molecular biology than gene therapy. This is particularly true for the brain and nervous system, where gene transfer has become a key technology for basic research and has recently been translated to human therapy in several landmark clinical trials. Gene Therapy in the Brain: From Bench to Bedside represents the definitive volume on this subject. Edited by two pioneers of neurological gene therapy, this volume contains contributions by leaders who helped to create the field as well as those who are expanding the promise of gene therapy for the future of basic and clinical neuroscience. Drawing upon this extensive collective experience, this book provides clear and informative reviews on a variety of subjects which would be of interest to anyone who is currently using or contemplating exploring gene therapy for neurobiological applications. Basic gene transfer technologies are discussed, with particular emphases upon novel vehicles, immunological issues and the role of gene therapy in stem cells. Numerous research applications are reviewed, particularly in complex fields such as behavioral neurobiology. Several preclinical areas are also covered which are likely to translate into clinical studies in the near future, including epilepsy, pain and amyotrophic lateral sclerosis. Among the most exciting advances in recent years has been the use of neurological gene therapy in human clinical trials, including Parkinson's disease, Canavan disease and Batten disease. Finally, readers will find insider information on technological and regulatory issues which can often limit effective translation of even the most promising idea into clinical use. This work provides up-to-date information and key insights into those gene therapy issues which are important to both scientists and clinicians focusing upon the brain and central nervous system.
  cell therapy manufacturing companies: Cell Line Development Mohamed Al-Rubeai, 2009-08-11 Mammalian cell lines command an effective monopoly for the production of therapeutic proteins that require post-translational modifications. This unique advantage outweighs the costs associated with mammalian cell culture, which are far grater in terms of development time and manufacturing when compared to microbial culture. The development of cell lines has undergone several advances over the years, essentially to meet the requirement to cut the time and costs associated with using such a complex hosts as production platforms. This book provides a comprehensive guide to the methodology involved in the development of cell lines and the cell engineering approach that can be employed to enhance productivity, improve cell function, glycosylation and secretion and control apoptosis. It presents an overall picture of the current topics central to expression engineering including such topics as epigenetics and the use of technologies to overcome positional dependent inactivation, the use of promoter and enhancer sequences for expression of various transgenes, site directed engineering of defined chromosomal sites, and examination of the role of eukaryotic nucleus as the controller of expression of genes that are introduced for production of a desired product. It includes a review of selection methods for high producers and an application developed by a major biopharmaceutical industry to expedite the cell line development process. The potential of cell engineering approch to enhance cell lines through the manipulation of single genes that play important roles in key metabolic and regulatory pathways is also explored throughout.
Cell: Cell - Cell Press
Cell publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, …

Cell (biology) - Wikipedia
The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific …

Cell | Definition, Types, Functions, Diagram, Division, Theory,
Apr 25, 2025 · cell, in biology, the basic membrane-bound unit that contains the fundamental molecules of life and of which all living things are composed. A single cell is often a complete …

The cell: Types, functions, and organelles - Medical News Today
Dec 19, 2023 · A cell is the smallest living organism and the basic unit of life on earth. Together, trillions of cells make up the human body. Cells have three parts: the membrane, the nucleus, …

Cell – Definition, Structure, Types, Functions, Examples
Apr 7, 2024 · A cell is the basic structural and functional unit of all living organisms, responsible for various life processes and containing essential biological

What Is a Cell? | Learn Science at Scitable - Nature
All cells evolved from a common ancestor and use the same kinds of carbon-based molecules. Learn how cell function depends on a diverse group of nucleic acids, proteins, lipids, and sugars.

What is a cell? - MedlinePlus
Feb 22, 2021 · Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, convert …

Cell Definition - BYJU'S
Jan 14, 2018 · Cells are the structural, functional, and biological units of all living beings. A cell can replicate itself independently. Hence, they are known as the building blocks of life. Each cell …

Introduction to cells - Basic Biology
Aug 30, 2020 · A cell is the simplest unit of life and they are responsible for keeping an organism alive and functioning. This introduction to cells is the starting point for the area of biology that …

Overview of Cells - Visible Body
What are cells and what do they do? The nucleus of a eukaryotic cell contains its DNA. Cells are the microscopic units that make up humans and every other living organism. Some organisms consist …

Cell: Cell - Cell Press
Cell publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, …

Cell (biology) - Wikipedia
The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells …

Cell | Definition, Types, Functions, Diagram, Division, …
Apr 25, 2025 · cell, in biology, the basic membrane-bound unit that contains the fundamental molecules of life and of which all living things are …

The cell: Types, functions, and organelles - Medical News To…
Dec 19, 2023 · A cell is the smallest living organism and the basic unit of life on earth. Together, trillions of cells make up the human body. Cells have …

Cell – Definition, Structure, Types, Functions, Examples
Apr 7, 2024 · A cell is the basic structural and functional unit of all living organisms, responsible for various life processes and …