Advertisement
cell cycle analysis facs: Flow Cytometry and Cell Sorting Andreas Radbruch, 2013-03-14 The analysis and sorting of large numbers of cells with a fluorescence-activated cell sorter (FACS) was first achieved some 30 years ago. Since then, this technology has been rapidly developed and is used today in many laboratories. A Springer Lab Manual Review of the First Edition: This is a most useful volume which will be a welcome addition for personal use and also for laboratories in a wide range of disciplines. Highly recommended. CYTOBIOS |
cell cycle analysis facs: Current Protocols on CD-ROM. , 1997 |
cell cycle analysis facs: Flow Cytometry with Plant Cells Jaroslav Dolezel, Johann Greilhuber, Jan Suda, 2007-06-27 Targeted at beginners as well as experienced users, this handy reference explains the benefits and uses of flow cytometery in the study of plants and their genomes. Following a brief introduction that highlights general considerations when analyzing plant cells by flow cytometric methods, the book goes on to discuss examples of application in plant genetics, genomic analysis, cell cycle analysis, marine organism analysis and breeding studies. With its list of general reading and a glossary of terms, this first reference on FCM in plants fills a real gap by providing first-hand practical hints for the growing community of plant geneticists. |
cell cycle analysis facs: Flow Cytometry Protocols Teresa S. Hawley, |
cell cycle analysis facs: Checkpoint Controls and Cancer Axel H. Schönthal, 2004-06-24 Intracellular checkpoint controls constitute a network of signal transd- tion pathways that protect cells from external stresses and internal errors. Ext- nal stresses can be generated by the continuous assault of DNA-damaging agents, such as environmental mutagens, ultraviolet (UV) light, ionizing radiation, or the reactive oxygen species that can arise during normal cellular metabolism. In response to any of these assaults on the integrity of the genome, the activation of the network of checkpoint control pathways can lead to diverse cellular responses, such as cell cycle arrest, DNA repair, or elimination of the cell by cell death (apoptosis) if the damage cannot be repaired. Moreover, internal errors can occur during the highly orchestrated replication of the cellular genome and its distribution into daughter cells. Here, the temporal order of these cell cycle events must be strictly enforced—for example, to ensure that DNA replication is c- plete and occurs only once before cell division, or to monitor mitotic spindle assembly, and to prevent exit from mitosis until chromosome segregation has been completed. Thus, well functioning checkpoint mechanisms are central to the maintenance of genomic integrity and the basic viability of cells and, the- fore, are essential for proper development and survival. The importance of proper functioning of checkpoints becomes plainly obvious under conditions in which this control network malfunctions and fails. Depending on the severity and timing, failure of this machinery can lead to embryonic lethality, genetic diseases, and cancer. |
cell cycle analysis facs: Flow Cytometry Marion G. Macey, 2007-11-03 Flow cytometry forms an integral part of both basic biological research and clinical diagnosis in pathology. This straightforward new volume provides a clear, easy-to-read, and practical manual for both clinicians and non-clinicians at all levels of their careers. The chapter topics range from basic principles to more advanced subjects, such as apoptosis and cell sorting. The book charts the history, development and basic principles of flow cytometry. |
cell cycle analysis facs: Imaging Flow Cytometry Natasha S. Barteneva, Ivan A. Vorobjev, 2015-11-23 This detailed volume for the first time explores techniques and protocols involving quantitative imaging flow cytometry (IFC), which has revolutionized our ability to analyze cells, cellular clusters, and populations in a remarkable fashion. Beginning with an introduction to technology, the book continues with sections addressing protocols for studies on the cell nucleus, nucleic acids, and FISH techniques using an IFC instrument, immune response analysis and drug screening, IFC protocols for apoptosis and cell death analysis, as well as morphological analysis and the identification of rare cells. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Imaging Flow Cytometry: Methods and Protocols will be a critical source for all laboratories seeking to implement IFC in their research studies. |
cell cycle analysis facs: Practical Flow Cytometry Howard M. Shapiro, 2005-02-25 From the reviews of the 3rd Edition... The standard reference for anyone interested in understandingflow cytometry technology. American Journal of Clinical Oncology ...one of the most valuable of its genre and...addressed to awide audience?written in such an attractive way, being bothinformative and stimulating. Trends in Cell Biology This reference explains the science and discusses the vastbiomedical applications of quantitative analytical cytology usinglaser-activated detection and cell sorting. Now in its fourthedition, this text has been expanded to provide full coverage ofthe broad spectrum of applications in molecular biology andbiotechnology today. New to this edition are chapters on automatedanalysis of array technologies, compensation, high-speed sorting,reporter molecules, and multiplex and apoptosis assays, along withfully updated and revised references and a list of suppliers. |
cell cycle analysis facs: Cellular Quiescence H. Daniel Lacorazza, 2017-10-18 This detailed volume explores methods and protocols that aim to increase our understanding of how cells enter a quiescent state during homeostasis and how cells exit quiescence and re-enter differentiating cell divisions to restore damaged tissues, essential for developing new approaches in regenerative medicine in the future. The chapters in this book were designed to address cellular quiescence in prokaryote and eukaryote organisms, detection of quiescence (Hoechst/pyronin Y, FUCCI, CFSE, BrdU, H2B-GFP, CyTOF), quiescence in stem cells (skin, intestinal, neuronal, hematopoietic), genomic regulation (gene expression, transcription factors, lncRNA, RNA methylation), as well as analysis of the heterogeneity of quiescence by computer modeling. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cellular Quiescence: Methods and Protocols offers a broad view of basic and cutting-edge technology to inspire research in this emerging field of cell biology. |
cell cycle analysis facs: Cell Cycle Checkpoint Control Protocols Howard B. Lieberman, 2003-11-14 The field of cell cycle regulation is based on the observation that the life cycle of a cell progresses through several distinct phases, G1, M, S, and G2, occurring in a well-defined temporal order. Details of the mechanisms involved are rapidly emerging and appear extraordinarily complex. Furthermore, not only is the order of the phases important, but in normal eukaryotic cells one phase will not begin unless the prior phase is completed successfully. Che- point control mechanisms are essentially surveillance systems that monitor the events in each phase, and assure that the cell does not progress prematurely to the next phase. If conditions are such that the cell is not ready to progress—for example, because of incomplete DNA replication in S or DNA damage that may interfere with chromosome segregation in M—a transient delay in cell cycle progression will occur. Once the inducing event is properly handled— for example, DNA replication is no longer blocked or damaged DNA is repaired—cell cycle progression continues. Checkpoint controls have recently been the focus of intense study by investigators interested in mechanisms that regulate the cell cycle. Furthermore, the relationship between checkpoint c- trol and carcinogenesis has additionally enhanced interest in these cell cycle regulatory pathways. It is clear that cancer cells often lack these checkpoints and exhibit genomic instability as a result. Moreover, several tumor suppressor genes participate in checkpoint control, and alterations in these genes are as- ciated with genomic instability as well as the development of cancer. |
cell cycle analysis facs: Techniques in Cell Cycle Analysis Joe W. Gray, Zbigniew Darzynkiewicz, 2008-02-24 Quantification of the proliferative characteristics of normal and malignant cells has been of interest to oncolo gists and cancer biologists for almost three decades. This interest stems from (a) the fact that cancer is a disease of uncontrolled proliferation, (b) the finding that many of the commonly used anticancer agents are preferentially toxic to cells that are actively proliferating, and (c) the observa tion that significant differences in proliferation characteristics exist between normal and malignant cells. Initially, cell cycle analysis was pursued enthusiastically in the hope of gener ating information useful for the development of rational cancer therapy strategies; for example, by allowing identi fication of rapidly proliferating tumors against which cell cycle-specific agents could be used with maximum effec tiveness and by allowing rational scheduling of cell cyc- specific therapeutic agents to maximize the therapeutic ratio. Unfortunately, several difficulties have prevented realiza tion of the early promise of cell cycle analysis: Proliferative patterns of the normal and malignant tissues have been found to be substantially more complex than originally an ticipated, and synchronization of human tumors has proved remarkably difficult. Human tumors of the same type have proved highly variable, and the cytokinetic tools available for cell cycle analysis have been labor intensive, as well as somewhat subjective and in many cases inapplicable to humans. However, the potential for substantially improved cancer therapy remains if more accurate cytokinetic infor mation about human malignancies and normal tissues can be obtained in a timely fashion. |
cell cycle analysis facs: Flow Cytometry Alice Longobardi Givan, 2013-04-10 Flow cytometry continually amazes scientists with its ever-expanding utility. Advances in flow cytometry have opened new directions in theoretical science, clinical diagnosis, and medical practice. The new edition of Flow Cytometry: First Principles provides a thorough update of this now classic text, reflecting innovations in the field while outlining the fundamental elements of instrumentation, sample preparation, and data analysis. Flow Cytometry: First Principles, Second Edition explains the basic principles of flow cytometry, surveying its primary scientific and clinical applications and highlighting state-of-the-art techniques at the frontiers of research. This edition contains extensive revisions of all chapters, including new discussions on fluorochrome and laser options for multicolor analysis, an additionalsection on apoptosis in the chapter on DNA, and new chapters onintracellular protein staining and cell sorting, including high-speed sorting and alternative sorting methods, as well as traditional technology. This essential resource: Assumes no prior knowledge of flow cytometry Progresses with an informal, engaging lecture style from simpleto more complex concepts Offers a clear introduction to new vocabulary, principles of instrumentation, and strategies for data analysis Emphasizes the theory relevant to all flow cytometry, with examples from a variety of clinical and scientific fields Flow Cytometry: First Principles, Second Edition provides scientists, clinicians, technologists, and students with the knowledge necessary for beginning the practice of flow cytometry and for understanding related literature. |
cell cycle analysis facs: Flow Cytometry M. G. Ormerod, David Novo, 2008 Flow cytometry is a technique used to study cells, such as blood cells or cancer cells. It is used in medical and research laboratories. |
cell cycle analysis facs: Doubled Haploid Production in Crop Plants M. Maluszynski, Kenneth Kasha, B.P. Forster, I. Szarejko, 2013-06-29 The production of doubled haploids has become a necessary tool in advanced plant breeding institutes and commercial companies for breeding many crop species. However, the development of new, more efficient and cheaper large scale production protocols has meant that doubled haploids are also recently being applied in less advanced breeding programmes. This Manual was prepared to stimulate the wider use of this technology for speeding and opening up new breeding possibilities for many crops including some woody tree species. Since the construction of genetic maps using molecular markers requires the development of segregating doubled haploid populations in numerous crop species, we hope that this Manual will also help molecular biologists in establishing such mapping populations. For many years, both the Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) have supported and coordinated research that focuses on development of more efficient doubled haploid production methods and their applications in breeding of new varieties and basic research through their Plant Breeding and Genetics Section of the Joint F AO/IAEA Division of Nuclear Techniques in Food and Agriculture. The first F AO/IAEA scientific network (Coordinated Research Programme - CRP) dealing with doubled haploids was initiated by the Plant Breeding and Genetics Section in 1986. |
cell cycle analysis facs: Biophotonics for Medical Applications Igor Meglinski, 2015-06-29 Biophotonics for Medical Applications presents information on the interface between laser optics and cell biology/medicine. The book discusses the development and application of photonic techniques that aid the diagnosis and therapeutics of biological tissues in both healthy and diseased states. Chapters cover the fundamental technologies used in biophotonics and a wide range of therapeutic and diagnostic applications. - Presents information on the interface between laser optics and cell biology/medicine - Discusses the development and application of photonic techniques which aid the diagnosis and therapeutics of biological tissues in both healthy and diseased states - Presents the fundamental technologies used in biophotonics and a wide range of therapeutic and diagnostic applications |
cell cycle analysis facs: Cell Cycle Oscillators Amanda S. Coutts, Louise Weston, 2015-08-09 This volume brings together a unique collection of protocols that cover standard, novel, and specialized techniques. Cell Cycle Oscillators: Methods and Protocols guides readers through recent progress in the field from both holistic and reductionist perspectives, providing the latest developments in molecular biology techniques, biochemistry, and computational analysis used for studying oscillatory networks. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Cell Cycle Oscillators: Methods and Protocols will serve as an invaluable reference to gain further insight into the complex and incompletely understood processes that are involved in the cell cycle and its regulation by oscillatory networks. |
cell cycle analysis facs: Data Processing Handbook for Complex Biological Data Sources Gauri Misra, 2019-03-23 Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened. - Explains how to interpret enormous amounts of data generated using several experimental approaches in simple terms, thus relating biology and physics at the atomic level - Presents sample data files and explains the usage of equations and web servers cited in research articles to extract useful information from their own biological data - Discusses, in detail, raw data files, data processing strategies, and the web based sources relevant for data processing |
cell cycle analysis facs: Cell Proliferation and Apoptosis David Hughes, Huseyin Mehmet, 2004-03 Cell Proliferation and Apoptosis provides a detailed practical guide to cell proliferation and apoptosis detection methods. A novel approach combining both these areas allows important comparisons to be made. Topics covered include all aspects of tissue handling from collection, storage, fixation and processing through to locating and quantifying cells in different stages of the cell cycle. This book is an essential and comprehensive practical guide to these important and expanding areas. |
cell cycle analysis facs: Basic Science Methods for Clinical Researchers Morteza Jalali, Francesca Yvonne Louise Saldanha, Mehdi Jalali, 2017-03-31 Basic Science Methods for Clinical Researchers addresses the specific challenges faced by clinicians without a conventional science background. The aim of the book is to introduce the reader to core experimental methods commonly used to answer questions in basic science research and to outline their relative strengths and limitations in generating conclusive data. This book will be a vital companion for clinicians undertaking laboratory-based science. It will support clinicians in the pursuit of their academic interests and in making an original contribution to their chosen field. In doing so, it will facilitate the development of tomorrow's clinician scientists and future leaders in discovery science. - Serves as a helpful guide for clinical researchers who lack a conventional science background - Organized around research themes pertaining to key biological molecules, from genes, to proteins, cells, and model organisms - Features protocols, techniques for troubleshooting common problems, and an explanation of the advantages and limitations of a technique in generating conclusive data - Appendices provide resources for practical research methodology, including legal frameworks for using stem cells and animals in the laboratory, ethical considerations, and good laboratory practice (GLP) |
cell cycle analysis facs: Cell Cycle - Materials and Methods Michele Pagano, 2012-12-06 During their lifetime, especially when growing and dividing, cells go through various steps of the cell cycle. Knowledge of the individual steps of the cell cycle will help us understand the development of a variety of diseases better, including cancer, and also to design new drugs against it. New techniques for studying the molecular basis of these processes have recently been developed and are described in detail in this manual. A glossary helps the reader to cope with the complex cell cycle terminology. |
cell cycle analysis facs: Flow Cytometry Data Analysis James V. Watson, 2005-09-15 This book covers very basic number handling techniques, regression analysis, probability functions, statistical tests and methods of analyzing dynamic processes from flow cytometry data. These are developed for the analysis of not only individual DNA histograms to obtain the proportion of cells in the cell cycle phases, but also time courses of DNA histograms to yield cell cycle kinetic information; overlapping immunofluorescence distributions with confidence limits for the estimated proportions; enzyme kinetic and membrane transport parameters and a brief introduction to multivariate analysis is given. A distinction is made between data handling, for example gating and counting the numbers of cells within that gate, a process commonly regarded as data analysis but which, in reality, is data handling, and data analysis itself which is the means by which information is extracted. |
cell cycle analysis facs: Cancer Cell Culture Simon P. Langdon, 2008-02-01 The culture of cancer cells is routinely practiced in many academic research centers, biotechnology companies, and hospital laboratories. Cancer Cell Culture: Methods and Protocols describes easy-to-follow methods to guide both novice and more experienced researchers seeking to use new techniques in their laboratories. Our present understanding of the cell and molecular biology of cancer has been derived mainly from the use of cultured cancer cells and we cover a number of the most widely used assays to study function in current use. Part I introduces the basic concept of cancer cell culture and this is followed by a description of the general techniques used in many cell culture facilities. The importance of cell line characterization is now widely recognized and methods to characterize and authenticate cell lines are described in Part II. Part III covers the isolation and development of specific cancer cell types and provides valuable tips for those wishing to derive new cell line models. A wide range of procedures encompassing many of the key functional features of cancer cells are described in Part IV including assays to evaluate clonogenicity, cell proliferation, apoptosis, adhesion, migration, invasion, senescence, angiogenesis, and cell cycle parameters. Methods to modify cancer cells are described in Part V, including protocols for transfection, development of drug-resistance, immortalization, and transfer in vivo. In Part VI methods of coculture of different cell types and contamination of cell lines are covered. |
cell cycle analysis facs: Flow Cytometry Protocols Teresa S. Hawley, Robert Hawley, 2008-02-03 Flow cytometry has evolved since the 1940s into a multidisciplinary field incorporating aspects of laser technology, fluid dynamics, electronics, optics, computer science, physics, chemistry, biology, and mathematics. Innovations in instrumentation, development of small lasers, discovery of new fluorochromes/fluorescent proteins, and implementation of novel methodologies have all contributed to the recent rapid expansion of flow cytometry applications. In this thoroughly revised and updated second edition of Flow Cytometry Protocols, time-proven as well as cutting-edge methods are clearly and comprehensively presented by leading experimentalists. In addition to being a valuable reference manual for experienced flow cytometrists, the editors expect this authoritative up-to-date collection to prove useful to investigators in all areas of the biological and biomedical sciences who are new to the subject. The introductory chapter provides an eloquent synopsis of the principles and diverse uses of flow cytometry, beginning with a historical perspective and ending with a view to the future. Chapters 2–22 contain step-by-step protocols of highly practical and state-of-the-art techniques. Detailed instructions and helpful tips on experimental design, as well as selection of reagents and data analysis tools, will allow researchers to readily carry out flow cytometric investigations ranging from traditional phenotypic characterizations to emerging genomics and proteomics applications. Complementing these instructive protocols is a chapter that provides a preview of the next generation of solid-state lasers, and one that describes a rapid means to validate containment of infectious aerosols generated during high-speed sorting (Chapters 23–24). |
cell cycle analysis facs: The Cell Cycle David Owen Morgan, 2007 The Cell Cycle: Principles of Control provides an engaging insight into the process of cell division, bringing to the student a much-needed synthesis of a subject entering a period of unprecedented growth as an understanding of the molecular mechanisms underlying cell division are revealed. |
cell cycle analysis facs: Algal Culturing Techniques Robert A. Andersen, 2005-03-04 Algal Culturing Techniques is a comprehensive reference on all aspects of the isolation and cultivation of marine and freshwater algae, including seaweeds. It is divided into seven parts that cover history, media preparation, isolation and purification techniques, mass culturing techniques, cell counting and growth measurement techniques, and reviews on topics and applications of algal culture techniques for environmental investigations. Algal Culturing Techniques was developed to serve as both a new textbook and key reference for phycologists and others studying aquatic systems, aquaculture and environmental sciences. Students of algal ecology, marine botany, marine phycology, and microbial ecology will enjoy the hands-on methodology for culturing a variety of algae from fresh and marine waters. Researchers in industry, such as aquaculture, pharmaceutical, foodstuffs, and biotechnology companies will find an authoritative and comprehensive reference. - Sponsored by the Phycological Society of America - Features color photographs and illustrations throughout - Describes culturing methods ranging from the test tube to outdoor ponds and coastal seaweed farms - Details isolation techniques ranging from traditional micropipette to automated flow cytometeric methods - Includes purification, growth, maintenance, and cryopreservation techniques - Highlights methods for estimating algal populations, growth rates, isolating and measuring algal pigments, and detecting and culturing algal viruses - Features a comprehensive appendix of nearly 50 algal culture medium recipes - Includes a glossary of phycological terms |
cell cycle analysis facs: Cytometry, Part A , 2000-10-31 Each chapter presents a detailed background of the described method, its theoretical foundations, and its applicability to different biomedical material. Updated chapters describe either the most popular methods or those processes that have evolved the most since the past edition. Additionally, a large portion of the volume is devoted to clinical cytometry. Particular attention is paid to applications of cytometry in oncology, the most rapidly growing area. - Contains 56 extensive chapters authored by world authorities on cytometry - Covers a wide range of topics, including principles of cytometry and general methods, cell preparation, tandardization and quality assurance, cell proliferation, apoptosis, cell-cell/cell-environmental interactions, cytogenetics and molecular genetics, cell function and differentiation, experimental and clinical oncology, microorganisms, and infectious diseases - Describes in-depth the essential methods and scientific principles of flow and laser scanning cytometry and illustrates how they can be applied to the fields of biology and medicine - Complements the first and second editions on flow cytometry in the Methods in Cell Biology series and includes new sections on technology principles |
cell cycle analysis facs: Recent Advances in Cytometry , 2011 |
cell cycle analysis facs: General Methods in Biomarker Research and their Applications Victor R. Preedy, Vinood B. Patel, 2015-08-14 In the past decade there has been a major sea change in the way disease is diagnosed and investigated due to the advent of high throughput technologies, such as microarrays, lab on a chip, proteomics, genomics, lipomics, metabolomics etc. These advances have enabled the discovery of new and novel markers of disease relating to autoimmune disorders, cancers, endocrine diseases, genetic disorders, sensory damage, intestinal diseases etc. In many instances these developments have gone hand in hand with the discovery of biomarkers elucidated via traditional or conventional methods, such as histopathology or clinical biochemistry. Together with microprocessor-based data analysis, advanced statistics and bioinformatics these markers have been used to identify individuals with active disease or pathology as well as those who are refractory or have distinguishing pathologies. New analytical methods that have been used to identify markers of disease and is suggested that there may be as many as 40 different platforms. Unfortunately techniques and methods have not been readily transferable to other disease states and sometimes diagnosis still relies on single analytes rather than a cohort of markers. There is thus a demand for a comprehensive and focused evidenced-based text and scientific literature that addresses these issues. Hence the formulation of Biomarkers in Disease. The series covers a wide number of areas including for example, nutrition, cancer, endocrinology, cardiology, addictions, immunology, birth defects, genetics and so on. The chapters are written by national or international experts and specialists. |
cell cycle analysis facs: Flow Cytometry M. G. Ormerod, 1990 A laboratory handbook explaining the use of a specialized microscope with a flow chamber through which such entities as cells, nuclei, or chromosomes can be directed and counted. Designed to aid the newcomer to the field or the flow cytometrist wanting to try a new application. Distributed by Oxford University Press. Annotation copyrighted by Book News, Inc., Portland, OR |
cell cycle analysis facs: Techniques in Cell Cycle Analysis Joe W. Gray, Zbigniew Darzynkiewicz, 2014-09-01 |
cell cycle analysis facs: Cytometric Analysis of Cell Phenotype and Function Desmond A. McCarthy, Marion G. Macey, 2001-11 Flow cytometry and laser scanning cytometry are increasingly used in clinical and research settings due to improvements in instrument design and computing power and the increased availability of fluorescent agents. This book provides a comprehensive introduction to the theory and clinical applications of these techniques in the assessment of cell phenotype and function. With an emphasis on clinical relevance, the book presents the principles and potential of cytometry in the analysis of phenomena including cell-mediated cytotoxicity, metabolic burst, phagocytosis, cell-cell aggregation, receptor shedding, and apoptosis. The volume guides the reader through data interpretation, quality control procedures, pitfalls, and problems. |
cell cycle analysis facs: Flow Cytometry for Biotechnology Larry A. Sklar, 2005-09-02 Shows how flow cytometry is integrated into modern biotechnology. This volume deals with issues of content, sensitivity, and high throughput informatics with applications in genomics, proteomics and protein-protein interactions, drug discovery, vaccine development, plant and reproductive biology, pharmacology and toxicology, and more. |
cell cycle analysis facs: Stem Cell Epigenetics , 2020-08-07 Growing evidence suggests that epigenetic mechanisms play a central role in stem cell biology and are vital for determining gene expression during cellular differentiation and governing mammalian development. In Stem Cell Epigenetics, leading international researchers examine how chromatin regulation and bona fide epigenetic mechanisms underlie stem cell renewal and differentiation. Authors also explore how the diversity of cell types, including the extent revealed by single cell omic approaches, is achieved, and how such processes may be reversed or managed via epigenetic reprogramming.Topics discussed include chromatin in pluripotency, stem cells and DNA methylation, histone modifications in stem cells and differentiation, higher-order chromatin conformation in pluripotent cells, stem cells and cancer, epigenetics and disease modeling, brain organoids from pluripotent cells, transcriptional regulation in stem cells and differentiation, non-coding RNAs in pluripotency and early differentiation, and diseases caused by epigenetic alterations in stem cells. Additionally, the book discusses the potential implementation of stem cell epigenetics in drug discovery, regenerative medicine, and disease treatment. Stem Cell Epigenetics will provide researchers and physicians with a state-of-the-art map to orient across the frontiers of this fast-evolving field. - Analyzes the role of epigenetics in embryonic stem cell regulation - Indicates the epigenetic mechanisms involved in stem cell differentiation and highlights modifications and misregulations that may result in disease pathogenesis - Examines the potential applications of stem cell epigenetics in therapeutic disease interventions and regenerative medicine, providing a foundation for researchers and physicians to bring this exciting and fast-evolving field into a clinical setting - Features chapter contributions by leading international experts |
cell cycle analysis facs: Mass Cytometry Helen M McGuire, 2019-08-19 |
cell cycle analysis facs: The Cell Cycle and Cancer Renato Baserga, 1971 |
cell cycle analysis facs: The Microflow Cytometer Frances S. Ligler, Jason S. Kim, 2010-05-31 Great book! Excellent compilation. From history of the very early days of flow cytometers to the latest unique unconventional microflow cytometers. From commercialization philosophy to cutting edge engineering designs. From fluid mechanics to optics to electronic circuit considerations. Well balanced and comprehensive.--Shuichi Takayama University of Michigan, USA. |
cell cycle analysis facs: Flow Cytometry Zbigniew Darzynkiewicz, J. Paul Robinson, 1994 Flow Cytometry, Second Edition is a complete and comprehensive two-volume laboratory guide and reference for the use of the most current methods in flow cytometry sample preparation and analysis. These essential techniques are described in a step-by-step format, supplemented by explanatory sections and trouble-shooting tips. The methods are accessible to all researchers and students in biomedical science and biology who use flow cytometry to separate and analyze cells. Key Features * Completely revised and greatly expanded since the publication of the First Edition in 1990 * Unique comprehensive methodological coverage * In-depth treatment of procedures, including: * Theoretical foundations * Critical aspects * Possible pitfalls * Written by authors with extensive experience who developed or modified the techniques * Methods cover cell death and cell cycle analyses * Practical, handbook-style presentation works in lab and in the classroom * Color plates illustrate technique |
cell cycle analysis facs: In Living Color Rochelle A. Diamond, Susan DeMaggio, 2012-12-06 A contribution towards making this increasingly valuable technology accessible to researchers, including the students, post-doctoral scholars, and technicians gathering the knowledge inherent in this integration between analysis and physical isolation/purification methodologies. A step-by-step approach to the methodology for measuring various attributes demonstrated in the particular cells of interest is provided, as is a myriad of resources to fuel the curiosity and answer questions of both new and adept users. This book stems from the editors'experiences managing flow cytometry/cell sorting core facilities for the emerging researchers, in particular in developmental, cellular, and molecular biology. |
cell cycle analysis facs: The Cell Cycle Peter Fantes, Robert Brooks, 1993 Intense research into the eukaryotic cell cycle has resulted in major advances in this field. The use of recombinant DNA and related technologies has revealed the extraordinary degree to which cell-cycle control mechanisms have been conserved through eukaryotic evolution. Furthermore, these and other techniques are now allowing the mechanisms of cell-cycle regulation to be understood in fine detail. |
cell cycle analysis facs: The Biology of the Cell Cycle J. M. Mitchison, 1971-11-30 |
Cell: Cell - Cell Press
Cell publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and …
Cell (biology) - Wikipedia
The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific …
Cell | Definition, Types, Functions, Diagram, Division, Theory,
Apr 25, 2025 · cell, in biology, the basic membrane-bound unit that contains the fundamental molecules of life and of which all living things are composed. A single cell is often a complete …
The cell: Types, functions, and organelles - Medical News Today
Dec 19, 2023 · A cell is the smallest living organism and the basic unit of life on earth. Together, trillions of cells make up the human body. Cells have three parts: the membrane, the nucleus, …
Cell – Definition, Structure, Types, Functions, Examples
Apr 7, 2024 · A cell is the basic structural and functional unit of all living organisms, responsible for various life processes and containing essential biological
What Is a Cell? | Learn Science at Scitable - Nature
All cells evolved from a common ancestor and use the same kinds of carbon-based molecules. Learn how cell function depends on a diverse group of nucleic acids, proteins, lipids, and sugars.
What is a cell? - MedlinePlus
Feb 22, 2021 · Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, …
Cell Definition - BYJU'S
Jan 14, 2018 · Cells are the structural, functional, and biological units of all living beings. A cell can replicate itself independently. Hence, they are known as the building blocks of life. Each …
Introduction to cells - Basic Biology
Aug 30, 2020 · A cell is the simplest unit of life and they are responsible for keeping an organism alive and functioning. This introduction to cells is the starting point for the area of biology that …
Overview of Cells - Visible Body
What are cells and what do they do? The nucleus of a eukaryotic cell contains its DNA. Cells are the microscopic units that make up humans and every other living organism. Some organisms …
Cell: Cell - Cell Press
Cell publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and …
Cell (biology) - Wikipedia
The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific …
Cell | Definition, Types, Functions, Diagram, Division, Theory,
Apr 25, 2025 · cell, in biology, the basic membrane-bound unit that contains the fundamental molecules of life and of which all living things are composed. A single cell is often a complete …
The cell: Types, functions, and organelles - Medical News Today
Dec 19, 2023 · A cell is the smallest living organism and the basic unit of life on earth. Together, trillions of cells make up the human body. Cells have three parts: the membrane, the nucleus, …
Cell – Definition, Structure, Types, Functions, Examples
Apr 7, 2024 · A cell is the basic structural and functional unit of all living organisms, responsible for various life processes and containing essential biological
What Is a Cell? | Learn Science at Scitable - Nature
All cells evolved from a common ancestor and use the same kinds of carbon-based molecules. Learn how cell function depends on a diverse group of nucleic acids, proteins, lipids, and sugars.
What is a cell? - MedlinePlus
Feb 22, 2021 · Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, …
Cell Definition - BYJU'S
Jan 14, 2018 · Cells are the structural, functional, and biological units of all living beings. A cell can replicate itself independently. Hence, they are known as the building blocks of life. Each …
Introduction to cells - Basic Biology
Aug 30, 2020 · A cell is the simplest unit of life and they are responsible for keeping an organism alive and functioning. This introduction to cells is the starting point for the area of biology that …
Overview of Cells - Visible Body
What are cells and what do they do? The nucleus of a eukaryotic cell contains its DNA. Cells are the microscopic units that make up humans and every other living organism. Some organisms …