Advertisement
change management in data governance: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve. |
change management in data governance: Data Governance John Ladley, 2019-11-08 Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition |
change management in data governance: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
change management in data governance: A Practitioner's Guide to Data Governance Uma Gupta, San Cannon, 2020-07-08 Data governance looks simple on paper, but in reality it is a complex issue facing organizations. In this practical guide, data experts Uma Gupta and San Cannon look to demystify data governance through pragmatic advice based on real-world experience and cutting-edge academic research. |
change management in data governance: Big Data Governance and Perspectives in Knowledge Management Strydom, Sheryl Kruger, Strydom, Moses, 2018-11-16 The world is witnessing the growth of a global movement facilitated by technology and social media. Fueled by information, this movement contains enormous potential to create more accountable, efficient, responsive, and effective governments and businesses, as well as spurring economic growth. Big Data Governance and Perspectives in Knowledge Management is a collection of innovative research on the methods and applications of applying robust processes around data, and aligning organizations and skillsets around those processes. Highlighting a range of topics including data analytics, prediction analysis, and software development, this book is ideally designed for academicians, researchers, information science professionals, software developers, computer engineers, graduate-level computer science students, policymakers, and managers seeking current research on the convergence of big data and information governance as two major trends in information management. |
change management in data governance: Data Governance: The Definitive Guide Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, Jessi Ashdown, 2021-03-08 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness. |
change management in data governance: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data. |
change management in data governance: Ego Mary Gregory, 2020 Ego manifests in many forms and can compromise our ability to engage with others. To build trusting relationships, today's leaders need to understand how to manage their own and others' egos. Equipped with these skills, leaders can encourage people to feel engaged and empowered while unlocking innovation and creating positive working environments. |
change management in data governance: Data Governance For Dummies Reichental, 2022-12-08 How to build and maintain strong data organizations—the Dummies way Data Governance For Dummies offers an accessible first step for decision makers into understanding how data governance works and how to apply it to an organization in a way that improves results and doesn't disrupt. Prep your organization to handle the data explosion (if you know, you know) and learn how to manage this valuable asset. Take full control of your organization’s data with all the info and how-tos you need. This book walks you through making accurate data readily available and maintaining it in a secure environment. It serves as your step-by-step guide to extracting every ounce of value from your data. Identify the impact and value of data in your business Design governance programs that fit your organization Discover and adopt tools that measure performance and need Address data needs and build a more data-centric business culture This is the perfect handbook for professionals in the world of data analysis and business intelligence, plus the people who interact with data on a daily basis. And, as always, Dummies explains things in terms anyone can understand, making it easy to learn everything you need to know. |
change management in data governance: Data Governance for Managers Lars Michael Bollweg, 2022-05-13 Professional data management is the foundation for the successful digital transformation of traditional companies. Unfortunately, many companies fail to implement data governance because they do not fully understand the complexity of the challenge (organizational structure, employee empowerment, change management, etc.) and therefore do not include all aspects in the planning and implementation of their data governance. This book explains the driving role that a responsive data organization can play in a company's digital transformation. Using proven process models, the book takes readers from the basics, through planning and implementation, to regular operations and measuring the success of data governance. All the important decision points are highlighted, and the advantages and disadvantages are discussed in order to identify digitization potential, implement it in the company, and develop customized data governance. The book will serve as a useful guide for interested newcomers as well as for experienced managers. |
change management in data governance: Site Reliability Engineering Niall Richard Murphy, Betsy Beyer, Chris Jones, Jennifer Petoff, 2016-03-23 The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use |
change management in data governance: Data Governance Neera Bhansali, 2013-06-17 As organizations deploy business intelligence and analytic systems to harness business value from their data assets, data governance programs are quickly gaining prominence. And, although data management issues have traditionally been addressed by IT departments, organizational issues critical to successful data management require the implementatio |
change management in data governance: Data Governance and Data Management Rupa Mahanti, 2021-09-08 This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives. |
change management in data governance: Data Governance Dimitrios Sargiotis, |
change management in data governance: The Data and Analytics Playbook Lowell Fryman, Gregory Lampshire, Dan Meers, 2016-08-12 The Data and Analytics Playbook: Proven Methods for Governed Data and Analytic Quality explores the way in which data continues to dominate budgets, along with the varying efforts made across a variety of business enablement projects, including applications, web and mobile computing, big data analytics, and traditional data integration. The book teaches readers how to use proven methods and accelerators to break through data obstacles to provide faster, higher quality delivery of mission critical programs. Drawing upon years of practical experience, and using numerous examples and an easy to understand playbook, Lowell Fryman, Gregory Lampshire, and Dan Meers discuss a simple, proven approach to the execution of multiple data oriented activities. In addition, they present a clear set of methods to provide reliable governance, controls, risk, and exposure management for enterprise data and the programs that rely upon it. In addition, they discuss a cost-effective approach to providing sustainable governance and quality outcomes that enhance project delivery, while also ensuring ongoing controls. Example activities, templates, outputs, resources, and roles are explored, along with different organizational models in common use today and the ways they can be mapped to leverage playbook data governance throughout the organization. - Provides a mature and proven playbook approach (methodology) to enabling data governance that supports agile implementation - Features specific examples of current industry challenges in enterprise risk management, including anti-money laundering and fraud prevention - Describes business benefit measures and funding approaches using exposure based cost models that augment risk models for cost avoidance analysis and accelerated delivery approaches using data integration sprints for application, integration, and information delivery success |
change management in data governance: Driving Digital Isaac Sacolick, 2017-08-24 Every organization makes plans for updating products, technologies, and business processes. But that’s not enough anymore for the twenty-first-century company. The race is now on for everyone to become a digital enterprise. For those individuals who have been charged with leading their company’s technology-driven change, the pressure is intense while the correct path forward unclear. Help has arrived! In Driving Digital, author Isaac Sacolick shares the lessons he’s learned over the years as he has successfully spearheaded multiple transformations and helped shape digital-business best practices. Readers no longer have to blindly trek through the mine field of their company’s digital transformation. In this thoroughly researched one-stop manual, learn how to: • Formulate a digital strategy • Transform business and IT practices • Align development and operations • Drive culture change • Bolster digital talent • Capture and track ROI • Develop innovative digital practices • Pilot emerging technologies • And more! Your company cannot avoid the digital disruption heading its way. The choice is yours: Will this mean the beginning of the end for your business, or will your digital practices be what catapults you into next-level success? |
change management in data governance: Data Governance Evren Eryurek, Uri Gilad, Jessi Ashdown, Valliappa Lakshmanan, Anita Kibunguchy, 2021-04-13 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness |
change management in data governance: Data Governance Neera Bhansali, 2013-06-17 As organizations deploy business intelligence and analytic systems to harness business value from their data assets, data governance programs are quickly gaining prominence. And, although data management issues have traditionally been addressed by IT departments, organizational issues critical to successful data management require the implementation of enterprise-wide accountabilities and responsibilities. Data Governance: Creating Value from Information Assets examines the processes of using data governance to manage data effectively. Addressing the complete life cycle of effective data governance—from metadata management to privacy and compliance—it provides business managers, IT professionals, and students with an integrated approach to designing, developing, and sustaining an effective data governance strategy. Explains how to align data governance with business goals Describes how to build successful data stewardship with a governance framework Outlines strategies for integrating IT and data governance frameworks Supplies business-driven and technical perspectives on data quality management, metadata management, data access and security, and data lifecycle The book summarizes the experiences of global experts in the field and addresses critical areas of interest to the information systems and management community. Case studies from healthcare and financial sectors, two industries that have successfully leveraged the potential of data-driven strategies, provide further insights into real-time practice. Facilitating a comprehensive understanding of data governance, the book addresses the burning issue of aligning data assets to both IT assets and organizational strategic goals. With a focus on the organizational, operational, and strategic aspects of data governance, the text provides you with the understanding required to leverage, derive, and sustain maximum value from the informational assets housed in your IT infrastructure. |
change management in data governance: The Case for the Chief Data Officer Peter Aiken, Michael M. Gorman, 2013-04-22 Data are an organization's sole, non-depletable, non-degrading, durable asset. Engineered right, data's value increases over time because the added dimensions of time, geography, and precision. To achieve data's full organizational value, there must be dedicated individual to leverage data as assets - a Chief Data Officer or CDO who's three job pillars are: - Dedication solely to leveraging data assets, - Unconstrained by an IT project mindset, and - Reports directly to the business Once these three pillars are set into place, organizations can leverage their data assets. Data possesses properties worthy of additional investment. Many existing CDOs are fatally crippled, however, because they lack one or more of these three pillars. Often organizations have some or all pillars already in place but are not operating in a coordinated manner. The overall objective of this book is to present these pillars in an understandable way, why each is necessary (but insufficient), and what do to about it. - Uncovers that almost all organizations need sophisticated, comprehensive data management education and strategies. - Delivery of organization-wide data success requires a highly focused, full time Chief Data Officer. - Engineers organization-wide data advantage which enables success in the marketplace |
change management in data governance: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution. |
change management in data governance: Self-Service Data Analytics and Governance for Managers Nathan E. Myers, Gregory Kogan, 2021-06-02 Project governance, investment governance, and risk governance precepts are woven together in Self-Service Data Analytics and Governance for Managers, equipping managers to structure the inevitable chaos that can result as end-users take matters into their own hands Motivated by the promise of control and efficiency benefits, the widespread adoption of data analytics tools has created a new fast-moving environment of digital transformation in the finance, accounting, and operations world, where entire functions spend their days processing in spreadsheets. With the decentralization of application development as users perform their own analysis on data sets and automate spreadsheet processing without the involvement of IT, governance must be revisited to maintain process control in the new environment. In this book, emergent technologies that have given rise to data analytics and which form the evolving backdrop for digital transformation are introduced and explained, and prominent data analytics tools and capabilities will be demonstrated based on real world scenarios. The authors will provide a much-needed process discovery methodology describing how to survey the processing landscape to identify opportunities to deploy these capabilities. Perhaps most importantly, the authors will digest the mature existing data governance, IT governance, and model governance frameworks, but demonstrate that they do not comprehensively cover the full suite of data analytics builds, leaving a considerable governance gap. This book is meant to fill the gap and provide the reader with a fit-for-purpose and actionable governance framework to protect the value created by analytics deployment at scale. Project governance, investment governance, and risk governance precepts will be woven together to equip managers to structure the inevitable chaos that can result as end-users take matters into their own hands. |
change management in data governance: Handbook of Financial Data and Risk Information II Margarita S. Brose, Mark D. Flood, Dilip Krishna, Bill Nichols, 2014-01-09 A comprehensive resource for understanding the issues involved in collecting, measuring and managing data in the financial services industry. |
change management in data governance: Disrupting Data Governance Laura Madsen, 2019-12-06 Data governance is broken. It's time we fix it. Why is data governance so ineffective? The truth is data governance programs aren't designed for the way we run our data teams they aren't even designed for a modern organization at all. They were designed when reports still came through inter-office mail. The flow of data into within and out of today's organizations is a tsunami breaking through rigid data governance methods. Yet our programs still rely on that command and control approach. Have you ever tried to control a tsunami? Every organization that uses data knows that they need a data governance program. Data literacy efforts and legislation like GDPR have become the bellwethers for our governance functions. But we still sit in data governance meetings without enough people and too many questions to move things forward. There's no agility to the program because we imply a degree of frailty to the data that doesn't exist. We continue to insist on archaic methods that bring no value to our organizations. Achieving deep insights from data can't happen without good governance practices. Laura Madsen shows you how to redefine governance for the modern age. With a casual witty style Madsen taps on her decades of experience shares interviews with other best-in-field experts and grounds her perspective in research. Witness where it all fell apart challenge long-held beliefs and commit to a fundamental shift--that governance is not about stopping or preventing usage but about supporting the usage of data. Be able to bring back trust and value to our data governance functions and learn the: People-driven approach to governance Processes that support the tsunami of data Cutting edge technology that's enabling data governance |
change management in data governance: Super Charge Your Data Warehouse Dan Linstedt, 2011-11-11 Do You Know If Your Data Warehouse Flexible, Scalable, Secure and Will It Stand The Test Of Time And Avoid Being Part Of The Dreaded Life Cycle? The Data Vault took the Data Warehouse world by storm when it was released in 2001. Some of the world's largest and most complex data warehouse situations understood the value it gave especially with the capabilities of unlimited scaling, flexibility and security. Here is what industry leaders say about the Data Vault The Data Vault is the optimal choice for modeling the EDW in the DW 2.0 framework - Bill Inmon, The Father of Data Warehousing The Data Vault is foundationally strong and an exceptionally scalable architecture - Stephen Brobst, CTO, Teradata The Data Vault should be considered as a potential standard for RDBMS-based analytic data management by organizations looking to achieve a high degree of flexibility, performance and openness - Doug Laney, Deloitte Analytics Institute I applaud Dan's contribution to the body of Business Intelligence and Data Warehousing knowledge and recommend this book be read by both data professionals and end users - Howard Dresner, From the Foreword - Speaker, Author, Leading Research Analyst and Advisor You have in your hands the work, experience and testing of 2 decades of building data warehouses. The Data Vault model and methodology has proven itself in hundreds (perhaps thousands) of solutions in Insurance, Crime-Fighting, Defense, Retail, Finance, Banking, Power, Energy, Education, High-Tech and many more. Learn the techniques and implement them and learn how to build your Data Warehouse faster than you have ever done before while designing it to grow and scale no matter what you throw at it. Ready to Super Charge Your Data Warehouse? |
change management in data governance: Data Governance John Ladley, 2012-11-07 This book is for any manager or team leader that has the green light to implement a data governance program. The problem of managing data continues to grow with issues surrounding cost of storage, exponential growth, as well as administrative, management and security concerns – the solution to being able to scale all of these issues up is data governance which provides better services to users and saves money. What you will find in this book is an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. With the provided framework and case studies you will be enabled and educated in launching your very own successful and money saving data governance program. - Provides a complete overview of the data governance lifecycle, that can help you discern technology and staff needs - Specifically aimed at managers who need to implement a data governance program at their company - Includes case studies to detail 'do's' and 'don'ts' in real-world situations |
change management in data governance: Knowledge Management, Innovation and Big Data Patricia Ordóñez de Pablos, Miltiadis D. Lytras, 2019-12-31 The evolution of knowledge management theory and the special emphasis on human and social capital sets new challenges for knowledge-driven and technology-enabled innovation. Emerging technologies including big data and analytics have significant implications for sustainability, policy making, and competitiveness. This edited volume promotes scientific research into the potential contributions knowledge management can make to the new era of innovation and social inclusive economic growth. We are grateful to all the contributors of this edition for their intellectual work. The organization of the relevant debate is aligned around three pillars: SECTION A. DATA, KNOWLEDGE, HUMAN AND SOCIAL CAPITAL FOR INNOVATION We elaborate on the new era of knowledge types and the emerging forms of social capital and their impact on technology-driven innovation. Topics include: · Social Networks · Smart Education · Social Capital · Corporate Innovation · Disruptive Innovation · Knowledge integration · Enhanced Decision-Making. SECTION B. KNOWLEDGE MANAGEMENT & BIG DATA ENABLED INNOVATION In this section, knowledge management and big data applications and systems are presented. Selective topic include: · Crowdsourcing Analysis · Natural Language Processing · Data Governance · Knowledge Extraction · Ontology Design Semantic Modeling SECTION C. SUSTAINABLE DEVELOPMENT In the section, the debate on the impact of knowledge management and big data research to sustainability is promoted with integrative discussion of complementary social and technological factors including: · Big Social Networks on Sustainable Economic Development · Business Intelligence |
change management in data governance: Data Stewardship David Plotkin, 2013-09-16 Data stewards in business and IT are the backbone of a successful data governance implementation because they do the work to make a company's data trusted, dependable, and high quality. Data Stewardship explains everything you need to know to successfully implement the stewardship portion of data governance, including how to organize, train, and work with data stewards, get high-quality business definitions and other metadata, and perform the day-to-day tasks using a minimum of the steward's time and effort. David Plotkin has loaded this book with practical advice on stewardship so you can get right to work, have early successes, and measure and communicate those successes, gaining more support for this critical effort. - Provides clear and concise practical advice on implementing and running data stewardship, including guidelines on how to organize based on company structure, business functions, and data ownership - Shows how to gain support for your stewardship effort, maintain that support over the long-term, and measure the success of the data stewardship effort and report back to management - Includes detailed lists of responsibilities for each type of data steward and strategies to help the Data Governance Program Office work effectively with the data stewards |
change management in data governance: Big Data Governance: Managing and Protecting Data Assets Michael Roberts, Big Data Governance: Managing and Protecting Data Assets offers a comprehensive exploration of the principles, practices, and strategies essential for governing vast volumes of data in the digital age. As organizations increasingly rely on big data to drive decision-making and innovation, effective governance becomes paramount to ensure data quality, security, and compliance. This book delves into key topics such as data governance frameworks, privacy regulations, risk management, and ethical considerations. Whether you're a data steward, IT manager, compliance officer, or business leader, this handbook equips you with the insights and tools to establish robust data governance frameworks and safeguard your organization's most valuable asset—its data. |
change management in data governance: ADKAR Jeff Hiatt, 2006 In his first complete text on the ADKAR model, Jeff Hiatt explains the origin of the model and explores what drives each building block of ADKAR. Learn how to build awareness, create desire, develop knowledge, foster ability and reinforce changes in your organization. The ADKAR Model is changing how we think about managing the people side of change, and provides a powerful foundation to help you succeed at change. |
change management in data governance: Change Management During Unprecedented Times Tennin, Kyla Latrice, 2023-04-25 Conclusively, resilience, education, financial inclusion, digital transformation, strategic partnerships, and particularly change management are needed when crises occur in order to save and advance organizational ecosystems and economies. Therefore, it is crucial to know about the ideation and processes of change management to improve companies negative circumstances. Change Management During Unprecedented Times examines organizational change management through the lenses of research and innovative practices contained within the fields of leadership and organizational change. The book enlightens communities through the efforts of a research perspective that amplifies practice-based potential in applying theory, models, and frameworks to real-time issues. Covering topics such as technology, ethics, entrepreneurship, and communication, this reference work is ideal for business owners, managers, researchers, scholars, academicians, practitioners, instructors, and students. |
change management in data governance: Data Governance Simplified Holly Starling, 2015-02-17 What is Information Governance?Information governance is using the business strategy to apply objectivity, economies, and efficiencies of scale to the processes necessary for the management of information in the achievement of business success. The point of Information or Data Governance is to create TRUSTED data for the business. But how is that actually done?This book is for the individual who is looking for a starting place for establishing a path to better information for their business through a data governance program. The book focuses on describing deliverables and techniques necessary to quantify and measure the Trust of information, including creating dashboards to monitor the success of the Information Management and Governance (IMG) Program as well as an overall Trust Dashboard for the enterprise. If you are trying to answer any of the following questions, then this book can help you out:How do we decrease the number of data silos?How much management and governance is needed for the data?Who owns the data?How do we get the business to trust the data?What measurements can I use to prove the data is good?What do I show executives to illustrate the progress of a data governance program?How can trust of business data be quantified?How is the relevance of data to the business determined?What is the appropriate level of management and governance necessary for the data?This book will help you answer these questions and start improving (and measuring the improvement) of data for your business. The book includes chapters that give a high level overview of data governance but focuses most of the attention on the deliverables and methods necessary to quantify and measure the Trust of data, thereby establishing clear measurements for success. |
change management in data governance: The DAMA Dictionary of Data Management Dama International, 2011 A glossary of over 2,000 terms which provides a common data management vocabulary for IT and Business professionals, and is a companion to the DAMA Data Management Body of Knowledge (DAMA-DMBOK). Topics include: Analytics & Data Mining Architecture Artificial Intelligence Business Analysis DAMA & Professional Development Databases & Database Design Database Administration Data Governance & Stewardship Data Management Data Modeling Data Movement & Integration Data Quality Management Data Security Management Data Warehousing & Business Intelligence Document, Record & Content Management Finance & Accounting Geospatial Data Knowledge Management Marketing & Customer Relationship Management Meta-Data Management Multi-dimensional & OLAP Normalization Object-Orientation Parallel Database Processing Planning Process Management Project Management Reference & Master Data Management Semantic Modeling Software Development Standards Organizations Structured Query Language (SQL) XML Development |
change management in data governance: Data Governance and Compliance Rupa Mahanti, 2021-04-27 This book sets the stage of the evolution of corporate governance, laws and regulations, other forms of governance, and the interaction between data governance and other corporate governance sub-disciplines. Given the continuously evolving and complex regulatory landscape and the growing number of laws and regulations, compliance is a widely discussed issue in the field of data. This book considers the cost of non-compliance bringing in examples from different industries of instances in which companies failed to comply with rules, regulations, and other legal obligations, and goes on to explain how data governance helps in avoiding such pitfalls. The first in a three-volume series on data governance, this book does not assume any prior or specialist knowledge in data governance and will be highly beneficial for IT, management and law students, academics, information management and business professionals, and researchers to enhance their knowledge and get guidance in managing their own data governance projects from a governance and compliance perspective. |
change management in data governance: The Complete Business Process Handbook Mark Von Rosing, Henrik von Scheel, August-Wilhelm Scheer, 2014-12-06 The Complete Business Process Handbook is the most comprehensive body of knowledge on business processes with revealing new research. Written as a practical guide for Executives, Practitioners, Managers and Students by the authorities that have shaped the way we think and work with process today. It stands out as a masterpiece, being part of the BPM bachelor and master degree curriculum at universities around the world, with revealing academic research and insight from the leaders in the market. This book provides everything you need to know about the processes and frameworks, methods, and approaches to implement BPM. Through real-world examples, best practices, LEADing practices and advice from experts, readers will understand how BPM works and how to best use it to their advantage. Cases from industry leaders and innovators show how early adopters of LEADing Practices improved their businesses by using BPM technology and methodology. As the first of three volumes, this book represents the most comprehensive body of knowledge published on business process. Following closely behind, the second volume uniquely bridges theory with how BPM is applied today with the most extensive information on extended BPM. The third volume will explore award winning real-life examples of leading business process practices and how it can be replaced to your advantage. Learn what Business Process is and how to get started Comprehensive historical process evolution In-depth look at the Process Anatomy, Semantics and Ontology Find out how to link Strategy to Operation with value driven BPM Uncover how to establish a way of Thinking, Working, Modelling and Implementation Explore comprehensive Frameworks, Methods and Approaches How to build BPM competencies and establish a Center of Excellence Discover how to apply Social BPM, Sustainable and Evidence based BPM Learn how Value & Performance Measurement and Management Learn how to roll-out and deploy process Explore how to enable Process Owners, Roles and Knowledge Workers Discover how to Process and Application Modelling Uncover Process Lifecycle, Maturity, Alignment and Continuous Improvement Practical continuous improvement with the way of Governance Future BPM trends that will affect business Explore the BPM Body of Knowledge |
change management in data governance: The Practitioner's Guide to Data Quality Improvement David Loshin, 2010-11-22 The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. |
change management in data governance: Data Governance Success Rupa Mahanti, 2021-12-13 While good data is an enterprise asset, bad data is an enterprise liability. Data governance enables you to effectively and proactively manage data assets throughout the enterprise by providing guidance in the form of policies, standards, processes and rules and defining roles and responsibilities outlining who will do what, with respect to data. While implementing data governance is not rocket science, it is not a simple exercise. There is a lot confusion around what data governance is, and a lot of challenges in the implementation of data governance. Data governance is not a project or a one-off exercise but a journey that involves a significant amount of effort, time and investment and cultural change and a number of factors to take into consideration to achieve and sustain data governance success. Data Governance Success: Growing and Sustaining Data Governance is the third and final book in the Data Governance series and discusses the following: • Data governance perceptions and challenges • Key considerations when implementing data governance to achieve and sustain success• Strategy and data governance• Different data governance maturity frameworks• Data governance – people and process elements• Data governance metrics This book shares the combined knowledge related to data and data governance that the author has gained over the years of working in different industrial and research programs and projects associated with data, processes, and technologies and unique perspectives of Thought Leaders and Data Experts through Interviews conducted. This book will be highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge to support and succeed in data governance implementations. This book is technology agnostic and contains a balance of concepts and examples and illustrations making it easy for the readers to understand and relate to their own specific data projects. |
change management in data governance: The Economics of Data, Analytics, and Digital Transformation Bill Schmarzo, Dr. Kirk Borne, 2020-11-30 Build a continuously learning and adapting organization that can extract increasing levels of business, customer and operational value from the amalgamation of data and advanced analytics such as AI and Machine Learning Key Features Master the Big Data Business Model Maturity Index methodology to transition to a value-driven organizational mindset Acquire implementable knowledge on digital transformation through 8 practical laws Explore the economics behind digital assets (data and analytics) that appreciate in value when constructed and deployed correctly Book Description In today's digital era, every organization has data, but just possessing enormous amounts of data is not a sufficient market discriminator. The Economics of Data, Analytics, and Digital Transformation aims to provide actionable insights into the real market discriminators, including an organization's data-fueled analytics products that inspire innovation, deliver insights, help make practical decisions, generate value, and produce mission success for the enterprise. The book begins by first building your mindset to be value-driven and introducing the Big Data Business Model Maturity Index, its maturity index phases, and how to navigate the index. You will explore value engineering, where you will learn how to identify key business initiatives, stakeholders, advanced analytics, data sources, and instrumentation strategies that are essential to data science success. The book will help you accelerate and optimize your company's operations through AI and machine learning. By the end of the book, you will have the tools and techniques to drive your organization's digital transformation. Here are a few words from Dr. Kirk Borne, Data Scientist and Executive Advisor at Booz Allen Hamilton, about the book: Data analytics should first and foremost be about action and value. Consequently, the great value of this book is that it seeks to be actionable. It offers a dynamic progression of purpose-driven ignition points that you can act upon. What you will learn Train your organization to transition from being data-driven to being value-driven Navigate and master the big data business model maturity index Learn a methodology for determining the economic value of your data and analytics Understand how AI and machine learning can create analytics assets that appreciate in value the more that they are used Become aware of digital transformation misconceptions and pitfalls Create empowered and dynamic teams that fuel your organization's digital transformation Who this book is for This book is designed to benefit everyone from students who aspire to study the economic fundamentals behind data and digital transformation to established business leaders and professionals who want to learn how to leverage data and analytics to accelerate their business careers. |
change management in data governance: Business Intelligence Guidebook Rick Sherman, 2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources. |
change management in data governance: Supply Chain Management Strategies and Risk Assessment in Retail Environments Kumar, Akhilesh, Saurav, Swapnil, 2017-12-15 The proper understanding and managing of project risks and uncertainties is crucial to any organization. It is paramount that all phases of project development and execution are monitored to avoid poor project results from meager economics, overspending, and reputation. Supply Chain Management Strategies and Risk Assessment in Retail Environments is a comprehensive reference source for the latest scholarly material on effectively managing risk factors and implementing the latest supply management strategies in retail environments. Featuring coverage on relevant topics such as omni-channel retail, green supply chain, and customer loyalty, this book is geared toward academicians, researchers, and students seeking current research on the challenges and opportunities available in the realm of retail and the flow of materials, information, and finances between companies and consumers. |
change management in data governance: Meeting the Challenges of Data Quality Management Laura Sebastian-Coleman, 2022-01-25 Meeting the Challenges of Data Quality Management outlines the foundational concepts of data quality management and its challenges. The book enables data management professionals to help their organizations get more value from data by addressing the five challenges of data quality management: the meaning challenge (recognizing how data represents reality), the process/quality challenge (creating high-quality data by design), the people challenge (building data literacy), the technical challenge (enabling organizational data to be accessed and used, as well as protected), and the accountability challenge (ensuring organizational leadership treats data as an asset). Organizations that fail to meet these challenges get less value from their data than organizations that address them directly. The book describes core data quality management capabilities and introduces new and experienced DQ practitioners to practical techniques for getting value from activities such as data profiling, DQ monitoring and DQ reporting. It extends these ideas to the management of data quality within big data environments. This book will appeal to data quality and data management professionals, especially those involved with data governance, across a wide range of industries, as well as academic and government organizations. Readership extends to people higher up the organizational ladder (chief data officers, data strategists, analytics leaders) and in different parts of the organization (finance professionals, operations managers, IT leaders) who want to leverage their data and their organizational capabilities (people, processes, technology) to drive value and gain competitive advantage. This will be a key reference for graduate students in computer science programs which normally have a limited focus on the data itself and where data quality management is an often-overlooked aspect of data management courses. - Describes the importance of high-quality data to organizations wanting to leverage their data and, more generally, to people living in today's digitally interconnected world - Explores the five challenges in relation to organizational data, including Big Data, and proposes approaches to meeting them - Clarifies how to apply the core capabilities required for an effective data quality management program (data standards definition, data quality assessment, monitoring and reporting, issue management, and improvement) as both stand-alone processes and as integral components of projects and operations - Provides Data Quality practitioners with ways to communicate consistently with stakeholders |
CHANGE Definition & Meaning - Merriam-Webster
The meaning of CHANGE is to make different in some particular : alter. How to use change in a sentence. Synonym Discussion of Change.
Change starts here · Change.org
Change.org is an independent, nonprofit-owned organization, funded entirely by millions of users just like you. Stand with Change to …
CHANGE | English meaning - Cambridge Dictionary
CHANGE definition: 1. to exchange one thing for another thing, especially of a similar type: 2. to make or become…. Learn more.
Change - definition of change by The Free Dictionary
n. 1. The act, process, or result of altering or modifying: a change in facial expression. 2. The replacing of one thing for another; substitution: a change of atmosphere; a …
Change - Definition, Meaning & Synonyms | Vocabulary.com
The noun change can refer to any thing or state that is different from what it once was. Change is everywhere in life — and in English. The word has numerous senses, both as a …
CHANGE Definition & Meaning - Merriam-Webster
The meaning of CHANGE is to make different in some particular : alter. How to use change in a sentence. Synonym Discussion of Change.
Change starts here · Change.org
Change.org is an independent, nonprofit-owned organization, funded entirely by millions of users just like you. Stand with Change to protect the power of everyday people making a difference.
CHANGE | English meaning - Cambridge Dictionary
CHANGE definition: 1. to exchange one thing for another thing, especially of a similar type: 2. to make or become…. Learn more.
Change - definition of change by The Free Dictionary
n. 1. The act, process, or result of altering or modifying: a change in facial expression. 2. The replacing of one thing for another; substitution: a change of atmosphere; a change of …
Change - Definition, Meaning & Synonyms | Vocabulary.com
The noun change can refer to any thing or state that is different from what it once was. Change is everywhere in life — and in English. The word has numerous senses, both as a noun and …
Change Definition & Meaning - YourDictionary
To put or take (a thing) in place of something else; substitute for, replace with, or transfer to another of a similar kind. To change one's clothes, to change jobs.
Change: Definition, Meaning, and Examples - usdictionary.com
Dec 2, 2024 · "Change" is an essential term used to refer to a variety of processes or states indicating a difference in condition, position, or state. Embracing and understanding "change" …
What does change mean? - Definitions.net
What does change mean? This dictionary definitions page includes all the possible meanings, example usage and translations of the word change. the process of becoming different. The …
CHANGE Definition & Meaning | Dictionary.com
To change something is to make its form, nature, or content different from what it is currently or from what it would be if left alone. How is change different from alter?
CHANGE - Meaning & Translations | Collins English Dictionary
Master the word "CHANGE" in English: definitions, translations, synonyms, pronunciations, examples, and grammar insights - all in one complete resource.