Advertisement
cyber physical systems engineering: Security and Quality in Cyber-Physical Systems Engineering Stefan Biffl, Matthias Eckhart, Arndt Lüder, Edgar Weippl, 2019-11-09 This book examines the requirements, risks, and solutions to improve the security and quality of complex cyber-physical systems (C-CPS), such as production systems, power plants, and airplanes, in order to ascertain whether it is possible to protect engineering organizations against cyber threats and to ensure engineering project quality. The book consists of three parts that logically build upon each other. Part I Product Engineering of Complex Cyber-Physical Systems discusses the structure and behavior of engineering organizations producing complex cyber-physical systems, providing insights into processes and engineering activities, and highlighting the requirements and border conditions for secure and high-quality engineering. Part II Engineering Quality Improvement addresses quality improvements with a focus on engineering data generation, exchange, aggregation, and use within an engineering organization, and the need for proper data modeling and engineering-result validation. Lastly, Part III Engineering Security Improvement considers security aspects concerning C-CPS engineering, including engineering organizations’ security assessments and engineering data management, security concepts and technologies that may be leveraged to mitigate the manipulation of engineering data, as well as design and run-time aspects of secure complex cyber-physical systems. The book is intended for several target groups: it enables computer scientists to identify research issues related to the development of new methods, architectures, and technologies for improving quality and security in multi-disciplinary engineering, pushing forward the current state of the art. It also allows researchers involved in the engineering of C-CPS to gain a better understanding of the challenges and requirements of multi-disciplinary engineering that will guide them in their future research and development activities. Lastly, it offers practicing engineers and managers with engineering backgrounds insights into the benefits and limitations of applicable methods, architectures, and technologies for selected use cases. |
cyber physical systems engineering: Trustworthy Cyber-Physical Systems Engineering Alexander Romanovsky, Fuyuki Ishikawa, 2016-10-03 Focuses on various issues related to engineering trustworthy cyber-physical systems Contributes to the improved understanding of system concepts and standardization, and presents a research roadmap Emphasizes tool-supported methods, and focuses on practical issues faced by practitioners Covers the experience of deploying advanced system engineering methods in industry Includes contributions from leading international experts Offers supplementary material on the book website: http://research.nii.ac.jp/tcps/ |
cyber physical systems engineering: Cyber-Physical Systems Fei Hu, 2013-09-26 Cyber-physical systems (CPSs) have quickly become one of the hottest computer applications today. With their tight integration of cyber and physical objects, it is believed CPSs will transform how we interact with the physical world, just like the Internet transformed how we interact with one another. A CPS could be a system at multiple scales, from large smart bridges with fluctuation detection and responding functions, to autonomous cars and tiny implanted medical devices. Cyber-Physical Systems: Integrated Computing and Engineering Design supplies comprehensive coverage of the principles and design of CPSs. It addresses the many challenges that must be overcome and outlines a roadmap of how to get there. Emphasizes the integration of cyber computing and physical objects control Covers important CPS theory foundations and models Includes interesting case studies of several important civilian and health care applications that illustrate the CPS design process Addresses the collaboration of the sensing and controlling of a physical system with robust software architecture Explains how to account for random failure events that can occur in a real CPS environment Presented in a systematic manner, the book begins by discussing the basic concept underlying CPSs and examining some challenging design issues. It then covers the most important design theories and modeling methods for a practical CPS. Next, it moves on to sensor-based CPSs, which use embedded sensors and actuators to interact with the physical world. The text presents concrete CPS designs for popular civilian applications, including building and energy management. Reflecting the importance of human health care in society, it includes CPS examples of rehabilitation applications such as virtual reality-based disability recovery platforms. |
cyber physical systems engineering: Simulation for Cyber-Physical Systems Engineering José L. Risco Martín, Saurabh Mittal, Tuncer Ören, 2020-11-07 This comprehensive book examines a range of examples, prepared by a diverse group of academic and industry practitioners, which demonstrate how cloud-based simulation is being extensively used across many disciplines, including cyber-physical systems engineering. This book is a compendium of the state of the art in cloud-based simulation that instructors can use to inform the next generation. It highlights the underlying infrastructure, modeling paradigms, and simulation methodologies that can be brought to bear to develop the next generation of systems for a highly connected society. Such systems, aptly termed cyber-physical systems (CPS), are now widely used in e.g. transportation systems, smart grids, connected vehicles, industrial production systems, healthcare, education, and defense. Modeling and simulation (M&S), along with big data technologies, are at the forefront of complex systems engineering research. The disciplines of cloud-based simulation and CPS engineering are evolving at a rapid pace, but are not optimally supporting each other’s advancement. This book brings together these two communities, which already serve multi-disciplinary applications. It provides an overview of the simulation technologies landscape, and of infrastructure pertaining to the use of cloud-based environments for CPS engineering. It covers the engineering, design, and application of cloud simulation technologies and infrastructures applicable for CPS engineering. The contributions share valuable lessons learned from developing real-time embedded and robotic systems deployed through cloud-based infrastructures for application in CPS engineering and IoT-enabled society. The coverage incorporates cloud-based M&S as a medium for facilitating CPS engineering and governance, and elaborates on available cloud-based M&S technologies and their impacts on specific aspects of CPS engineering. |
cyber physical systems engineering: Multi-Disciplinary Engineering for Cyber-Physical Production Systems Stefan Biffl, Arndt Lüder, Detlef Gerhard, 2017-05-06 This book discusses challenges and solutions for the required information processing and management within the context of multi-disciplinary engineering of production systems. The authors consider methods, architectures, and technologies applicable in use cases according to the viewpoints of product engineering and production system engineering, and regarding the triangle of (1) product to be produced by a (2) production process executed on (3) a production system resource. With this book industrial production systems engineering researchers will get a better understanding of the challenges and requirements of multi-disciplinary engineering that will guide them in future research and development activities. Engineers and managers from engineering domains will be able to get a better understanding of the benefits and limitations of applicable methods, architectures, and technologies for selected use cases. IT researchers will be enabled to identify research issues related to the development of new methods, architectures, and technologies for multi-disciplinary engineering, pushing forward the current state of the art. |
cyber physical systems engineering: A 21st Century Cyber-Physical Systems Education National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Committee on 21st Century Cyber-Physical Systems Education, 2016-12-27 Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. CPS can be small and closed, such as an artificial pancreas, or very large, complex, and interconnected, such as a regional energy grid. CPS engineering focuses on managing inter- dependencies and impact of physical aspects on cyber aspects, and vice versa. With the development of low-cost sensing, powerful embedded system hardware, and widely deployed communication networks, the reliance on CPS for system functionality has dramatically increased. These technical developments in combination with the creation of a workforce skilled in engineering CPS will allow the deployment of increasingly capable, adaptable, and trustworthy systems. Engineers responsible for developing CPS but lacking the appropriate education or training may not fully understand at an appropriate depth, on the one hand, the technical issues associated with the CPS software and hardware or, on the other hand, techniques for physical system modeling, energy and power, actuation, signal processing, and control. In addition, these engineers may be designing and implementing life-critical systems without appropriate formal training in CPS methods needed for verification and to assure safety, reliability, and security. A workforce with the appropriate education, training, and skills will be better positioned to create and manage the next generation of CPS solutions. A 21st Century Cyber-Physical Systems Education examines the intellectual content of the emerging field of CPS and its implications for engineering and computer science education. This report is intended to inform those who might support efforts to develop curricula and materials; faculty and university administrators; industries with needs for CPS workers; and current and potential students about intellectual foundations, workforce requirements, employment opportunities, and curricular needs. |
cyber physical systems engineering: Complexity Challenges in Cyber Physical Systems Saurabh Mittal, Andreas Tolk, 2020-01-09 Offers a one-stop reference on the application of advanced modeling and simulation (M&S) in cyber physical systems (CPS) engineering This book provides the state-of-the-art in methods and technologies that aim to elaborate on the modeling and simulation support to cyber physical systems (CPS) engineering across many sectors such as healthcare, smart grid, or smart home. It presents a compilation of simulation-based methods, technologies, and approaches that encourage the reader to incorporate simulation technologies in their CPS engineering endeavors, supporting management of complexity challenges in such endeavors. Complexity Challenges in Cyber Physical Systems: Using Modeling and Simulation (M&S) to Support Intelligence, Adaptation and Autonomy is laid out in four sections. The first section provides an overview of complexities associated with the application of M&S to CPS Engineering. It discusses M&S in the context of autonomous systems involvement within the North Atlantic Treaty Organization (NATO). The second section provides a more detailed description of the challenges in applying modeling to the operation, risk and design of holistic CPS. The third section delves in details of simulation support to CPS engineering followed by the engineering practices to incorporate the cyber element to build resilient CPS sociotechnical systems. Finally, the fourth section presents a research agenda for handling complexity in application of M&S for CPS engineering. In addition, this text: Introduces a unifying framework for hierarchical co-simulations of cyber physical systems (CPS) Provides understanding of the cycle of macro-level behavior dynamically arising from spaciotemporal interactions between parts at the micro-level Describes a simulation platform for characterizing resilience of CPS Complexity Challenges in Cyber Physical Systems has been written for researchers, practitioners, lecturers, and graduate students in computer engineering who want to learn all about M&S support to addressing complexity in CPS and its applications in today’s and tomorrow’s world. |
cyber physical systems engineering: Cyber-Physical Systems Engineering and Control Alla G. Kravets, Alexander A. Bolshakov, Maxim V. Shcherbakov, 2023-07-31 This book is devoted to the study of engineering and control technologies for the cyber-physical systems development. This book defines the approaches in the engineering leverage the exploitation of artificial intelligence and most urgent computing methods. The authors study the activities allows for the developing new and perspective concepts of robotics systems combining various machine learning methods, uncertainty explanation approaches, computer vision and unmanned aerial systems control technologies including artificial neural networks and simulation modeling by addressing a large scale of applications. The book also describes new materials engineering as well as implementation of these technologies in the different domains such as polymeric film production, polymer composition, and roller squeezing of leather, in order to realize the novel cyber-physical systems, their functionalities, and features. The authors describe the development of method for increasing the software efficiency, considering the increasing complexity of the computing systems and the importance of ensuring accuracy and velocity of modelling. The book also analyses algorithms for fuzzy models and systems, including the cyber-physical real-time systems, and non-stationary object with discrete time. The authors highlight the problem of ensuring the quality on engineering technologies for cyber-physical systems as the most important and consider different approaches to its solution. |
cyber physical systems engineering: Safety and Security of Cyber-Physical Systems Frank J. Furrer, 2022-07-20 Cyber-physical systems (CPSs) consist of software-controlled computing devices communicating with each other and interacting with the physical world through sensors and actuators. Because most of the functionality of a CPS is implemented in software, the software is of crucial importance for the safety and security of the CPS. This book presents principle-based engineering for the development and operation of dependable software. The knowledge in this book addresses organizations that want to strengthen their methodologies to build safe and secure software for mission-critical cyber-physical systems. The book: • Presents a successful strategy for the management of vulnerabilities, threats, and failures in mission-critical cyber-physical systems; • Offers deep practical insight into principle-based software development (62 principles are introduced and cataloged into five categories: Business & organization, general principles, safety, security, and risk management principles); • Provides direct guidance on architecting and operating dependable cyber-physical systems for software managers and architects. |
cyber physical systems engineering: Cyber-Physical Systems: A Model-Based Approach Walid M. Taha, Abd-Elhamid M. Taha, Johan Thunberg, 2020-09-01 In this concise yet comprehensive Open Access textbook, future inventors are introduced to the key concepts of Cyber-Physical Systems (CPS). Using modeling as a way to develop deeper understanding of the computational and physical components of these systems, one can express new designs in a way that facilitates their simulation, visualization, and analysis. Concepts are introduced in a cross-disciplinary way. Leveraging hybrid (continuous/discrete) systems as a unifying framework and Acumen as a modeling environment, the book bridges the conceptual gap in modeling skills needed for physical systems on the one hand and computational systems on the other. In doing so, the book gives the reader the modeling and design skills they need to build smart, IT-enabled products. Starting with a look at various examples and characteristics of Cyber-Physical Systems, the book progresses to explain how the area brings together several previously distinct ones such as Embedded Systems, Control Theory, and Mechatronics. Featuring a simulation-based project that focuses on a robotics problem (how to design a robot that can play ping-pong) as a useful example of a CPS domain, Cyber-Physical Systems: A Model-Based Approach demonstrates the intimate coupling between cyber and physical components, and how designing robots reveals several non-trivial control problems, significant embedded and real-time computation requirements, and a need to consider issues of communication and preconceptions. |
cyber physical systems engineering: Cyber-Physical Systems Gaddadevara Matt Siddesh, Ganesh Chandra Deka, Krishnarajanagar GopalaIyengar Srinivasa, Lalit Mohan Patnaik, 2015-12-01 In cyber-physical systems (CPS), sensors and embedded systems are networked together to monitor and manage a range of physical processes through a continuous feedback system. This allows distributed computing using wireless devices. Cyber-Physical Systems-A Computational Perspective examines various developments of CPS that are impacting our daily |
cyber physical systems engineering: Cyber-Physical Systems in the Built Environment Chimay J. Anumba, Nazila Roofigari-Esfahan, 2020-05-27 This book introduces researchers and practitioners to Cyber-Physical Systems (CPS) and its applications in the built environment. It begins with a fundamental introduction to CPS technology and associated concepts.It then presents numerous examples of applications from managing construction projects to smart transportation systems and smart cities. It concludes with a discussion of future directions for CPS deployment in the construction, operation and maintenance of constructed facilities. Featuring internationally recognized experts as contributors, Cyber-Physical Systems in the Built Environment, is an ideal resource for engineers, construction managers, architects, facilities managers, and planners working on a range of building and civil infrastructure projects. |
cyber physical systems engineering: Cyber-Physical Systems Houbing Herbert Song, Danda B. Rawat, Sabina Jeschke, Christian Brecher, 2016-08-27 Cyber-Physical Systems: Foundations, Principles and Applications explores the core system science perspective needed to design and build complex cyber-physical systems. Using Systems Science's underlying theories, such as probability theory, decision theory, game theory, organizational sociology, behavioral economics, and cognitive psychology, the book addresses foundational issues central across CPS applications, including System Design -- How to design CPS to be safe, secure, and resilient in rapidly evolving environments, System Verification -- How to develop effective metrics and methods to verify and certify large and complex CPS, Real-time Control and Adaptation -- How to achieve real-time dynamic control and behavior adaptation in a diverse environments, such as clouds and in network-challenged spaces, Manufacturing -- How to harness communication, computation, and control for developing new products, reducing product concepts to realizable designs, and producing integrated software-hardware systems at a pace far exceeding today's timeline. The book is part of the Intelligent Data-Centric Systems: Sensor-Collected Intelligence series edited by Fatos Xhafa, Technical University of Catalonia. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Includes in-depth coverage of the latest models and theories that unify perspectives, expressing the interacting dynamics of the computational and physical components of a system in a dynamic environment - Focuses on new design, analysis, and verification tools that embody the scientific principles of CPS and incorporate measurement, dynamics, and control - Covers applications in numerous sectors, including agriculture, energy, transportation, building design and automation, healthcare, and manufacturing |
cyber physical systems engineering: Cyber-Physical Systems Raj Rajkumar, Dionisio de Niz, Mark Klein, 2016-12-23 Learn the State of the Art in Embedded Systems and Embrace the Internet of Things The next generation of mission-critical and embedded systems will be “cyber physical”: They will demand the precisely synchronized and seamless integration of complex sets of computational algorithms and physical components. Cyber-Physical Systems is the definitive guide to building cyber-physical systems (CPS) for a wide spectrum of engineering and computing applications. Three pioneering experts have brought together the field’s most significant work in one volume that will be indispensable for all practitioners, researchers, and advanced students. This guide addresses CPS from multiple perspectives, drawing on extensive contributions from leading researchers. The authors and contributors review key CPS challenges and innovations in multiple application domains. Next, they describe the technical foundations underlying modern CPS solutions—both what we know and what we still need to learn. Throughout, the authors offer guiding principles for every facet of CPS development, from design and analysis to planning future innovations. Comprehensive coverage includes Understanding CPS drivers, challenges, foundations, and emerging directions Building life-critical, context-aware, networked systems of medical devices Creating energy grid systems that reduce costs and fully integrate renewable energy sources Modeling complex interactions across cyber and physical domains Synthesizing algorithms to enforce CPS control Addressing space, time, energy, and reliability issues in CPS sensor networks Applying advanced approaches to real-time scheduling Securing CPS: preventing “man-in-the-middle” and other attacks Ensuring logical correctness and simplifying verification Enforcing synchronized communication between distributed agents Using model-integration languages to define formal semantics for CPS models Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available. |
cyber physical systems engineering: Applied Cyber-Physical Systems Sang C. Suh, U. John Tanik, John N. Carbone, Abdullah Eroglu, 2013-08-13 Applied Cyber-Physical Systems presents the latest methods and technologies in the area of cyber-physical systems including medical and biological applications. Cyber-physical systems (CPS) integrate computing and communication capabilities by monitoring, and controlling the physical systems via embedded hardware and computers. This book brings together unique contributions from renowned experts on cyber-physical systems research and education with applications. It also addresses the major challenges in CPS, and then provides a resolution with various diverse applications as examples. Advanced-level students and researchers focused on computer science, engineering and biomedicine will find this to be a useful secondary text book or reference, as will professionals working in this field. |
cyber physical systems engineering: Security and Privacy in Cyber-Physical Systems Houbing Song, Glenn A. Fink, Sabina Jeschke, 2017-09-11 Written by a team of experts at the forefront of the cyber-physical systems (CPS) revolution, this book provides an in-depth look at security and privacy, two of the most critical challenges facing both the CPS research and development community and ICT professionals. It explores, in depth, the key technical, social, and legal issues at stake, and it provides readers with the information they need to advance research and development in this exciting area. Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability far in excess of what today’s simple embedded systems can provide. Just as the Internet revolutionized the way we interact with information, CPS technology has already begun to transform the way people interact with engineered systems. In the years ahead, smart CPS will drive innovation and competition across industry sectors, from agriculture, energy, and transportation, to architecture, healthcare, and manufacturing. A priceless source of practical information and inspiration, Security and Privacy in Cyber-Physical Systems: Foundations, Principles and Applications is certain to have a profound impact on ongoing R&D and education at the confluence of security, privacy, and CPS. |
cyber physical systems engineering: Complex Systems Design & Management Marc Aiguier, Yves Caseau, Daniel Krob, Antoine Rauzy, 2012-10-19 This book contains all refereed papers that were accepted to the third edition of the « Complex Systems Design & Management » (CSD&M 2012) international conference that took place in Paris (France) from December 12-14, 2012. (Website: http://www.csdm2012.csdm.fr) These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2012 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net). |
cyber physical systems engineering: Control of Cyber-Physical Systems Danielle C. Tarraf, 2013-06-30 Cyber-physical systems (CPS) involve deeply integrated, tightly coupled computational and physical components. These systems, spanning multiple scientific and technological domains, are highly complex and pose several fundamental challenges. They are also critically important to society’s advancement and security. The design and deployment of the adaptable, reliable CPS of tomorrow requires the development of a basic science foundation, synergistically drawing on various branches of engineering, mathematics, computer science, and domain specific knowledge. This book brings together 19 invited papers presented at the Workshop on Control of Cyber-Physical Systems, hosted by the Department of Electrical & Computer Engineering at The Johns Hopkins University in March 2013. It highlights the central role of control theory and systems thinking in developing the theory of CPS, in addressing the challenges of cyber-trust and cyber-security, and in advancing emerging cyber-physical applications ranging from smart grids to smart buildings, cars and robotic systems. |
cyber physical systems engineering: Cyber-Physical Systems Danda B. Rawat, Joel J.P.C. Rodrigues, Ivan Stojmenovic, 2015-10-28 Although comprehensive knowledge of cyber-physical systems (CPS) is becoming a must for researchers, practitioners, system designers, policy makers, system managers, and administrators, there has been a need for a comprehensive and up-to-date source of research and information on cyber-physical systems. This book fills that need.Cyber-Physical Syst |
cyber physical systems engineering: Cyber-Physical Systems of Systems Andrea Bondavalli, Sara Bouchenak, Hermann Kopetz, 2016-12-16 This book is open access under a CC BY 4.0 license. Technical Systems-of-Systems (SoS) – in the form of networked, independent constituent computing systems temporarily collaborating to achieve a well-defined objective – form the backbone of most of today’s infrastructure. The energy grid, most transportation systems, the global banking industry, the water-supply system, the military equipment, many embedded systems, and a great number more, strongly depend on systems-of-systems. The correct operation and continuous availability of these underlying systems-of-systems are fundamental for the functioning of our modern society. The 8 papers presented in this book document the main insights on Cyber-Physical System of Systems (CPSoSs) that were gained during the work in the FP7-610535 European Research Project AMADEOS (acronym for Architecture for Multi-criticality Agile Dependable Evolutionary Open System-of-Systems). It is the objective of this book to present, in a single consistent body, the foundational concepts and their relationships. These form a conceptual basis for the description and understanding of SoSs and go deeper in what we consider the characterizing and distinguishing elements of SoSs: time, emergence, evolution and dynamicity. |
cyber physical systems engineering: Guide to Computing Fundamentals in Cyber-Physical Systems Dietmar P.F. Möller, 2016-04-14 This book presents an in-depth review of the state of the art of cyber-physical systems (CPS) and their applications. Relevant case studies are also provided, to help the reader to master the interdisciplinary material. Features: includes self-test exercises in each chapter, together with a glossary; offers a variety of teaching support materials at an associated website, including a comprehensive set of slides and lecture videos; presents a brief overview of the study of systems, and embedded computing systems, before defining CPS; introduces the concepts of the Internet of Things, and ubiquitous (or pervasive) computing; reviews the design challenges of CPS, and their impact on systems and software engineering; describes the ideas behind Industry 4.0 and the revolutions in digital manufacturing, including smart and agile manufacturing, as well as cybersecurity in manufacturing; considers the social impact of the changes in skills required by the globalized, digital work environment of the future. |
cyber physical systems engineering: Introduction to Embedded Systems, Second Edition Edward Ashford Lee, Sanjit Arunkumar Seshia, 2017-01-06 An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems. |
cyber physical systems engineering: Principles of Cyber-Physical Systems Sandip Roy, Sajal K. Das, 2020-10-15 This unique introduction to the foundational concepts of cyber-physical systems (CPS) describes key design principles and emerging research trends in detail. Several interdisciplinary applications are covered, with a focus on the wide-area management of infrastructures including electric power systems, air transportation networks, and health care systems. Design, control and optimization of cyber-physical infrastructures are discussed, addressing security and privacy issues of networked CPS, presenting graph-theoretic and numerical approaches to CPS evaluation and monitoring, and providing readers with the knowledge needed to operate CPS in a reliable, efficient, and secure manner. Exercises are included. This is an ideal resource for researchers and graduate students in electrical engineering and computer science, as well as for practitioners using cyber-physical systems in aerospace and automotive engineering, medical technology, and large-scale infrastructure operations. |
cyber physical systems engineering: Resilience of Cyber-Physical Systems Francesco Flammini, 2019-01-25 This book addresses the latest approaches to holistic Cyber-Physical System (CPS) resilience in real-world industrial applications. Ensuring the resilience of CPSs requires cross-discipline analysis and involves many challenges and open issues, including how to address evolving cyber-security threats. The book describes emerging paradigms and techniques from two main viewpoints: CPSs’ exposure to new threats, and CPSs’ potential to counteract them. Further, the chapters address topics ranging from risk modeling to threat management and mitigation. The book offers a clearly structured, highly accessible resource for a diverse readership, including graduate students, researchers and industry practitioners who are interested in evaluating and ensuring the resilience of CPSs in both the development and assessment stages. |
cyber physical systems engineering: Principles of Cyber-Physical Systems Rajeev Alur, 2015-04-24 A foundational text that offers a rigorous introduction to the principles of design, specification, modeling, and analysis of cyber-physical systems. A cyber-physical system consists of a collection of computing devices communicating with one another and interacting with the physical world via sensors and actuators in a feedback loop. Increasingly, such systems are everywhere, from smart buildings to medical devices to automobiles. This textbook offers a rigorous and comprehensive introduction to the principles of design, specification, modeling, and analysis of cyber-physical systems. The book draws on a diverse set of subdisciplines, including model-based design, concurrency theory, distributed algorithms, formal methods of specification and verification, control theory, real-time systems, and hybrid systems, explaining the core ideas from each that are relevant to system design and analysis. The book explains how formal models provide mathematical abstractions to manage the complexity of a system design. It covers both synchronous and asynchronous models for concurrent computation, continuous-time models for dynamical systems, and hybrid systems for integrating discrete and continuous evolution. The role of correctness requirements in the design of reliable systems is illustrated with a range of specification formalisms and the associated techniques for formal verification. The topics include safety and liveness requirements, temporal logic, model checking, deductive verification, stability analysis of linear systems, and real-time scheduling algorithms. Principles of modeling, specification, and analysis are illustrated by constructing solutions to representative design problems from distributed algorithms, network protocols, control design, and robotics. This book provides the rapidly expanding field of cyber-physical systems with a long-needed foundational text by an established authority. It is suitable for classroom use or as a reference for professionals. |
cyber physical systems engineering: Logical Foundations of Cyber-Physical Systems André Platzer, 2018-08-31 Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks. This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects. The book is supported with homework exercises, lecture videos, and slides. |
cyber physical systems engineering: Machine Learning for Cyber Physical Systems Jürgen Beyerer, Christian Kühnert, Oliver Niggemann, 2018-12-17 This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. |
cyber physical systems engineering: Cyber-Physical Systems and Control Dmitry G. Arseniev, Ludger Overmeyer, Heikki Kälviäinen, Branko Katalinić, 2019-11-29 This book presents the proceedings of the International Conference on Cyber-Physical Systems and Control (CPS&C'2019), held in Peter the Great St. Petersburg Polytechnic University, which is celebrating its 120th anniversary in 2019. The CPS&C'2019 was dedicated to the 35th anniversary of the partnership between Peter the Great St. Petersburg Polytechnic University and Leibniz University of Hannover. Cyber-physical systems (CPSs) are a new generation of control systems and techniques that help promote prospective interdisciplinary research. A wide range of theories and methodologies are currently being investigated and developed in this area to tackle various complex and challenging problems. Accordingly, CPSs represent a scientific and engineering discipline that is set to make an impact on future systems of industrial and social scale that are characterized by the deep integration of real-time processing, sensing, and actuation into logical and physical heterogeneous domains. The CPS&C'2019 brought together researchers and practitioners from all over the world and to discuss cross-cutting fundamental scientific and engineering principles that underline the integration of cyber and physical elements across all application fields. The participants represented research institutions and universities from Austria, Belgium, Bulgaria, China, Finland, Germany, the Netherlands, Russia, Syria, Ukraine, the USA, and Vietnam. These proceedings include 75 papers arranged into five sections, namely keynote papers, fundamentals, applications, technologies, and education and social aspects. |
cyber physical systems engineering: Safe and Secure Cyber-Physical Systems and Internet-of-Things Systems Marilyn Wolf, Dimitrios Serpanos, 2019-09-24 This book provides the first comprehensive view of safe and secure CPS and IoT systems. The authors address in a unified manner both safety (physical safety of operating equipment and devices) and computer security (correct and sound information), which are traditionally separate topics, practiced by very different people. Offers readers a unified view of safety and security, from basic concepts through research challenges; Provides a detailed comparison of safety and security methodologies; Describes a comprehensive threat model including attacks, design errors, and faults; Identifies important commonalities and differences in safety and security engineering. |
cyber physical systems engineering: Cyber-physical Systems and Digital Twins Michael E. Auer, Kalyan Ram B., 2019-07-10 This book constitutes the proceedings of the 16th International Conference on Remote Engineering and Virtual Instrumentation (REV), held at the BMS College of Engineering, Bangalore, India on 3–6 February 2019. Today, online technologies are at the core of most fields of engineering, as well as of society as a whole, and are inseparably connected with Internet of Things, cyber-physical systems, collaborative networks and grids, cyber cloud technologies, service architectures, to name but a few. Since it was first held in, 2004, the REV conference has focused on the increasing use of the Internet for engineering tasks and the problems surrounding it. The 2019 conference demonstrated and discussed the fundamentals, applications and experiences in the field of online engineering and virtual instrumentation. It also presented guidelines for university-level courses on these topics, in view of the increasing globalization of education and the demand for teleworking, remote services and collaborative working environments. |
cyber physical systems engineering: Challenges, Opportunities, and Dimensions of Cyber-Physical Systems Krishna, P. Venkata, 2014-11-30 Recent advances in science and engineering have led to the proliferation of cyber-physical systems. Now viewed as a pivotal area of research, the application of CPS has expanded into several new and innovative areas. Challenges, Opportunities, and Dimensions of Cyber-Physical Systems explores current trends and enhancements of CPS, highlighting the critical need for further research and advancement in this field. Focusing on architectural fundamentals, interdisciplinary functions, and futuristic implications, this book is an imperative reference source for scholars, engineers, and students in the scientific community interested in the current and future advances in CPS. |
cyber physical systems engineering: Reinforcement Learning for Cyber-Physical Systems Chong Li, Meikang Qiu, 2019-02-22 Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids. However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques. Features Introduces reinforcement learning, including advanced topics in RL Applies reinforcement learning to cyber-physical systems and cybersecurity Contains state-of-the-art examples and exercises in each chapter Provides two cybersecurity case studies Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory. |
cyber physical systems engineering: A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems David Nunes, Jorge Sa Silva, Fernando Boavida, 2018-02-05 The first book focusing on one of the hottest new topics in Internet of Things systems research and development Studies estimate that by 2020 we will have a vast Internet of Things (IoT) network comprising 26 billion connected devices, including everything from light bulbs to refrigerators, coffee makers to cars. From the beginning, the concept of cyber-physical systems (CPS), or the sensing and control of physical phenomena through networks of devices that work together to achieve common goals, has been implicit in the IoT enterprise. This book focuses on the increasingly hot topic of Human-in-the-loop Cyber-Physical Systems (HiTLCPS)—CPSs that incorporate human responses in IoT equation. Why have we not yet integrated the human component into CPSs? What are the major challenges to achieving HiTLCPS? How can we take advantage of ubiquitous sensing platforms, such as smartphones and personal devices to achieve that goal? While mature HiTLCPS designs have yet to be achieved, or a general consensus reached on underlying HiTLCPS requirements, principles, and theory, researchers and developers worldwide are on the cusp of realizing them. With contributions from researchers at the cutting edge of HiTLCPS R&D, this book addresses many of these questions from the theoretical and practical points of view. An essential primer on a rapidly emerging Internet-of-Things concept, focusing on human-centric applications Discusses new topics which, until now, have only been available in research papers scattered throughout the world literature Addressed fundamental concepts in depth while providing practical insights into the development of complete HiTLCPS systems Includes a companion website containing full source-code for all of the applications described This book is an indispensable resource for researchers and app developers eager to explore HiTL concepts and include them into their designs. It is also an excellent primer for advanced undergraduates and graduate students studying IoT, CPS, and HiTLCPS. |
cyber physical systems engineering: Tools and Technologies for the Development of Cyber-Physical Systems Balandin, Sergey, Balandina, Ekaterina, 2019-12-27 With the continual development of professional industries in today’s modernized world, certain technologies have become increasingly applicable. Cyber-physical systems, specifically, are a mechanism that has seen rapid implementation across numerous fields. This is a technology that is constantly evolving, so specialists need a handbook of research that keeps pace with the advancements and methodologies of these devices. Tools and Technologies for the Development of Cyber-Physical Systems is an essential reference source that discusses recent advancements of cyber-physical systems and its application within the health, information, and computer science industries. Featuring research on topics such as autonomous agents, power supply methods, and software assessment, this book is ideally designed for data scientists, technology developers, medical practitioners, computer engineers, researchers, academicians, and students seeking coverage on the development and various applications of cyber-physical systems. |
cyber physical systems engineering: Design, Applications, and Maintenance of Cyber-Physical Systems Rea, Pierluigi, Ottaviano, Erika, Machado, José, Antosz, Katarzyna, 2021-06-25 Cyber-physical systems (CPS) can be defined as systems in which physical objects are represented in the digital world and integrated with computation, storage, and communication capabilities and are connected to each other in a network. The goal in the use of the CPS is integrating the dynamics of the physical processes with those of the software and networking, providing abstractions and modelling, design, and analysis techniques for the integrated whole. The notion of CPS is linked to concepts of robotics and sensor networks with intelligent systems proper of computational intelligence leading the pathway. Recent advances in science and engineering improve the link between computational and physical elements by means of intelligent systems, increasing the adaptability, autonomy, efficiency, functionality, reliability, safety, and usability of cyber-physical systems. The potential of cyber-physical systems will spread to several directions, including but not limited to intervention, precision manufacturing, operations in dangerous or inaccessible environments, coordination, efficiency, Maintenance 4.0, and augmentation of human capabilities. Design, Applications, and Maintenance of Cyber-Physical Systems gives insights about CPS as tools for integrating the dynamics of the physical processes with those of software and networking, providing abstractions and modelling, design, and analysis techniques for their smart manufacturing interoperation. The book will have an impact upon the research on robotics, mechatronics, integrated intelligent multibody systems, Industry 4.0, production systems management and maintenance, decision support systems, and Maintenance 4.0. The chapters discuss not only the technologies involved in CPS but also insights into how they are used in various industries. This book is ideal for engineers, practitioners, researchers, academicians, and students who are interested in a deeper understanding of cyber-physical systems (CPS), their design, application, and maintenance, with a special focus on modern technologies in Industry 4.0 and Maintenance 4.0. |
cyber physical systems engineering: Engineering Safe and Secure Cyber-Physical Systems Roman Gumzej, 2016-01-22 This book introduces the concept of holistic design and development of cyber physical systems to achieve their safe and secure operation. It shows that by following the standards for embedded system’s safety and using appropriate hardware and software components inherently safe system’s architectures can be devised and certified. While the standards already enable testing and certification of inherently safe and sound hardware, this is still not the case with software. The book demonstrates that Specification PEARL(SPEARL) addresses this issue and proposes appropriate solutions from the viewpoints of software engineering as well as concrete program components. By doing so it reduces the complexity of cyber physical systems design in an innovative way. Three ultimate goals are being followed in the course of defining this new PEARL standard, namely: 1. simplicity over complexity, 2. inherent real-time ability, and 3. conformity to safety integrity and security capability levels. |
cyber physical systems engineering: Cyber-Physical Systems and Industry 4.0 Dinesh Goyal, Shanmugam Balamurugan, Karthikrajan Senthilnathan, Iyswarya Annapoorani, Mohammad Israr, 2022-02-17 This new work explores the growth of information and communication technologies with an emphasis on cyber-physical systems and security management of these systems. This volume discusses and analyzes the various effective practical applications of CPS, which involves the integration of the physical process with embedded computation and network monitoring along with feedback loops from physical systems. The authors identify the best set of applications and discuss the drawbacks of existing systems. The book provides a broad outlook on the applications of cyber-physical systems along with case studies and examples in healthcare, automotive electronics, industrial automation, environment monitoring, agriculture, and applications in civil and mechanical sectors. Topics include using an energy management system in smart grids, implementing an intelligent traffic management system, warehouse tracking and monitoring, medical cyber-physical systems security, remote healthcare monitoring, and more. |
cyber physical systems engineering: Blockchain for Cyberphysical Systems Ali Dorri, Salil Kanhere, Raja Jurdak, 2020-09-30 This exciting book will explore how Blockchain (BC) technology has the potential to overcome challenges in the current cyber-physical system (CPS) environment. BC is a timestamp ledger of blocks that is used for storing and sharing data in a distributed manner. BC has attracted attention from practitioners and academics in different disciplines, including law, finance, and computer science, due to its use of distributed structure, immutability and security and privacy. However, applying blockchain in a cyber-physical system (CPS) is not straightforward and involves challenges, including lack of scalability, resource consumption, and delay. This book will provide a comprehensive study on blockchain for CPS. CPS and the existing solutions in CPS and will outline the limitations are presented. The key features of blockchain and its salient features which makes it an attractive solution for CPS are discussed. The fundamental challenges in adopting blockchain for CPS including scalability, delay, and resource consumption are presented and described. Blockchain applications in smart grids, smart vehicles, supply chain; and IoT Data marketplaces are explored. The future research directions to further improve blockchain performance in CPS is also provided. |
cyber physical systems engineering: A Journey of Embedded and Cyber-Physical Systems Jian-Jia Chen, 2020-07-30 This Open Access book celebrates Professor Peter Marwedel's outstanding achievements in compilers, embedded systems, and cyber-physical systems. The contributions in the book summarize the content of invited lectures given at the workshop “Embedded Systems” held at the Technical University Dortmund in early July 2019 in honor of Professor Marwedel's seventieth birthday. Provides a comprehensive view from leading researchers with respect to the past, present, and future of the design of embedded and cyber-physical systems; Discusses challenges and (potential) solutions from theoreticians and practitioners on modeling, design, analysis, and optimization for embedded and cyber-physical systems; Includes coverage of model verification, communication, software runtime systems, operating systems and real-time computing. |
cyber physical systems engineering: Cyber-Physical Systems Tushar Semwal, Faiz Iqbal, 2022-03-03 A Cyber-Physical System (CPS) is an integration of cyber components with their physical counterparts. A cyber unit could be either a software or hardware. Physical components are those objects, which are governed by the law of physics. CPS have transformed how we interact with the physical world, ranging from sensing the environmental parameters to controlling a complex manufacturing industry. The current pandemic has had catastrophic implications people all across the world in terms of health and economy. This book presents the significance and practicality of CPS in a pandemic situation. It provides a strong foundation to the CPS while also incorporating the latest theoretical advances and practical applications to alleviate the state of a pandemic. The book covers... Theoretical background and application-oriented overview of the different CPS models Impact of COVID-19 and similar pandemics on the engineering aspects of various industries and organisations Exciting and impactful CPS based solutions to the different pandemic situations Security and privacy in CPS when applied to critical and sensitive pandemic affected environment Describes the government-funded projects and work using CPS in real-world scenarios The book provides a unique and fresh exposure to CPS employed in a pandemic situation. It brings together researchers, practitioners, academics, experts, and industry professionals from around the world to share their knowledge and experience. |
cyber-physical systems engineering: Security and Quality in Cyber-Physical Systems Engineering Stefan Biffl, Matthias Eckhart, Arndt Lüder, Edgar Weippl, 2019-11-09 This book examines the requirements, risks, and solutions to improve the security and quality of complex cyber-physical systems (C-CPS), such as production systems, power plants, and airplanes, in order to ascertain whether it is possible to protect engineering organizations against cyber threats and to ensure engineering project quality. The book consists of three parts that logically build upon each other. Part I Product Engineering of Complex Cyber-Physical Systems discusses the structure and behavior of engineering organizations producing complex cyber-physical systems, providing insights into processes and engineering activities, and highlighting the requirements and border conditions for secure and high-quality engineering. Part II Engineering Quality Improvement addresses quality improvements with a focus on engineering data generation, exchange, aggregation, and use within an engineering organization, and the need for proper data modeling and engineering-result validation. Lastly, Part III Engineering Security Improvement considers security aspects concerning C-CPS engineering, including engineering organizations’ security assessments and engineering data management, security concepts and technologies that may be leveraged to mitigate the manipulation of engineering data, as well as design and run-time aspects of secure complex cyber-physical systems. The book is intended for several target groups: it enables computer scientists to identify research issues related to the development of new methods, architectures, and technologies for improving quality and security in multi-disciplinary engineering, pushing forward the current state of the art. It also allows researchers involved in the engineering of C-CPS to gain a better understanding of the challenges and requirements of multi-disciplinary engineering that will guide them in their future research and development activities. Lastly, it offers practicing engineers and managers with engineering backgrounds insights into the benefits and limitations of applicable methods, architectures, and technologies for selected use cases. |
cyber-physical systems engineering: Trustworthy Cyber-Physical Systems Engineering Alexander Romanovsky, Fuyuki Ishikawa, 2016-10-03 Focuses on various issues related to engineering trustworthy cyber-physical systems Contributes to the improved understanding of system concepts and standardization, and presents a research roadmap Emphasizes tool-supported methods, and focuses on practical issues faced by practitioners Covers the experience of deploying advanced system engineering methods in industry Includes contributions from leading international experts Offers supplementary material on the book website: http://research.nii.ac.jp/tcps/ |
cyber-physical systems engineering: Cyber-Physical Systems Fei Hu, 2013-09-26 Cyber-physical systems (CPSs) have quickly become one of the hottest computer applications today. With their tight integration of cyber and physical objects, it is believed CPSs will transform how we interact with the physical world, just like the Internet transformed how we interact with one another. A CPS could be a system at multiple scales, from large smart bridges with fluctuation detection and responding functions, to autonomous cars and tiny implanted medical devices. Cyber-Physical Systems: Integrated Computing and Engineering Design supplies comprehensive coverage of the principles and design of CPSs. It addresses the many challenges that must be overcome and outlines a roadmap of how to get there. Emphasizes the integration of cyber computing and physical objects control Covers important CPS theory foundations and models Includes interesting case studies of several important civilian and health care applications that illustrate the CPS design process Addresses the collaboration of the sensing and controlling of a physical system with robust software architecture Explains how to account for random failure events that can occur in a real CPS environment Presented in a systematic manner, the book begins by discussing the basic concept underlying CPSs and examining some challenging design issues. It then covers the most important design theories and modeling methods for a practical CPS. Next, it moves on to sensor-based CPSs, which use embedded sensors and actuators to interact with the physical world. The text presents concrete CPS designs for popular civilian applications, including building and energy management. Reflecting the importance of human health care in society, it includes CPS examples of rehabilitation applications such as virtual reality-based disability recovery platforms. |
cyber-physical systems engineering: Simulation for Cyber-Physical Systems Engineering José L. Risco Martín, Saurabh Mittal, Tuncer Ören, 2020-11-07 This comprehensive book examines a range of examples, prepared by a diverse group of academic and industry practitioners, which demonstrate how cloud-based simulation is being extensively used across many disciplines, including cyber-physical systems engineering. This book is a compendium of the state of the art in cloud-based simulation that instructors can use to inform the next generation. It highlights the underlying infrastructure, modeling paradigms, and simulation methodologies that can be brought to bear to develop the next generation of systems for a highly connected society. Such systems, aptly termed cyber-physical systems (CPS), are now widely used in e.g. transportation systems, smart grids, connected vehicles, industrial production systems, healthcare, education, and defense. Modeling and simulation (M&S), along with big data technologies, are at the forefront of complex systems engineering research. The disciplines of cloud-based simulation and CPS engineering are evolving at a rapid pace, but are not optimally supporting each other’s advancement. This book brings together these two communities, which already serve multi-disciplinary applications. It provides an overview of the simulation technologies landscape, and of infrastructure pertaining to the use of cloud-based environments for CPS engineering. It covers the engineering, design, and application of cloud simulation technologies and infrastructures applicable for CPS engineering. The contributions share valuable lessons learned from developing real-time embedded and robotic systems deployed through cloud-based infrastructures for application in CPS engineering and IoT-enabled society. The coverage incorporates cloud-based M&S as a medium for facilitating CPS engineering and governance, and elaborates on available cloud-based M&S technologies and their impacts on specific aspects of CPS engineering. |
cyber-physical systems engineering: Multi-Disciplinary Engineering for Cyber-Physical Production Systems Stefan Biffl, Arndt Lüder, Detlef Gerhard, 2017-05-06 This book discusses challenges and solutions for the required information processing and management within the context of multi-disciplinary engineering of production systems. The authors consider methods, architectures, and technologies applicable in use cases according to the viewpoints of product engineering and production system engineering, and regarding the triangle of (1) product to be produced by a (2) production process executed on (3) a production system resource. With this book industrial production systems engineering researchers will get a better understanding of the challenges and requirements of multi-disciplinary engineering that will guide them in future research and development activities. Engineers and managers from engineering domains will be able to get a better understanding of the benefits and limitations of applicable methods, architectures, and technologies for selected use cases. IT researchers will be enabled to identify research issues related to the development of new methods, architectures, and technologies for multi-disciplinary engineering, pushing forward the current state of the art. |
cyber-physical systems engineering: A 21st Century Cyber-Physical Systems Education National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Committee on 21st Century Cyber-Physical Systems Education, 2016-12-27 Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. CPS can be small and closed, such as an artificial pancreas, or very large, complex, and interconnected, such as a regional energy grid. CPS engineering focuses on managing inter- dependencies and impact of physical aspects on cyber aspects, and vice versa. With the development of low-cost sensing, powerful embedded system hardware, and widely deployed communication networks, the reliance on CPS for system functionality has dramatically increased. These technical developments in combination with the creation of a workforce skilled in engineering CPS will allow the deployment of increasingly capable, adaptable, and trustworthy systems. Engineers responsible for developing CPS but lacking the appropriate education or training may not fully understand at an appropriate depth, on the one hand, the technical issues associated with the CPS software and hardware or, on the other hand, techniques for physical system modeling, energy and power, actuation, signal processing, and control. In addition, these engineers may be designing and implementing life-critical systems without appropriate formal training in CPS methods needed for verification and to assure safety, reliability, and security. A workforce with the appropriate education, training, and skills will be better positioned to create and manage the next generation of CPS solutions. A 21st Century Cyber-Physical Systems Education examines the intellectual content of the emerging field of CPS and its implications for engineering and computer science education. This report is intended to inform those who might support efforts to develop curricula and materials; faculty and university administrators; industries with needs for CPS workers; and current and potential students about intellectual foundations, workforce requirements, employment opportunities, and curricular needs. |
cyber-physical systems engineering: Complexity Challenges in Cyber Physical Systems Saurabh Mittal, Andreas Tolk, 2020-01-09 Offers a one-stop reference on the application of advanced modeling and simulation (M&S) in cyber physical systems (CPS) engineering This book provides the state-of-the-art in methods and technologies that aim to elaborate on the modeling and simulation support to cyber physical systems (CPS) engineering across many sectors such as healthcare, smart grid, or smart home. It presents a compilation of simulation-based methods, technologies, and approaches that encourage the reader to incorporate simulation technologies in their CPS engineering endeavors, supporting management of complexity challenges in such endeavors. Complexity Challenges in Cyber Physical Systems: Using Modeling and Simulation (M&S) to Support Intelligence, Adaptation and Autonomy is laid out in four sections. The first section provides an overview of complexities associated with the application of M&S to CPS Engineering. It discusses M&S in the context of autonomous systems involvement within the North Atlantic Treaty Organization (NATO). The second section provides a more detailed description of the challenges in applying modeling to the operation, risk and design of holistic CPS. The third section delves in details of simulation support to CPS engineering followed by the engineering practices to incorporate the cyber element to build resilient CPS sociotechnical systems. Finally, the fourth section presents a research agenda for handling complexity in application of M&S for CPS engineering. In addition, this text: Introduces a unifying framework for hierarchical co-simulations of cyber physical systems (CPS) Provides understanding of the cycle of macro-level behavior dynamically arising from spaciotemporal interactions between parts at the micro-level Describes a simulation platform for characterizing resilience of CPS Complexity Challenges in Cyber Physical Systems has been written for researchers, practitioners, lecturers, and graduate students in computer engineering who want to learn all about M&S support to addressing complexity in CPS and its applications in today’s and tomorrow’s world. |
cyber-physical systems engineering: Cyber-Physical Systems Engineering and Control Alla G. Kravets, Alexander A. Bolshakov, Maxim V. Shcherbakov, 2023-07-31 This book is devoted to the study of engineering and control technologies for the cyber-physical systems development. This book defines the approaches in the engineering leverage the exploitation of artificial intelligence and most urgent computing methods. The authors study the activities allows for the developing new and perspective concepts of robotics systems combining various machine learning methods, uncertainty explanation approaches, computer vision and unmanned aerial systems control technologies including artificial neural networks and simulation modeling by addressing a large scale of applications. The book also describes new materials engineering as well as implementation of these technologies in the different domains such as polymeric film production, polymer composition, and roller squeezing of leather, in order to realize the novel cyber-physical systems, their functionalities, and features. The authors describe the development of method for increasing the software efficiency, considering the increasing complexity of the computing systems and the importance of ensuring accuracy and velocity of modelling. The book also analyses algorithms for fuzzy models and systems, including the cyber-physical real-time systems, and non-stationary object with discrete time. The authors highlight the problem of ensuring the quality on engineering technologies for cyber-physical systems as the most important and consider different approaches to its solution. |
cyber-physical systems engineering: Safety and Security of Cyber-Physical Systems Frank J. Furrer, 2022-07-20 Cyber-physical systems (CPSs) consist of software-controlled computing devices communicating with each other and interacting with the physical world through sensors and actuators. Because most of the functionality of a CPS is implemented in software, the software is of crucial importance for the safety and security of the CPS. This book presents principle-based engineering for the development and operation of dependable software. The knowledge in this book addresses organizations that want to strengthen their methodologies to build safe and secure software for mission-critical cyber-physical systems. The book: • Presents a successful strategy for the management of vulnerabilities, threats, and failures in mission-critical cyber-physical systems; • Offers deep practical insight into principle-based software development (62 principles are introduced and cataloged into five categories: Business & organization, general principles, safety, security, and risk management principles); • Provides direct guidance on architecting and operating dependable cyber-physical systems for software managers and architects. |
cyber-physical systems engineering: Cyber-Physical Systems: A Model-Based Approach Walid M. Taha, Abd-Elhamid M. Taha, Johan Thunberg, 2020-09-01 In this concise yet comprehensive Open Access textbook, future inventors are introduced to the key concepts of Cyber-Physical Systems (CPS). Using modeling as a way to develop deeper understanding of the computational and physical components of these systems, one can express new designs in a way that facilitates their simulation, visualization, and analysis. Concepts are introduced in a cross-disciplinary way. Leveraging hybrid (continuous/discrete) systems as a unifying framework and Acumen as a modeling environment, the book bridges the conceptual gap in modeling skills needed for physical systems on the one hand and computational systems on the other. In doing so, the book gives the reader the modeling and design skills they need to build smart, IT-enabled products. Starting with a look at various examples and characteristics of Cyber-Physical Systems, the book progresses to explain how the area brings together several previously distinct ones such as Embedded Systems, Control Theory, and Mechatronics. Featuring a simulation-based project that focuses on a robotics problem (how to design a robot that can play ping-pong) as a useful example of a CPS domain, Cyber-Physical Systems: A Model-Based Approach demonstrates the intimate coupling between cyber and physical components, and how designing robots reveals several non-trivial control problems, significant embedded and real-time computation requirements, and a need to consider issues of communication and preconceptions. |
cyber-physical systems engineering: Cyber-Physical Systems Gaddadevara Matt Siddesh, Ganesh Chandra Deka, Krishnarajanagar GopalaIyengar Srinivasa, Lalit Mohan Patnaik, 2015-12-01 In cyber-physical systems (CPS), sensors and embedded systems are networked together to monitor and manage a range of physical processes through a continuous feedback system. This allows distributed computing using wireless devices. Cyber-Physical Systems-A Computational Perspective examines various developments of CPS that are impacting our daily |
cyber-physical systems engineering: Cyber-Physical Systems in the Built Environment Chimay J. Anumba, Nazila Roofigari-Esfahan, 2020-05-27 This book introduces researchers and practitioners to Cyber-Physical Systems (CPS) and its applications in the built environment. It begins with a fundamental introduction to CPS technology and associated concepts.It then presents numerous examples of applications from managing construction projects to smart transportation systems and smart cities. It concludes with a discussion of future directions for CPS deployment in the construction, operation and maintenance of constructed facilities. Featuring internationally recognized experts as contributors, Cyber-Physical Systems in the Built Environment, is an ideal resource for engineers, construction managers, architects, facilities managers, and planners working on a range of building and civil infrastructure projects. |
cyber-physical systems engineering: Cyber-Physical Systems Houbing Herbert Song, Danda B. Rawat, Sabina Jeschke, Christian Brecher, 2016-08-27 Cyber-Physical Systems: Foundations, Principles and Applications explores the core system science perspective needed to design and build complex cyber-physical systems. Using Systems Science's underlying theories, such as probability theory, decision theory, game theory, organizational sociology, behavioral economics, and cognitive psychology, the book addresses foundational issues central across CPS applications, including System Design -- How to design CPS to be safe, secure, and resilient in rapidly evolving environments, System Verification -- How to develop effective metrics and methods to verify and certify large and complex CPS, Real-time Control and Adaptation -- How to achieve real-time dynamic control and behavior adaptation in a diverse environments, such as clouds and in network-challenged spaces, Manufacturing -- How to harness communication, computation, and control for developing new products, reducing product concepts to realizable designs, and producing integrated software-hardware systems at a pace far exceeding today's timeline. The book is part of the Intelligent Data-Centric Systems: Sensor-Collected Intelligence series edited by Fatos Xhafa, Technical University of Catalonia. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Includes in-depth coverage of the latest models and theories that unify perspectives, expressing the interacting dynamics of the computational and physical components of a system in a dynamic environment - Focuses on new design, analysis, and verification tools that embody the scientific principles of CPS and incorporate measurement, dynamics, and control - Covers applications in numerous sectors, including agriculture, energy, transportation, building design and automation, healthcare, and manufacturing |
cyber-physical systems engineering: Cyber-Physical Systems Raj Rajkumar, Dionisio de Niz, Mark Klein, 2016-12-23 Learn the State of the Art in Embedded Systems and Embrace the Internet of Things The next generation of mission-critical and embedded systems will be “cyber physical”: They will demand the precisely synchronized and seamless integration of complex sets of computational algorithms and physical components. Cyber-Physical Systems is the definitive guide to building cyber-physical systems (CPS) for a wide spectrum of engineering and computing applications. Three pioneering experts have brought together the field’s most significant work in one volume that will be indispensable for all practitioners, researchers, and advanced students. This guide addresses CPS from multiple perspectives, drawing on extensive contributions from leading researchers. The authors and contributors review key CPS challenges and innovations in multiple application domains. Next, they describe the technical foundations underlying modern CPS solutions—both what we know and what we still need to learn. Throughout, the authors offer guiding principles for every facet of CPS development, from design and analysis to planning future innovations. Comprehensive coverage includes Understanding CPS drivers, challenges, foundations, and emerging directions Building life-critical, context-aware, networked systems of medical devices Creating energy grid systems that reduce costs and fully integrate renewable energy sources Modeling complex interactions across cyber and physical domains Synthesizing algorithms to enforce CPS control Addressing space, time, energy, and reliability issues in CPS sensor networks Applying advanced approaches to real-time scheduling Securing CPS: preventing “man-in-the-middle” and other attacks Ensuring logical correctness and simplifying verification Enforcing synchronized communication between distributed agents Using model-integration languages to define formal semantics for CPS models Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available. |
cyber-physical systems engineering: Security and Privacy in Cyber-Physical Systems Houbing Song, Glenn A. Fink, Sabina Jeschke, 2017-09-11 Written by a team of experts at the forefront of the cyber-physical systems (CPS) revolution, this book provides an in-depth look at security and privacy, two of the most critical challenges facing both the CPS research and development community and ICT professionals. It explores, in depth, the key technical, social, and legal issues at stake, and it provides readers with the information they need to advance research and development in this exciting area. Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability far in excess of what today’s simple embedded systems can provide. Just as the Internet revolutionized the way we interact with information, CPS technology has already begun to transform the way people interact with engineered systems. In the years ahead, smart CPS will drive innovation and competition across industry sectors, from agriculture, energy, and transportation, to architecture, healthcare, and manufacturing. A priceless source of practical information and inspiration, Security and Privacy in Cyber-Physical Systems: Foundations, Principles and Applications is certain to have a profound impact on ongoing R&D and education at the confluence of security, privacy, and CPS. |
cyber-physical systems engineering: Complex Systems Design & Management Marc Aiguier, Yves Caseau, Daniel Krob, Antoine Rauzy, 2012-10-19 This book contains all refereed papers that were accepted to the third edition of the « Complex Systems Design & Management » (CSD&M 2012) international conference that took place in Paris (France) from December 12-14, 2012. (Website: http://www.csdm2012.csdm.fr) These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2012 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net). |
cyber-physical systems engineering: Control of Cyber-Physical Systems Danielle C. Tarraf, 2013-06-30 Cyber-physical systems (CPS) involve deeply integrated, tightly coupled computational and physical components. These systems, spanning multiple scientific and technological domains, are highly complex and pose several fundamental challenges. They are also critically important to society’s advancement and security. The design and deployment of the adaptable, reliable CPS of tomorrow requires the development of a basic science foundation, synergistically drawing on various branches of engineering, mathematics, computer science, and domain specific knowledge. This book brings together 19 invited papers presented at the Workshop on Control of Cyber-Physical Systems, hosted by the Department of Electrical & Computer Engineering at The Johns Hopkins University in March 2013. It highlights the central role of control theory and systems thinking in developing the theory of CPS, in addressing the challenges of cyber-trust and cyber-security, and in advancing emerging cyber-physical applications ranging from smart grids to smart buildings, cars and robotic systems. |
cyber-physical systems engineering: Cyber-Physical Systems Danda B. Rawat, Joel J.P.C. Rodrigues, Ivan Stojmenovic, 2015-10-28 Although comprehensive knowledge of cyber-physical systems (CPS) is becoming a must for researchers, practitioners, system designers, policy makers, system managers, and administrators, there has been a need for a comprehensive and up-to-date source of research and information on cyber-physical systems. This book fills that need.Cyber-Physical Syst |
cyber-physical systems engineering: Applied Cyber-Physical Systems Sang C. Suh, U. John Tanik, John N. Carbone, Abdullah Eroglu, 2013-08-13 Applied Cyber-Physical Systems presents the latest methods and technologies in the area of cyber-physical systems including medical and biological applications. Cyber-physical systems (CPS) integrate computing and communication capabilities by monitoring, and controlling the physical systems via embedded hardware and computers. This book brings together unique contributions from renowned experts on cyber-physical systems research and education with applications. It also addresses the major challenges in CPS, and then provides a resolution with various diverse applications as examples. Advanced-level students and researchers focused on computer science, engineering and biomedicine will find this to be a useful secondary text book or reference, as will professionals working in this field. |
cyber-physical systems engineering: Cyber-Physical Systems of Systems Andrea Bondavalli, Sara Bouchenak, Hermann Kopetz, 2016-12-16 This book is open access under a CC BY 4.0 license. Technical Systems-of-Systems (SoS) – in the form of networked, independent constituent computing systems temporarily collaborating to achieve a well-defined objective – form the backbone of most of today’s infrastructure. The energy grid, most transportation systems, the global banking industry, the water-supply system, the military equipment, many embedded systems, and a great number more, strongly depend on systems-of-systems. The correct operation and continuous availability of these underlying systems-of-systems are fundamental for the functioning of our modern society. The 8 papers presented in this book document the main insights on Cyber-Physical System of Systems (CPSoSs) that were gained during the work in the FP7-610535 European Research Project AMADEOS (acronym for Architecture for Multi-criticality Agile Dependable Evolutionary Open System-of-Systems). It is the objective of this book to present, in a single consistent body, the foundational concepts and their relationships. These form a conceptual basis for the description and understanding of SoSs and go deeper in what we consider the characterizing and distinguishing elements of SoSs: time, emergence, evolution and dynamicity. |
cyber-physical systems engineering: Guide to Computing Fundamentals in Cyber-Physical Systems Dietmar P.F. Möller, 2016-04-14 This book presents an in-depth review of the state of the art of cyber-physical systems (CPS) and their applications. Relevant case studies are also provided, to help the reader to master the interdisciplinary material. Features: includes self-test exercises in each chapter, together with a glossary; offers a variety of teaching support materials at an associated website, including a comprehensive set of slides and lecture videos; presents a brief overview of the study of systems, and embedded computing systems, before defining CPS; introduces the concepts of the Internet of Things, and ubiquitous (or pervasive) computing; reviews the design challenges of CPS, and their impact on systems and software engineering; describes the ideas behind Industry 4.0 and the revolutions in digital manufacturing, including smart and agile manufacturing, as well as cybersecurity in manufacturing; considers the social impact of the changes in skills required by the globalized, digital work environment of the future. |
cyber-physical systems engineering: Introduction to Embedded Systems, Second Edition Edward Ashford Lee, Sanjit Arunkumar Seshia, 2017-01-06 An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems. |
cyber-physical systems engineering: Principles of Cyber-Physical Systems Sandip Roy, Sajal K. Das, 2020-10-15 This unique introduction to the foundational concepts of cyber-physical systems (CPS) describes key design principles and emerging research trends in detail. Several interdisciplinary applications are covered, with a focus on the wide-area management of infrastructures including electric power systems, air transportation networks, and health care systems. Design, control and optimization of cyber-physical infrastructures are discussed, addressing security and privacy issues of networked CPS, presenting graph-theoretic and numerical approaches to CPS evaluation and monitoring, and providing readers with the knowledge needed to operate CPS in a reliable, efficient, and secure manner. Exercises are included. This is an ideal resource for researchers and graduate students in electrical engineering and computer science, as well as for practitioners using cyber-physical systems in aerospace and automotive engineering, medical technology, and large-scale infrastructure operations. |
cyber-physical systems engineering: Resilience of Cyber-Physical Systems Francesco Flammini, 2019-01-25 This book addresses the latest approaches to holistic Cyber-Physical System (CPS) resilience in real-world industrial applications. Ensuring the resilience of CPSs requires cross-discipline analysis and involves many challenges and open issues, including how to address evolving cyber-security threats. The book describes emerging paradigms and techniques from two main viewpoints: CPSs’ exposure to new threats, and CPSs’ potential to counteract them. Further, the chapters address topics ranging from risk modeling to threat management and mitigation. The book offers a clearly structured, highly accessible resource for a diverse readership, including graduate students, researchers and industry practitioners who are interested in evaluating and ensuring the resilience of CPSs in both the development and assessment stages. |
cyber-physical systems engineering: Principles of Cyber-Physical Systems Rajeev Alur, 2015-04-24 A foundational text that offers a rigorous introduction to the principles of design, specification, modeling, and analysis of cyber-physical systems. A cyber-physical system consists of a collection of computing devices communicating with one another and interacting with the physical world via sensors and actuators in a feedback loop. Increasingly, such systems are everywhere, from smart buildings to medical devices to automobiles. This textbook offers a rigorous and comprehensive introduction to the principles of design, specification, modeling, and analysis of cyber-physical systems. The book draws on a diverse set of subdisciplines, including model-based design, concurrency theory, distributed algorithms, formal methods of specification and verification, control theory, real-time systems, and hybrid systems, explaining the core ideas from each that are relevant to system design and analysis. The book explains how formal models provide mathematical abstractions to manage the complexity of a system design. It covers both synchronous and asynchronous models for concurrent computation, continuous-time models for dynamical systems, and hybrid systems for integrating discrete and continuous evolution. The role of correctness requirements in the design of reliable systems is illustrated with a range of specification formalisms and the associated techniques for formal verification. The topics include safety and liveness requirements, temporal logic, model checking, deductive verification, stability analysis of linear systems, and real-time scheduling algorithms. Principles of modeling, specification, and analysis are illustrated by constructing solutions to representative design problems from distributed algorithms, network protocols, control design, and robotics. This book provides the rapidly expanding field of cyber-physical systems with a long-needed foundational text by an established authority. It is suitable for classroom use or as a reference for professionals. |
cyber-physical systems engineering: Logical Foundations of Cyber-Physical Systems André Platzer, 2018-08-31 Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks. This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects. The book is supported with homework exercises, lecture videos, and slides. |
cyber-physical systems engineering: Machine Learning for Cyber Physical Systems Jürgen Beyerer, Christian Kühnert, Oliver Niggemann, 2018-12-17 This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. |
cyber-physical systems engineering: Cyber-Physical Systems and Control Dmitry G. Arseniev, Ludger Overmeyer, Heikki Kälviäinen, Branko Katalinić, 2019-11-29 This book presents the proceedings of the International Conference on Cyber-Physical Systems and Control (CPS&C'2019), held in Peter the Great St. Petersburg Polytechnic University, which is celebrating its 120th anniversary in 2019. The CPS&C'2019 was dedicated to the 35th anniversary of the partnership between Peter the Great St. Petersburg Polytechnic University and Leibniz University of Hannover. Cyber-physical systems (CPSs) are a new generation of control systems and techniques that help promote prospective interdisciplinary research. A wide range of theories and methodologies are currently being investigated and developed in this area to tackle various complex and challenging problems. Accordingly, CPSs represent a scientific and engineering discipline that is set to make an impact on future systems of industrial and social scale that are characterized by the deep integration of real-time processing, sensing, and actuation into logical and physical heterogeneous domains. The CPS&C'2019 brought together researchers and practitioners from all over the world and to discuss cross-cutting fundamental scientific and engineering principles that underline the integration of cyber and physical elements across all application fields. The participants represented research institutions and universities from Austria, Belgium, Bulgaria, China, Finland, Germany, the Netherlands, Russia, Syria, Ukraine, the USA, and Vietnam. These proceedings include 75 papers arranged into five sections, namely keynote papers, fundamentals, applications, technologies, and education and social aspects. |
cyber-physical systems engineering: Safe and Secure Cyber-Physical Systems and Internet-of-Things Systems Marilyn Wolf, Dimitrios Serpanos, 2019-09-24 This book provides the first comprehensive view of safe and secure CPS and IoT systems. The authors address in a unified manner both safety (physical safety of operating equipment and devices) and computer security (correct and sound information), which are traditionally separate topics, practiced by very different people. Offers readers a unified view of safety and security, from basic concepts through research challenges; Provides a detailed comparison of safety and security methodologies; Describes a comprehensive threat model including attacks, design errors, and faults; Identifies important commonalities and differences in safety and security engineering. |
cyber-physical systems engineering: Reinforcement Learning for Cyber-Physical Systems Chong Li, Meikang Qiu, 2019-02-22 Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids. However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques. Features Introduces reinforcement learning, including advanced topics in RL Applies reinforcement learning to cyber-physical systems and cybersecurity Contains state-of-the-art examples and exercises in each chapter Provides two cybersecurity case studies Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory. |
cyber-physical systems engineering: Cyber-physical Systems and Digital Twins Michael E. Auer, Kalyan Ram B., 2019-07-10 This book constitutes the proceedings of the 16th International Conference on Remote Engineering and Virtual Instrumentation (REV), held at the BMS College of Engineering, Bangalore, India on 3–6 February 2019. Today, online technologies are at the core of most fields of engineering, as well as of society as a whole, and are inseparably connected with Internet of Things, cyber-physical systems, collaborative networks and grids, cyber cloud technologies, service architectures, to name but a few. Since it was first held in, 2004, the REV conference has focused on the increasing use of the Internet for engineering tasks and the problems surrounding it. The 2019 conference demonstrated and discussed the fundamentals, applications and experiences in the field of online engineering and virtual instrumentation. It also presented guidelines for university-level courses on these topics, in view of the increasing globalization of education and the demand for teleworking, remote services and collaborative working environments. |
cyber-physical systems engineering: Challenges, Opportunities, and Dimensions of Cyber-Physical Systems Krishna, P. Venkata, 2014-11-30 Recent advances in science and engineering have led to the proliferation of cyber-physical systems. Now viewed as a pivotal area of research, the application of CPS has expanded into several new and innovative areas. Challenges, Opportunities, and Dimensions of Cyber-Physical Systems explores current trends and enhancements of CPS, highlighting the critical need for further research and advancement in this field. Focusing on architectural fundamentals, interdisciplinary functions, and futuristic implications, this book is an imperative reference source for scholars, engineers, and students in the scientific community interested in the current and future advances in CPS. |
cyber-physical systems engineering: A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems David Nunes, Jorge Sa Silva, Fernando Boavida, 2018-02-05 The first book focusing on one of the hottest new topics in Internet of Things systems research and development Studies estimate that by 2020 we will have a vast Internet of Things (IoT) network comprising 26 billion connected devices, including everything from light bulbs to refrigerators, coffee makers to cars. From the beginning, the concept of cyber-physical systems (CPS), or the sensing and control of physical phenomena through networks of devices that work together to achieve common goals, has been implicit in the IoT enterprise. This book focuses on the increasingly hot topic of Human-in-the-loop Cyber-Physical Systems (HiTLCPS)—CPSs that incorporate human responses in IoT equation. Why have we not yet integrated the human component into CPSs? What are the major challenges to achieving HiTLCPS? How can we take advantage of ubiquitous sensing platforms, such as smartphones and personal devices to achieve that goal? While mature HiTLCPS designs have yet to be achieved, or a general consensus reached on underlying HiTLCPS requirements, principles, and theory, researchers and developers worldwide are on the cusp of realizing them. With contributions from researchers at the cutting edge of HiTLCPS R&D, this book addresses many of these questions from the theoretical and practical points of view. An essential primer on a rapidly emerging Internet-of-Things concept, focusing on human-centric applications Discusses new topics which, until now, have only been available in research papers scattered throughout the world literature Addressed fundamental concepts in depth while providing practical insights into the development of complete HiTLCPS systems Includes a companion website containing full source-code for all of the applications described This book is an indispensable resource for researchers and app developers eager to explore HiTL concepts and include them into their designs. It is also an excellent primer for advanced undergraduates and graduate students studying IoT, CPS, and HiTLCPS. |
cyber-physical systems engineering: Design, Applications, and Maintenance of Cyber-Physical Systems Rea, Pierluigi, Ottaviano, Erika, Machado, José, Antosz, Katarzyna, 2021-06-25 Cyber-physical systems (CPS) can be defined as systems in which physical objects are represented in the digital world and integrated with computation, storage, and communication capabilities and are connected to each other in a network. The goal in the use of the CPS is integrating the dynamics of the physical processes with those of the software and networking, providing abstractions and modelling, design, and analysis techniques for the integrated whole. The notion of CPS is linked to concepts of robotics and sensor networks with intelligent systems proper of computational intelligence leading the pathway. Recent advances in science and engineering improve the link between computational and physical elements by means of intelligent systems, increasing the adaptability, autonomy, efficiency, functionality, reliability, safety, and usability of cyber-physical systems. The potential of cyber-physical systems will spread to several directions, including but not limited to intervention, precision manufacturing, operations in dangerous or inaccessible environments, coordination, efficiency, Maintenance 4.0, and augmentation of human capabilities. Design, Applications, and Maintenance of Cyber-Physical Systems gives insights about CPS as tools for integrating the dynamics of the physical processes with those of software and networking, providing abstractions and modelling, design, and analysis techniques for their smart manufacturing interoperation. The book will have an impact upon the research on robotics, mechatronics, integrated intelligent multibody systems, Industry 4.0, production systems management and maintenance, decision support systems, and Maintenance 4.0. The chapters discuss not only the technologies involved in CPS but also insights into how they are used in various industries. This book is ideal for engineers, practitioners, researchers, academicians, and students who are interested in a deeper understanding of cyber-physical systems (CPS), their design, application, and maintenance, with a special focus on modern technologies in Industry 4.0 and Maintenance 4.0. |
cyber-physical systems engineering: Tools and Technologies for the Development of Cyber-Physical Systems Balandin, Sergey, Balandina, Ekaterina, 2019-12-27 With the continual development of professional industries in today’s modernized world, certain technologies have become increasingly applicable. Cyber-physical systems, specifically, are a mechanism that has seen rapid implementation across numerous fields. This is a technology that is constantly evolving, so specialists need a handbook of research that keeps pace with the advancements and methodologies of these devices. Tools and Technologies for the Development of Cyber-Physical Systems is an essential reference source that discusses recent advancements of cyber-physical systems and its application within the health, information, and computer science industries. Featuring research on topics such as autonomous agents, power supply methods, and software assessment, this book is ideally designed for data scientists, technology developers, medical practitioners, computer engineers, researchers, academicians, and students seeking coverage on the development and various applications of cyber-physical systems. |
cyber-physical systems engineering: Engineering Safe and Secure Cyber-Physical Systems Roman Gumzej, 2016-01-22 This book introduces the concept of holistic design and development of cyber physical systems to achieve their safe and secure operation. It shows that by following the standards for embedded system’s safety and using appropriate hardware and software components inherently safe system’s architectures can be devised and certified. While the standards already enable testing and certification of inherently safe and sound hardware, this is still not the case with software. The book demonstrates that Specification PEARL(SPEARL) addresses this issue and proposes appropriate solutions from the viewpoints of software engineering as well as concrete program components. By doing so it reduces the complexity of cyber physical systems design in an innovative way. Three ultimate goals are being followed in the course of defining this new PEARL standard, namely: 1. simplicity over complexity, 2. inherent real-time ability, and 3. conformity to safety integrity and security capability levels. |
cyber-physical systems engineering: Cyber-Physical Systems and Industry 4.0 Dinesh Goyal, Shanmugam Balamurugan, Karthikrajan Senthilnathan, Iyswarya Annapoorani, Mohammad Israr, 2022-02-17 This new work explores the growth of information and communication technologies with an emphasis on cyber-physical systems and security management of these systems. This volume discusses and analyzes the various effective practical applications of CPS, which involves the integration of the physical process with embedded computation and network monitoring along with feedback loops from physical systems. The authors identify the best set of applications and discuss the drawbacks of existing systems. The book provides a broad outlook on the applications of cyber-physical systems along with case studies and examples in healthcare, automotive electronics, industrial automation, environment monitoring, agriculture, and applications in civil and mechanical sectors. Topics include using an energy management system in smart grids, implementing an intelligent traffic management system, warehouse tracking and monitoring, medical cyber-physical systems security, remote healthcare monitoring, and more. |
cyber-physical systems engineering: Blockchain for Cyberphysical Systems Ali Dorri, Salil Kanhere, Raja Jurdak, 2020-09-30 This exciting book will explore how Blockchain (BC) technology has the potential to overcome challenges in the current cyber-physical system (CPS) environment. BC is a timestamp ledger of blocks that is used for storing and sharing data in a distributed manner. BC has attracted attention from practitioners and academics in different disciplines, including law, finance, and computer science, due to its use of distributed structure, immutability and security and privacy. However, applying blockchain in a cyber-physical system (CPS) is not straightforward and involves challenges, including lack of scalability, resource consumption, and delay. This book will provide a comprehensive study on blockchain for CPS. CPS and the existing solutions in CPS and will outline the limitations are presented. The key features of blockchain and its salient features which makes it an attractive solution for CPS are discussed. The fundamental challenges in adopting blockchain for CPS including scalability, delay, and resource consumption are presented and described. Blockchain applications in smart grids, smart vehicles, supply chain; and IoT Data marketplaces are explored. The future research directions to further improve blockchain performance in CPS is also provided. |
cyber-physical systems engineering: A Journey of Embedded and Cyber-Physical Systems Jian-Jia Chen, 2020-07-30 This Open Access book celebrates Professor Peter Marwedel's outstanding achievements in compilers, embedded systems, and cyber-physical systems. The contributions in the book summarize the content of invited lectures given at the workshop “Embedded Systems” held at the Technical University Dortmund in early July 2019 in honor of Professor Marwedel's seventieth birthday. Provides a comprehensive view from leading researchers with respect to the past, present, and future of the design of embedded and cyber-physical systems; Discusses challenges and (potential) solutions from theoreticians and practitioners on modeling, design, analysis, and optimization for embedded and cyber-physical systems; Includes coverage of model verification, communication, software runtime systems, operating systems and real-time computing. |
cyber-physical systems engineering: Cyber-Physical Systems Tushar Semwal, Faiz Iqbal, 2022-03-03 A Cyber-Physical System (CPS) is an integration of cyber components with their physical counterparts. A cyber unit could be either a software or hardware. Physical components are those objects, which are governed by the law of physics. CPS have transformed how we interact with the physical world, ranging from sensing the environmental parameters to controlling a complex manufacturing industry. The current pandemic has had catastrophic implications people all across the world in terms of health and economy. This book presents the significance and practicality of CPS in a pandemic situation. It provides a strong foundation to the CPS while also incorporating the latest theoretical advances and practical applications to alleviate the state of a pandemic. The book covers... Theoretical background and application-oriented overview of the different CPS models Impact of COVID-19 and similar pandemics on the engineering aspects of various industries and organisations Exciting and impactful CPS based solutions to the different pandemic situations Security and privacy in CPS when applied to critical and sensitive pandemic affected environment Describes the government-funded projects and work using CPS in real-world scenarios The book provides a unique and fresh exposure to CPS employed in a pandemic situation. It brings together researchers, practitioners, academics, experts, and industry professionals from around the world to share their knowledge and experience. |
What is Cybersecurity? | CISA
Feb 1, 2021 · What is cybersecurity? Cybersecurity is the art of protecting networks, devices, and data from unauthorized access or criminal use and the practice of ensuring confidentiality, …
Cyber Threats and Advisories | Cybersecurity and Infrastructure
Apr 11, 2023 · By preventing attacks or mitigating the spread of an attack as quickly as possible, cyber threat actors lose their power. CISA diligently tracks and shares information about the …
Cybersecurity Best Practices | Cybersecurity and Infrastructure
May 6, 2025 · CISA provides information on cybersecurity best practices to help individuals and organizations implement preventative measures and manage cyber risks.
CISA Cybersecurity Awareness Program
CISA Cybersecurity Awareness Program The CISA Cybersecurity Awareness Program is a national public awareness effort aimed at increasing the understanding of cyber threats and …
Russian Military Cyber Actors Target US and Global Critical ...
Sep 5, 2024 · Summary The Federal Bureau of Investigation (FBI), Cybersecurity and Infrastructure Security Agency (CISA), and National Security Agency (NSA) assess that cyber …
Organizations and Cyber Safety | Cybersecurity and ... - CISA
May 2, 2024 · Protecting the cyber space is an essential aspect of business operations and must be integrated at all levels. CISA’s Role CISA offers tools, services, resources, and current …
Cybersecurity | Homeland Security
May 5, 2025 · Cybersecurity and Infrastructure Security Agency (CISA) The Cybersecurity and Infrastructure Security Agency (CISA) leads the national effort to understand, manage, and …
Free Cybersecurity Services & Tools | CISA
What's Included CISA's no-cost, in-house cybersecurity services designed to help individuals and organizations build and maintain a robust and resilient cyber framework. An extensive …
Nation-State Cyber Actors | Cybersecurity and Infrastructure ... - CISA
CISA's Role As the nation’s cyber defense agency and national coordinator for critical infrastructure security, CISA provides resources to help critical infrastructure and other …
Information Sharing | Cybersecurity and Infrastructure Security
Information sharing is the key to preventing a wide-spread cyber-attack. CISA develops partnerships to rapidly share critical information about cyber incidents. Cyber Threats and …
What is Cybersecurity? | CISA
Feb 1, 2021 · What is cybersecurity? Cybersecurity is the art of protecting networks, devices, and data from unauthorized access or criminal use and the practice of ensuring confidentiality, …
Cyber Threats and Advisories | Cybersecurity and Infrastructure …
Apr 11, 2023 · By preventing attacks or mitigating the spread of an attack as quickly as possible, cyber threat actors lose their power. CISA diligently tracks and shares information about the …
Cybersecurity Best Practices | Cybersecurity and Infrastructure
May 6, 2025 · CISA provides information on cybersecurity best practices to help individuals and organizations implement preventative measures and manage cyber risks.
CISA Cybersecurity Awareness Program
CISA Cybersecurity Awareness Program The CISA Cybersecurity Awareness Program is a national public awareness effort aimed at increasing the understanding of cyber threats and …
Russian Military Cyber Actors Target US and Global Critical ...
Sep 5, 2024 · Summary The Federal Bureau of Investigation (FBI), Cybersecurity and Infrastructure Security Agency (CISA), and National Security Agency (NSA) assess that cyber …
Organizations and Cyber Safety | Cybersecurity and ... - CISA
May 2, 2024 · Protecting the cyber space is an essential aspect of business operations and must be integrated at all levels. CISA’s Role CISA offers tools, services, resources, and current …
Cybersecurity | Homeland Security
May 5, 2025 · Cybersecurity and Infrastructure Security Agency (CISA) The Cybersecurity and Infrastructure Security Agency (CISA) leads the national effort to understand, manage, and …
Free Cybersecurity Services & Tools | CISA
What's Included CISA's no-cost, in-house cybersecurity services designed to help individuals and organizations build and maintain a robust and resilient cyber framework. An extensive …
Nation-State Cyber Actors | Cybersecurity and Infrastructure
CISA's Role As the nation’s cyber defense agency and national coordinator for critical infrastructure security, CISA provides resources to help critical infrastructure and other …
Information Sharing | Cybersecurity and Infrastructure Security
Information sharing is the key to preventing a wide-spread cyber-attack. CISA develops partnerships to rapidly share critical information about cyber incidents. Cyber Threats and …